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We use molecular dynamics to simulate the directional growth of binary mixtures. Our results compare very
well with analytical and experimental results. This opens up the possibility to probe growth situations which
are difficult to reach experimentally, being an important tool for further experimental and theoretical develop-
ments in the area of crystal growth. @S0163-1829~99!02405-4#

I. INTRODUCTION

The main aim of this work is to show the feasibility of
using molecular-dynamic computer simulations to study di-
rectional growth of binary mixtures at atomic level. In com-
puter simulations, we can easily vary parameters of this pro-
cess and investigate regions of parameter space which are
difficult to access experimentally. It is then possible to make
predictions that might be useful for basic science or techno-
logical purposes.

The rapid expansion of the use of high quality crystalline
materials in optical and electronic devices during the past
decades has strongly stimulated research, both theoretical
and experimental, on dynamics of crystallization. A better
understanding about solidification of metals and eutectic fi-
bers are of unquestionable technological interest. Computer
simulations have played an important role in the develop-
ment and understanding of models of crystal growth.1,2

During growth, the crystal-fluid interface is not at thermo-
dynamic equilibrium. The moving interface is a dynamical
system, which can display a variety of dynamical instabilities
and pattern formation. It has become a very important model
system for studying complex spatiotemporal dynamics.3

A crystal can grow from the adjacent fluid ~melt, vapor, or
solution! by different mechanisms, depending on the struc-
ture of the interface ~rough or smooth!, material purity,
growth rates, temperature gradients, and related factors. For
a crystal to grow: ~i! atoms or molecules must be trans-
ported from the fluid phase towards the interface where the
phase transformation is taking place; ~ii! transported atoms
or molecules must have a nonzero probability of sticking to
the crystal surface; ~iii! the latent heat generated during crys-
tal growth as well as the excess solute components segre-
gated must be carried away from the interface.

These requirements can be met in a controlled way in
experiments of directional growth, where a sample in an ap-
propriate furnace is submitted to a temperature gradient and
pulled with a fixed speed towards the colder region of the
furnace. For practical crystal growth, the sample can be cast
into a quartz tube with chosen diameter and length. This is a
three-dimension Bridgman growth arrangement. However,
detailed studies about dynamics of crystal growth have been

conducted in very thin transparent samples ~sandwiched be-
tween glass slides!, such that the crystal-fluid interface can
be visualized and recorded with the use of videomicroscopy
techniques.4,5 Results of such experiments have been com-
pared with results of two-dimensional models of crystal
growth. Our computer simulations are also carried out in two
dimensions.

As far as we know this is the first attempt to simulate
directional growth of a binary mixture utilizing molecular-
dynamics ~MD! simulation techniques. Some earlier results
of MD were reported by Nijemeijer and Landau on laser
heated pedestal growth of fibers.6 Previous simulations con-
sisted of numerical solutions of differential equations for
transport of heat and mass, and Monte Carlo techniques to
simulate attachment kinetics.1,2

With the use of molecular-dynamics techniques we simu-
late the solidification of a two-component system consisting
of solvent ~atoms a! and solute ~atoms b! interacting via a
modified Lennard-Jones ~LJ! potential. Particles interact via
three different potentials: Fa ,a , Fb ,b , and Fa ,b5Fb ,a
which we will describe in detail in Sec. III. By tuning the
parameters of the LJ potential, we can choose the structure of
the interface ~rough or smooth! and the segregation coeffi-
cient.

In this paper, we simulate a binary system with a rough
crystal-fluid interface ~like in metals! and with a segregation
coefficient of the order of 0.1. The results of these simula-
tions are then compared with well-known models of segre-
gation during directional growth, where diffusion is the only
transport mechanism present. This work is organized as fol-
lows. In Sec. II we develop the theoretical background on
crystal growth of binary mixtures. In Sec. III we discuss the
simulation method we have used. In Sec. IV we show our
results and discussion, and in Sec. V we present our conclu-
sions.

II. DIRECTIONAL GROWTH OF BINARY MIXTURES

Most models of directional growth are two-dimensional
models.7 Therefore, for comparison with these models, a
great deal of experimental observations have been done in
thin samples of transparent materials, where presumably the
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third dimension is not important, and the crystal-fluid inter-
face can be followed in time, by using videomicroscopy with
digital image analysis.4,5 The usual experimental setup is
shown in Fig. 1. The furnace consists of two metal blocks at
controlled temperatures: one block with temperature above
the sample melting temperature and the other below. A thin
sample of the material to be studied is sandwiched between
glass slides with spacers, whose thickness is in general of a
few micra, to keep the system as close as possible to a 2d
geometry, and guarantee that the transport of mass is mainly
diffusive with no convection in the fluid phase. The sample
is then put on top of the metal blocks, with good thermal
contact. A temperature gradient appears along the sample
cell. The sample is then pulled towards the colder block in a
very precise and controlled way by a pulling system and
starts to solidify. After an initial transient the system
achieves a steady state where the interface position becomes
fixed in the laboratory frame, the growth speed is the same,
but opposite to, the pulling speed, and the solute concentra-
tion profile becomes steady in the laboratory frame.

