Movimento de um Projétil

INTRODUÇÃO

Conforme proposto por Galileu, em *Diálogos sobre novas ciências*, o movimento de um projétil na superfície da Terra pode ser analisado, separadamente, na direção horizontal e na vertical. Desprezando-se as forças de atrito, sabe-se que um projétil se move com velocidade constante na horizontal e com aceleração constante na vertical. Isso resulta em uma trajetória parabólica.

Considere a trajetória de um objeto lançado na superfície da Terra com uma velocidade v_0 que faz um ângulo θ com a horizontal, como representada na Figura 1. Nessa mesma figura, também estão representados os eixos cartesianos com origem no ponto de lançamento. Nessa situação, as coordenadas x e y da posição do objeto, em função do tempo, são

$$x(t) = \mathsf{v}_0 \cos\theta. t \qquad e \qquad y(t) = \mathsf{v}_0 \sin\theta. t - \frac{1}{2}gt^2 \tag{1}$$

Figura 1 - Trajetória de um projétil lançado com velocidade v_o em uma direção cujo ângulo com a horizontal é θ .

Demonstre que a trajetória do objeto é parabólica, ou seja, descrita por uma função $Y(x) = Ax^2 + Bx + C$. Especifique as constantes A, B e C em função de v_o , $\theta e g$.

PARTE EXPERIMENTAL

Objetivos

• Registrar e analisar a trajetória de um projétil.

• Determinar o ângulo de lançamento, a velocidade inicial e ponto de contato com o chão.

Material utilizado

• Canaleta para lançamento, anteparo, esfera de aço, trena, transferidor, webcam.

Procedimentos

• A figura abaixo mostra uma montagem para se obter a trajetória de um projétil. No caso, uma esfera, abandonada de certa altura em uma canaleta, é lançada para cima com uma velocidade v_o fazendo um ângulo θ com a horizontal. A câmera ira registrar imagens da trajetória da esfera.

FILMAGEM DA TRAJETÓRIA - USO DO PROGRAMA AMCAP

• Abra o programa de captura de imagem [AMCAP

• Para definir o número de quadros por segundo, clique em "**Capture > Set Frame Rate...**".

🎰 /	🖬 AMCAP - C:\Documents and Settings\Monitoria\Desktop\aaa 📰 🔲 🔀									
File	Devices	Options	Capture Help							
			Start Capture Stop Capture							
			Capture Audio Closed Captioning Master Stream							
			Set Frame Rate Set Time Limit							

Marque a opção Use Frame Rate e ajuste para 30 f/sec. Clique em "OK".

Choose Frame Rate								
Use Frame Rate								
Frame Rate: 30	f/sec							
OK Car	ncel							

• Entre novamente no menu "Capture", e, em seguida, na opção "Set Time Limit...".

Marque a opção Use Time Limit e defina 20 sec. Clique em "OK".

• Entre em "Options > Vídeo Capture Pin".

🚵 АМСАР	AMCAP - C: Wocuments and Settings Wonitoria Wesktop \aaa 📃 🗖 🔀										
<u>File D</u> evices	s <u>Options</u> <u>C</u> apture <u>H</u> elp										
	✓ Preview										
	Audie Coursel										
	Video Capture Eilter										
	Video Capture Pin										

Verifique se a **"Taxa de quadros"** está definida em **"30.000"**. Se não estiver, ajuste-a. Em seguida, em **"Tamanho da saída"** escolha a opção **"640x480"**. Clique em **"Aplicar"** e, em seguida, em **"OK**".

Propriedades			
Formato de fluxo			
Formato de vídeo	Compactação		
Padrão de vídeo: None			
Taxa de guadros: 30.000	Intervalo de		
Inverter horiz.:			
Espaço de cores / compactação:	quadros <u>P</u> :		
YUY2 💌			
Famanho da <u>s</u> aída:	<u>Q</u> ualidade:		
640 x 480 💽			
OK	Cancelar Aplicar		

• Faça alguns lançamentos observando a imagem da trajetória da esfera. Ajuste a posição da câmera de forma a observar o **ponto de lançamento** (extremidade da calha) e o **final da trajetória da esfera**.

