Resistividade Elétrica

INTRODUÇÃO

A aplicação de uma diferença de potencial elétrico V em um fio faz aparecer, nele, uma corrente elétrica i. A resistência elétrica R entre dois pontos quaisquer de um condutor é definida pela equação

$$R = \frac{V}{I} \tag{1}$$

A resistência R é uma característica do fio como um todo, ou seja, depende do comprimento, da espessura e do material de que ele é feito. Por outro lado, a grandeza resistividade (ρ) é uma propriedade específica dos materiais e depende de características microscópicas intrínsecas. Ou seja, pode-se lidar com fios de diferentes tamanhos e espessuras de um mesmo metal, cada um deles apresentando um valor diferente de resistência, porém, com a mesma resistividade. Essa grandeza informa como é a resposta microscópica do meio, ou seja, qual é a densidade de corrente J quando o meio é sujeito a um campo elétrico E. Matematicamente, tem-se esta relação microscópica:

$$\rho = \frac{E}{I} \tag{2}$$

Como, no Sistema Internacional de Unidades (SIU) as unidades de E são V/m (Volt/metro) e de J são A/m² (Ampère/metro quadrado), ρ é dado em Ω m (ohm x metro).

No caso de um fio uniforme de comprimento l e seção reta de área A, tem-se

$$E = \frac{V}{I} \qquad e \qquad J = \frac{I}{A} \tag{3}$$

Combinando-se as equações 2 e 3, chega-se a uma relação entre a resistência e a resistividade de um fio uniforme, dada por

$$R = \rho \frac{l}{A} \tag{4}$$

Medindo-se a resistência de um fio uniforme e homogêneo em função de seu comprimento, pode-se determinar a resistividade do material de que ele é feito. Para isso, basta conhecer a área da seção reta do fio.

PARTE EXPERIMENTAL

Objetivo

• Determinar a resistividade elétrica de um fio de metal.

Material utilizado

• Fio preso a um suporte, cabos para contatos elétricos, régua e ohmímetro.

Procedimentos

Observe a montagem representada na Figura 1. Usando um multímetro como ohmímetro, meça a resistência R de um trecho do fio de comprimento l, entre o ponto de contato fixo P_1 e um outro ponto variável P_2 . Obtenha pares de valores para R e l em número suficiente para definir experimentalmente a relação entre essas duas grandezas. Faça um gráfico de R versus l e, tendo como base a equação 4, faça uma regressão linear para obter a resistividade do fio. A área da seção reta do fio utilizado está indicada na montagem.

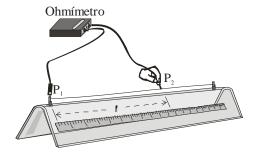


FIGURA 1 - Esquema da montagem a ser utilizada para medir a resistência R em função do comprimento l de um fio; ao deslizar, o cursor P_2 determina diferentes comprimentos l do fio, que correspondem a diferentes valores de resistência lida no ohmímetro.

A título de ilustração, na Tabela 1, estão relacionados valores da resistividade de alguns materiais, à temperatura ambiente.

TABELA 1

Exemplos de valores da resistividade de alguns materiais

Material	Resistividade $\rho (10^{-8} \Omega \mathrm{m})$
Cobre	$1,72 \pm 0,01$
Ouro	$2,44 \pm 0,02$
Alumínio	$2,82 \pm 0,02$
Tungstênio	$5,6 \pm 0,1$
Ferro	10.0 ± 0.3
Liga cobre-níquel (Cu-Ni)	44 ± 1
Liga níquel-cromo (Ni-Cr)	100 ± 5
Liga Kanthal	139 ± 4
Carbono	≅ 3.500