Física Experimental: Termodinâmica

Aula 1

Introdução ao laboratório

Ensino Remoto Emergencial

Conteúdo desta aula:

- Objetivos e Funcionamento..... slides 3 5
- Estrutura das aulas..... slides 6 7
- Unidades Internacionais slides 8 10
- Algarismos significativos slides 11 14
- Incertezas (propagação) slides 15 17

Objetivos

- Obtenção, tratamento e análise de dados obtidos em experimentos de Termodinâmica (Física).
- Introdução ao uso de alguns aparelhos de medida e metodologias de apresentação de resultados.

Funcionamento

Semestre é composto por 11 aulas

- 2 aulas introdutórias
- 8 experimentos
- 1 prova
- 1 atividade avaliativa opcional, assíncrono ou reposição.

- Aula 1: Introdução ao laboratório

- Aula 2: Metodologias.

- Aulas 3 a 10: Experimentos 1-8

- Aula 11: Prova

Funcionamento

Sequência de experimentos (aula 3 a 10)

- 1. Determinação do calor específico do alumínio;
- 2. Determinação da capacidade térmica de um calorímetro;
- 3. Gases ideais;
- 4. Calibração de um termopar;
- 5. Calor específico de um gás;
- 6. Tensão superficial;
- 7. Equivalente mecânico do calor;
- 8. Deformação Inelástica e processo irreversível.

Prova: Do tipo escolhido pelo professor

Nota: distribuição de pontos é definida pelo professor.

Funcionamento

Sequência de experimentos (aula 3 a 11)

- 1. Determinação do calor específico do alumínio;
- 2. Determinação da capacidade térmica de um calorímetro;
- 3. Gases ideais;
- 4. Calibração de um termopar;
- 5. Calor específico de um gás;
- 6. Tensão superficial;
- 7. Equivalente mecânico do calor;
- 8. Deformação Inelástica e processo irreversível.

Prova (aula 12) Ciclos Térmicos – Máquina de Stirling

→ A atividade avaliativa e distribuição de pontos é definida pelo professor.

Estrutura das Aulas

- Após a Aula 2, apresentaremos um experimento a cada semana de acordo com a sequência mostrada.
- Antes de cada experimento, disponibilizaremos, com uma semana de antecedência, um vídeo demonstrativo deste experimento no YouTube.
- Durante a semana que antecede a aula deste experimento, o aluno deve se preparar lendo o roteiro, assistindo ao vídeo e acessando o material de apoio (caso necessário) disponível no site da disciplina. Recomenda-se também a discussão com os colegas.

Estrutura das Aulas

- No horário da aula, em reunião virtual com todos os alunos, será disponibilizado um conjunto de dados daquele experimento.
- Neste horário, serão discutidos os princípios físicos relacionados ao experimento, os procedimentos seguidos no vídeo, a análise de dados e a realização do relatório.
- A partir dos dados fornecidos, o aluno produzirá um gráfico e o enviará (mostrará) ao fim da aula para comprovar seu aproveitamento.
- O aluno fará um relatório do experimento seguindo as instruções do professor e o entregará na forma e data indicadas pelo professor.

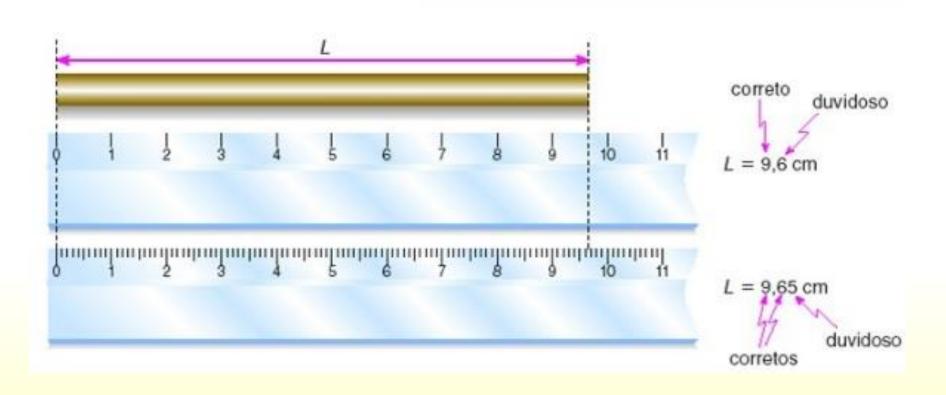
Unidades internacionais

Nos experimentos realizados durante o curso deve-se expressar resultados (valores) e utilizá-los nos cálculos no sistema de unidades internacionais.

