Física Experimental: Eletromagnetismo

Aula 2

Metodologias

Ensino Remoto Emergencial

Conteúdo desta aula:

•	Gráficos	3 -	- 6
•	Ajuste de curvas	. 7 –	12
•	Linearização de gráficos		. 13
•	Relatórios		15
•	Exercícios	16 –	20
•	Próximas aulas		21

Fornecida uma tabela com dados de duas grandezas físicas que se relacionam, a construção de um gráfico nos auxilia a:

- Visualizar de forma direta e rápida a relação entre as grandezas.
- Interpretar o fenômeno físico.
- Obter informação quantitativa a partir da análise gráfica.

Exemplo (Aula 1): dados de tensão (*V*) e corrente (*I*) para aferição da resistência (*R*) elétrica de um elemento resistivo ôhmico.

Tensão (V)	Corrente (A)
1,0	0,052
2,0	0,098
3,0	0,151
4,0	0,195
5,0	0,244

Essas grandezas são relacionadas por

V = RI.

Para construir o gráfico VxI, os dados de V serão colocados na coluna Y (eixo y) e os dados de I na coluna X (eixo x) do programa gráfico.

Tensão (V)	Corrente (A)
1,0	0,052
2,0	0,098
3,0	0,151
4,0	0,195
5,0	0,244

Atenção! Aqui estamos usando o SciDavis.

Table1				
	1[X]	₽ 2[Y]	^	
1	0,052	1		
2	0,098	2		
3	0,151	3		
4	0,195	4		
5	0 <mark>,</mark> 244	5		
6				
7				
8				
9				
10			\mathbf{v}	

Com o gráfico podemos visualizar a relação entre tensão e corrente.

Para gráficos com poucos pontos usamos símbolos para identificá-los

As informações em destaque (principalmente as dos eixos x e y) são essenciais para se entender e interpretar um gráfico.

Eixos com as grandezas e suas unidades

Ajuste de curvas

- Ajustar uma curva a um conjunto de dados experimentais é determinar a função que melhor representa a tendência geral desses dados.
- Através do ajuste obtemos informações quantitativas do fenômeno físico em estudo.

Exemplo (Aula 1):

Como obter o valor da resistência a partir da análise do gráfico Vx/?

Sabemos que V varia linearmente com I(V=RI).

Ajuste de curvas

Neste caso, um ajuste linear (regressão linear) determinará a equação da reta que melhor se ajusta aos dados.

0,05

0

0,1

Corrente (A)

0,25

0,2

0,15

Ajuste de curvas usando o MyCurveFit

O ajuste de uma reta

y = mx + c

fornece os valores da inclinação (*m*) e do termo independente (**c**), junto com suas respectivas incertezas.

- Como y=V, x=I, temos que R=m.
 Por tanto,
- $R = (20,8 \pm 0,3)\Omega$

Coeff.	Value	± Error
m	20.7868	0.286433
С	-0.077282	0.0466647

Ajuste de curvas usando o LinearFit

5 4.5

3 2.5 2.5 1.5

name

O ajuste de uma reta y = mx + b fornece os valores dos parâmetros m (inclinação) e b (termo independente) com suas respectivas incertezas. Tensão (V)

 Como y=V, x=I, temos que R=m. Portanto

 $R = (20,8 \pm 0,3)\Omega$

Atenção! Os parâmetros do ajuste podem ser representados por letras diferentes em cada programa

0.1

80.0

m=20.77754 b=-0.07508 r=0.9997

Errors Dm=0.29403 Db=0.0479

Corrente (A)

0.12 0.15 0.18 0.2 0.23

Data

Ajuste de curvas

É razoável ajustar uma reta a esses dados?

Ajuste de curvas

Não! Devemos fazer ajustes não lineares.

Ajuste com $y = Ae^{Bx}$

Ajuste com y = sin(Ax + B)

Linearização de gráficos

 Frequentemente, duas grandezas x e y se relacionam de forma não linear. Exemplos:

1.
$$y = ax^{2} + b$$

2. $y = be^{ax}$
3. $y = ax^{2} + bx$

 Em alguns casos é possível definir novas grandezas que sejam funções das originais e obedeçam uma relação linear entre si.