• Para dar um nome para o seu arquivo, clique em "File > Set Capture File".

Selecione a **Área de Trabalho** (**Desktop**) como o local para salvar seu arquivo. Na seção "Nome do Arquivo", escreva o nome escolhido para o arquivo, <u>não se</u> esquecendo de acrescentar a extensão "**.avi**". Clique em "**Abrir**".

Set Capture File	e	? 🗙
E <u>x</u> aminar:	🕝 Desktop 🔽 🗢 🛍 🕂 🏢 -	
Documentos recentes Desktop	i Meus documentos	
Meus documentos		
Meu computador		
Meus locais de rede	Nome do arquivo teste.av	<u>Abrir</u> ancelar

• Uma janela de título "Set File Size" se abrirá. Apenas clique em "OK".

• Certifique-se de que a câmera está posicionada perpendicularmente ao plano da trajetória da esfera. Além disso, você usará a própria esfera com diâmetro conhecido (medindo com um paquímetro) para possibilitar a transformação das coordenadas de posição da esfera na tela (pixels) para centímetros. Para isso, após iniciar a gravação do vídeo (instruções a seguir) posicione a esfera no início da calha por um tempo e depois a solte da altura que você escolheu. Como exemplo veja o vídeo a seguir,

<video>

• Para iniciar a filmagem, entre em "Capture > Start Capture".

Uma janela de título **"Ready to Capture"** se abrirá. Quando estiver pronto para iniciar, clique em **"OK"**. A filmagem durará 20 segundos e será finalizada pelo programa.

Ready to Capture 🛛 🛛 🔀							
Select OK to start capture of video sequence to:							
C:\Documents and Settings\Alunos\De	C:\Documents and Settings\Alunos\Desktop\teste.						
OK Cancel							

• Observe que sua filmagem está salva na área de trabalho.

<u>DIGITALIZAÇÃO DOS PONTOS DA TRAJETÓRIA – USO DO</u> <u>PROGRAMA IMAGEJ</u>

Observações iniciais

• Com o programa de tratamento de imagem [IMAGEJ] abra o vídeo indo em "File > Open". (comando alternativo "Plugins > Avi Reader")

• Irá abrir a janela "AVI Reader", apenas clique em "OK".

🛓 AVI Reader		\mathbf{X}			
First Frame: Last Frame:	1 365				
☐ Use Virtual Stack ☐ Convert to Grayscale ☐ Flip Vertical					
ок	Cance	91			

• Usando a barra de rolagem na parte inferior da janela para ir mudando os quadros do vídeo, localize os quadros da filmagem onde foram registrados trechos da trajetória da esfera.

• Movimente o cursor sobre a imagem e observe no canto inferior esquerdo da janela do IMAGEJ as coordenadas (x,y) do ponto. Note que essas coordenadas estão em pixels (pontos na tela). Localize a origem (0,0) das coordenadas na tela.

🛓 ImageJ		×
File Edit Image Process Analyze Plugins Window Help		
$\Box \bigcirc \square \circlearrowright \checkmark \measuredangle + \overset{\ast}{\sim} \land \mathrel{} \checkmark \bigotimes Dev St_{\Bbbk} \checkmark \checkmark \bigotimes $	A >	>
x=306, y=141,z=100, value=76,93,99		

Transformação das coordenadas de PIXELS para CENTÍMETROS

Trace uma reta sobre o diâmetro da esfera que você registrou no início do vídeo.

🗴 ImageJ					(X
File Edit Image Process	Analyze	Plugins	Window	Help			
	Measur	e	Ctrl+M	0 8	۵,	A	>>
Angle tool	Analyze	e Particle:	S				
	Summa	irize					
	Distribu	ition					
	Label						
	Clear R	esults					
	Set Me						
	Set Sca						
	Calibra	te					
	Histogr	am	Ctrl+H				
	Plot Pro						
	Surface	e Plot					
	Gels		•				
	Tools		•				

• No menu, clique em Analyze e escolha Set Scale .