Unidades Fundamentais do SI:

Grandeza	Nome	Símbolo
comprimento	metro	m
tempo	segundo	S
Massa	quilograma	kg
Quantidade de matéria	mol	mol
Corrente elétrica	ampère	Α
temperatura	Kelvin	K

^{*}Intervalos de temperatura em graus Celsius equivalem a intervalos em Kelvin, e são comumente utilizados em experimentos de termodinâmica


Unidades internacionais

Algumas unidades internacionais utilizadas são obtidas pela combinação das unidades fundamentais

Grandeza	Nome da Unidade Derivada no SI	Símbolo	Equivalências
Frequência	hertz	Hz	$1 \text{ Hz} = 1 \text{ s}^{-1}$
Força	newton	N	1 N = 1 kg.m/s ²
Pressão, tensão mecânica	pascal	Pa	$1 \text{ Pa} = 1 \text{ N/m}^2$
Energia, trabalho, quantidade de calor	joule	J	1 J = 1 N.m
Potência e fluxo de energia	watt	W	1 W = 1 J/s
Carga elétrica	coulumb	С	1 C = 1 A.s
Potencial elétrico, diferença de potencial, tensão elétrica, força eletromotriz	volt	V	1 V = 1 J/C
Capacitância	farad	F	1 F = 1 C/V
Resistência elétrica	ohm	Ω	$1\Omega = 1 \text{ V/A}$
Condutância elétrica	siemens	S	$1 \text{ S} = \Omega^{-1}$
Fluxo de indução magnética, fluxo magnético	weber	Wb	1 Wb = 1 V.s
Densidade de fluxo magnético, indução magnética	tesla	Т	1 T = 1 Wb/m ²
Indutância	henry	Н	1 H = 1 Wb/A

Potências de dez vs unidades

Pr	efixo	1000 ^m	10 ⁿ	Equivalente numérico
Nome	Símbolo	1000	10	Equivalente numenco
yotta	Υ	1000 ⁸	10 ²⁴	1 000 000 000 000 000 000 000 000
zetta	Z	1000 ⁷		1 000 000 000 000 000 000 000
exa	Е	1000 ⁶		1 000 000 000 000 000 000
peta	Р	1000 ⁵	10 ¹⁵	1 000 000 000 000 000
tera	Т	1000 ⁴	10 ¹²	1 000 000 000 000
giga	G	1000 ³	10 ⁹	1 000 000 000
mega	M	1000 ²	10 ⁶	1 000 000
quilo	k	1000 ¹	10 ³	1 000
hecto	h	1000 ^{2/3}	10 ²	100
deca	da	1000 ^{1/3}	10 ¹	10
ne	nhum	1000 ⁰	10 ⁰	1
deci	d	1000 ^{-1/3}	10 ⁻¹	0,1
centi	С	1000 ^{-2/3}	10 ⁻²	0,01
mili	m	1000 ⁻¹	10 ⁻³	0,001
micro	μ	1000 ⁻²	10 ⁻⁶	0,000 001
nano	n	1000 ⁻³	10 ⁻⁹	0,000 000 001
pico	р	1000-4	10 ⁻¹²	0,000 000 000 001
femto	f	1000 ⁻⁵	10 ⁻¹⁵	0,000 000 000 000 001
atto	a	1000 ⁻⁶	10 ⁻¹⁸	0,000 000 000 000 001
zepto	Z	1000 ⁻⁷	10 ⁻²¹	0,000 000 000 000 000 000 001
yocto	у	1000-8	10 ⁻²⁴	0,000 000 000 000 000 000 000 001

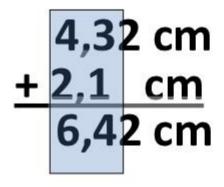
Na 1ª régua temos medidas com 2 algarismos significativos, mas temos 3 algarismos significativos na 2ª régua (mais precisa).

O último algarismo de uma medida é o algarismo duvidoso (menor divisão de escala acessível para uma medida direta)

São algarismos significativos todos aqueles contados, da esquerda para a direita, a partir do primeiro algarismo diferente de zero.

Exemplos:

- 45,30cm > tem quatro algarismos significativos;
- 0,0595m > tem três algarismos significativos; e
- 0,0450kg > tem três algarismos significativos.