1. Fazendo
$$X = x^2$$
 teremos $y = aX + b$

- 2. Aplicando o logaritmo: $\ln y = \ln b + ax$ Y = B + ax
- 3. Não é possível linearizar
- Após a linearização, é possível fazer a análise do gráfico via regressão linear. <u>Não confundir linearização com regressão linear.</u>

Programas de análise de dados

Para fazer e analisar gráficos você deve usar pelo menos um dos seguintes programas de acordo com o seu equipamento:

- SciDAvis: https://sourceforge.net/projects/scidavis/
 - Computador onde se pode instalar programas.
- MyCurveFit: <u>https://mycurvefit.com/</u>
 - Computador onde não é possível instalar programas.
 Este se usa sempre online.
- LinearFit: Busque "LinearFit" no "Play Store": (https://play.google.com/store/apps/details?id=appinventor.ai_osc ar_gomezcalderon.LinearFit_ShaDB&hl=en_US)
 - Smartphone.

→ Tutoriais de instalação e utilização:

https://www.fisica.ufmg.br/ciclo-basico/disciplinas/feb-eletro/#apoio

Relatórios

- Após completada as tarefas de um dado experimento, você deve apresentar os resultados obtidos em um relatório.
- Não há uma forma rígida de se redigir um relatório. Siga as instruções e recomendações do seu professor para redigir o seu.

Em caso de dúvidas, consulte "Material de apoio" em <u>https://www.fisica.ufmg.br/ciclo-basico/disciplinas/feb-eletro/#apoio</u>

- Redija seu relatório de forma que ele seja compreensível para o leitor que não tenha feito o experimento.
- Relatórios copiados serão desconsiderados.
- O professor definirá como os relatórios serão enviados.

Exercício: Comprovação da lei de Ohm

Utilizaremos fontes reguláveis, elementos resistivos, voltímetro e amperímetro (multímetro) para uma introdução as medidas de voltagem e intensidade de corrente.

- Serão realizadas medidas de <u>corrente (I) em função da tensão</u> (V) aplicada.
- Deve-se <u>calcular a resistência R</u> do elemento que será medido <u>utilizando-se um gráfico linearizado</u> do tipo I = V/R.
- Calcule também a incerteza da resistência.

Circuito DC

- Utilizando cabos, fonte e o resistor (encapsulado em branco) foi montado um circuito DC como mostrado.
- Com o multímetro foi medida a intensidade de corrente que passa no circuito para diferentes valores de voltagem aplicada na fonte.

Tabela de valores medidos

- Calcular a resistência R do resistor utilizando um gráfico linearizado do tipo I = V/R.
- Calcule também a incerteza da resistência.

medições			
I (A)	V (V)		
0,5	7,5		
1	15,0		
1,5	23,2		
2	30,3		
2,5	38,2		
3	45,1		
3,5	53,5		
4	60,2		
4,5	67,7		
5	75,9		

Simulador online de Circuito DC

Permite:

- Montar circuito de corrente continua,
- Variar os elementos do circuito e seus valores.
- Por exemplo, podem seguir o *link* mostrado no slide seguinte para:
- Montar um circuito DC, variar o valor da voltagem da fonte e medir a o valor da corrente.
- Obter vários pares (V,I), realizar um gráfico e comprovar o valor da resistência utilizada.

Link <u>https://phet.colorado.edu/sims/html/circuit-construction-kit-dc_pt_BR.html</u>

Preparação para as próximas aulas

- Leia com antecedência e atenção o roteiro do experimento da semana.
- Assista o vídeo que será disponibilizado pelo professor.
- Se prepare para realizar os procedimentos do roteiro a partir dos dados que serão fornecidos no horário da aula.
- Sempre que necessário, revise o conteúdo das Aulas 1 e 2 e do tutorial do programa de gráficos que irá usar. <u>https://www.fisica.ufmg.br/ciclo-basico/disciplinas/febeletro/#experimentos</u>