Na janela aberta escreva em frente a **"Known Distance"** o diâmetro **em centímetro** da esfera de referência. Marque OK. <u>(A partir deste momento o programa informará as coordenadas dos pontos na tela em centímetros).</u>

set Scale		
Distance in Pivole:	26	
Distance in Fixers.	50	
Known Distance:	2.21	
Pixel Aspect Ratio:	1.0	
Unit of Length:	unit	
Click to F	Remove Scal	e
🗖 Global		_
Scale: 16.290 pixels.	/unit	
0	Cance	L I

Obtenção das coordenadas da trajetória

Na barra de ferramenta escolha
Point selections".
ImageJ
File Edit Image Process Analyze Plugins Window Help
C
A
A
A
C
E
S
Dev Stk
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A</li

• Coloque na tela o 1º quadro com o registro da trajetória da esfera.

• Sobre a tela, marque o ponto na extremidade da canaleta que corresponde à posição de lançamento do projétil (procure usar sempre o centro da esfera como referência).

×

>>

• <u>Mantendo a tecla</u> SHIFT apertada, marque alguns pontos sobre o registro da trajetória da esfera. (faça isso em todos os quadros da filmagem onde aparece o registro da trajetória).

🛓 ImageJ						\mathbf{X}
File Edit Image Process	Analyze	Plugins	Window	Help		
	Measure	9	Ctrl+M	0 8	\$ 🖊	>>
Angle tool	Analyze	Particles	ŝ			
	Summar	ize				
	Distribut	ion				
	Label					
	Clear Re					
	Set Mea	suremer	nts			
	Set Scal	е				
	Calibrate	e				
	Histogra	m	Ctrl+H			
	Plot Prot	file	Ctrl+K			
	Surface	Plot				
	Gels		•			
	Tools		•			

• No menu Analyze escolha a opção Measure.

As coordenadas dos pontos marcados na tela serão colocadas em uma tabela numa nova janela de nome "**Results**".

🛓 Re	esults							×
File	Edit	Font						
	Area	Mean	Min	Мах	X	Y	Slice	^
9	0	67	67	67	23.328	15.716	6.323	
10	0	68	68	68	22.837	15.347	6.323	
11	0	69	69	69	22.284	14.918	6.323	Ξ
12	0	77	77	77	21.670	14.549	6.323	
13	0	81	81	81	21.179	14.119	6.323	
14	0	81	81	81	20.442	13.812	6.323	
15	0	79	79	79	19.829	13.628	6.323	
16	0	79	79	79	19.276	13.567	6.323	~
<]	>

Transferência das coordenadas para o ORIGIN

(alteração da origem do sistema de coordenadas)

- Copie a tabela com os resultados para o programa ORIGIN. (copiar e colar)
- Identifique as colunas correspondentes às coordenadas (x,y)
- Recalcule os valores das coordenadas considerando a origem do sistema, ponto (0,0), como sendo o ponto de lançamento da esfera.
- Trace, com esses pontos, um gráfico y versus x. Em seguida, determine a função do tipo $y(x) = Ax^2 + Bx + C$ que melhor se ajusta aos dados experimentais obtidos.

• Com essa função, calcule o ângulo θ e o módulo da velocidade de lançamento da esfera. Compare o valor desse ângulo com o medido, experimentalmente, no registro da trajetória da esfera e, também, por meio da inclinação da canaleta no ponto de lançamento da esfera.

• Para verificar a validade da equação obtida para a trajetória da esfera, calcule a posição em que a esfera atinge o chão do laboratório, ao ser lançada com a extremidade da canaleta da borda da mesa. Em seguida, localize esse ponto no chão. Fixe sobre ele uma folha de papel em branco, cubra-a com papel-carbono e solte a esfera pela canaleta, pelo menos, três vezes. Compare o resultado medido com o previsto segundo a equação.