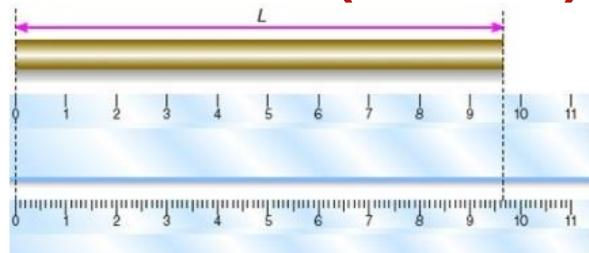

Ao se efetuar mudanças de unidade o número de algarismos significativos não se altera.

$$4,94 \text{ cm} = 0,0494 \text{ m}$$

Potências de 10 não são parte dos algarismos significativos

raio (mm)	significativos
57,896	5
$5,79 \times 10^{1}$	3
5,789600 x 10 ¹	7
6×10^2	1

$$4,32 \text{ cm} + 2,1 \text{ cm} = ?$$



Resultado:

6,4 cm

Ao efetuar a soma de resultados deve-se expressar valores que sejam compatíveis com o valor de menor número de algarismos significativos (dentre os originalmente obtidos).

Incertezas (diretas)

Forma correta

- (2,74 ± 0,05) cm
- 2,74(5) cm
- (123,4 ± 1,2) kg ou (123 ± 1) kg

Forma incorreta

- (2,7455 ± 0,0532) cm (incerteza com muitos algarismos)
- (2,7 ± 0,05) cm (a representação da medida não é compatível com a incerteza)

Incertezas (diretas)

Em alguns casos uma variável do experimento é medida muitas vezes, tornando a aferição de um processo mais precisa. O experimento é repetido identicamente e as variações na aferição das medidas é fundamentalmente aleatório

Deve-se expressar o valor médio e a incerteza como o desvio padrão da média.

Ex: Medida do tempo até um projétil lançado atingir o chão

Lançamento	Tempo (s)
1	1,93
2	1,89
3	2,01
4	1,95
5	2,02

$$t_{\text{médio}} = \frac{(t_1 + t_2 + t_3 + t_4 + t_5)}{5}$$

$$t_{\text{médio}} = \bar{t} = 1,96 \text{ s}$$

Incertezas (diretas)

Em alguns casos uma variável do experimento é medida muitas vezes, tornando a aferição de um processo mais precisa. Deve-se expressar o valor médio e a incerteza como o desvio padrão da média.

Ex: Medida do tempo até um projétil lançado atingir o chão

$$t_{\text{médio}} = \bar{t} = 1,96 \text{ s}$$

Incerteza = desvio padrão da média:

$$\Delta x = \left[\frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i - \bar{x})^2 \right]^{1/2}$$

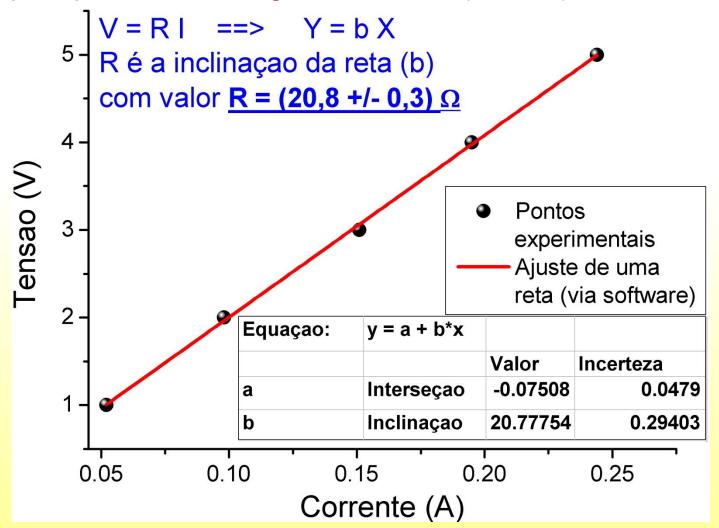
$$\Delta t = 0.024495 \text{ s}$$
 Declare então: $t = (1.96 \pm 0.02) \text{ s}$

Incertezas (gráficos)

Utilizamos análise gráfica (discutida em detalhes na 2ª aula do curso) para obter um resultado mais preciso e eficaz em relação à análise de uma tabela de dados (usada apenas em medidas diretas).

Exemplo: considere as medidas de corrente e tensão para aferição da resistência elétrica de um elemento resistivo ôhmico (V = R I)

Tensão (V)	Corrente (A)
1,0	0,052
2,0	0,098
3,0	0,151
4,0	0,195
5,0	0,244


PELA TABELA (NÃO FAZER!!)

$$\bar{R} = \frac{1}{N} V_i / I_i$$

$$\Delta R = \left[\frac{1}{n(n-1)} \sum_{i=1}^{n} (R_i - \bar{R})^2 \right]^{1/2}$$

Incertezas (gráficos)

Ao fazer um gráfico dos dados experimentais de V e I, encontra-se o valor de R como a inclinação da reta, cuja incerteza é diretamente fornecida pelo processo de regressão linear (2ª aula).

Em muitos casos não é possível aferir diretamente o valor da incerteza de uma medida cujo resultado é obtido a partir de um grupo de variáveis (e valores).

É necessário então utilizar alguns cálculos simples para se obter a incerteza final.

Ex: queremos saber o volume de um cilindro de gás cujas dimensões estão declaradas abaixo

```
Raio da base - r = (0,14 \pm 0,01) m
Altura do cilindro - h = (1,38 \pm 0,05) m
```

Sabendo que
$$V=\pi h r^2$$
 calcule ΔV

Cálculo simplificado para uma função polinomial, ex:

$$Y = a^{p1}b^{p2}c^{p3}$$

$$\frac{\Delta Y}{Y} = \sqrt{\left(p_1 \frac{\Delta a}{a}\right)^2 + \left(p_2 \frac{\Delta b}{b}\right)^2 + \left(p_3 \frac{\Delta c}{c}\right)^2}$$

para

$$V = \pi r^2 h \qquad \rightarrow \qquad \frac{\Delta V}{V} = \sqrt{\left(2\frac{\Delta r}{r}\right)^2 + \left(1\frac{\Delta h}{h}\right)^2}$$

$$\rightarrow \Delta V = V \sqrt{\left(2\frac{\Delta r}{r}\right)^2 + \left(1\frac{\Delta h}{h}\right)^2}$$

Método geral para uma função qualquer (derivadas parciais)

$$Y = a^{p1}b^{p2}c^{p3}$$

$$\Delta Y = \sqrt{\left(\frac{\partial Y}{\partial a}\right)^2} \Delta a^2 + \left(\frac{\partial Y}{\partial b}\right)^2 \Delta b^2 + \left(\frac{\partial Y}{\partial c}\right)^2 \Delta c^2$$

para

$$V = \pi r^2 h$$
 \rightarrow $\frac{\partial V}{\partial r} = 2\pi r h$ $\frac{\partial V}{\partial h} = \pi r^2$

$$\Delta V = \sqrt{(2\pi \, rh)^2 \Delta r^2 + (\pi \, r^2)^2 \Delta h^2}$$

Note que, partindo de:

$$\Delta V = \sqrt{(2\pi \, rh)^2 \Delta r^2 + (\pi \, r^2)^2 \Delta h^2}$$

Dividindo-se os dois lados por π r²h

$$\frac{\Delta V}{\pi r^2 h} = \sqrt{\frac{4\pi^2 r^2 h^2}{\pi^2 r^4 h^2}} \Delta r^2 + \frac{\pi^2 r^4}{\pi^2 r^4 h^2} \Delta h^2$$

$$\Rightarrow \frac{\Delta V}{V} = \sqrt{\left(2\frac{\Delta r}{r}\right)^2 + \left(1\frac{\Delta h}{h}\right)^2}$$

Método geral para uma função qualquer do tipo:

$$Y = ax \pm bz$$

$$\Delta Y = \sqrt{\left(\frac{\partial Y}{\partial x}\right)^2} \, \Delta x^2 + \left(\frac{\partial Y}{\partial z}\right)^2 \, \Delta z^2$$

$$\Delta Y^2 = a^2 \Delta x^2 + b^2 \Delta z^2$$

Avisos Aula 2

Para a próxima aula você deve ter acesso a pelo menos um dos seguintes programas de acordo com o seu equipamento:

- SciDAVis: https://sourceforge.net/projects/scidavis/
 - Computador onde se pode instalar programas.
- MyCurveFit: https://mycurvefit.com/
 - Computador onde não é possível instalar programas. Este se usa sempre online.
- LinearFit (Smartphone): Busque "LinearFit" no "Play Store": (https://play.google.com/store/apps/details?id=appinventor.ai osc ar gomezcalderon.LinearFit ShaDB&hl=en US)
- → Material de apoio para os programas:

 https://www.fisica.ufmg.br/ciclo-basico/disciplinas/feb-termo/#apoio