An example of solute segregation during directional so-
lidification of binary mixture composed by the crystal capro-
lactane as solvent and methyl-blue as solute8 is observed
with videomicroscopy ~Fig. 2!. In the top part of Fig. 2 we
show an image of the crystal ~left side! and melt ~right side!,
with maximum concentration of methyl-blue at the melt side
of the interface. From the gray level of the image we obtain
the methyl-blue concentration profile across the sample,
which, in the melt, decays exponentially as a function of the
distance from the interface ~bottom part of Fig. 2!. We will
see that molecular-dynamics simulations can reproduce very
well this type of result.

Morphological instabilities of the planar interface are in-
hibited during directional growth of pure materials. How-
ever, for binary systems, depending on concentration of sol-
ute, temperature gradient, and growth speed, morphological
instabilities can occur, the planar interface becoming cellular
and eventually dendritic. This is the Mullins-Sekerka
instability.9 In our simulations we are able to observe both
regimes: planar and cellular interfaces. In this work we will
focus our attention on the evolution of a planar interface,
where we clearly see segregation and transport of solute at
the interface. From the data analysis we obtain the solute
concentration profile, the segregation coefficient for this bi-

nary system, and the diffusion coefficient of the solute in the
solvent.

A. Binary phase diagram

An added second component ~solute! in a crystal-fluid
system ~solvent! is, in general, more soluble in the fluid
phase than in the solid phase, since the mismatch in size and
shape between solvent and solute atoms may cause a large
mechanical ~geometrical! stress in the crystalline lattice of
the solid phase. In this case the segregation coefficient K
which is the ratio between the solute concentration in the
solid (cS) and the solute concentration in the liquid (cL),
satisfies K5cS /cL,1. In our simulations we observed that
the value of the segregation coefficient is very sensitive to
the sab parameter of the LJ potential, that controls the effec-
tive size difference between solvent and solute atoms, and
less sensitive to changes in the depth of the potentials. The
stress in the crystalline lattice increases with increasing sab
and consequently a large sab reduces K .

For diluted binary systems a sketch of a phase diagram for
K,1 is shown in Fig. 3. The melting temperature of the
mixture decreases with increasing solute concentration. The

FIG. 1. Basic experimental setup for directional growth ~as de-
scribed in the text!. The interface motion can be visualized using an
optical microscope. Tm is the melting temperature of the mixture.

FIG. 2. Directional solidification of the binary mixture caprolac-
tane ~solvent! and methyl-blue ~solute!. Liquid is at the right side
and solid to the left side. Methyl-blue concentration is proportional
to the gray level of the image. The lower plot shows the methyl-
blue concentration as a function of position.

FIG. 3. Schematic drawing of part of binary system phase dia-
gram, the solute has K,1.
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liquidus and solidus lines define the temperature as a func-
tion of solute concentration where the first solid is formed
and where the sample is completely solidified, respectively.
If we name the slopes of the liquidus and solidus lines by m
and m8, respectively, the segregation coefficient K can also
be written as K5m/m8.2

In Fig. 4 we show the solute concentration profile for an
equilibrium crystal-fluid interface where the solute concen-
tration in the liquid is c0 and consequently the solute con-
centration in the solid is cS5Kc0 . Usually, this is the initial
condition for most directional growth experiments. Since in
the present work we will be more interested in the steady-
state situation ~Fig. 5!, the initial condition is not important.

B. Solute transport

Since our system is two-dimensional, if we consider a
planar interface along x and growth direction along z , for
large systems and far from the edges of the sample cell, the
solute concentration profile will be a function of only the
time variable t and the space variable z . It is convenient to
write the transport equations in the system of reference of the
moving interface, since in this frame of reference it is pos-
sible to have a steady-state situation, where the solid growth
velocity (Vs) is equal and opposite to the pulling velocity
(Vp) and the solute concentration profile is constant in time.
The steady-state situation is achieved when the segregated-
solute-flux at the interface is equal to the solute-flux away

from the interface, in the fluid phase. In general, for solid-
liquid interfaces the difference in density between the solid
and liquid phases is negligible. Due to mass conservation,
the average growth velocity of the solid phase (Vs) is equal
to the average velocity of decrease of the fluid phase (V f).
However, if the fluid phase is less dense than the solid phase,
again for mass conservation, Js5rs3Vs and J f5r f3V f and
since Js5J f , then V f5Vs3rs /r f , where Js ,rs and J f ,r f
are the mass flux and density in the solid and fluid phases,
respectively. At steady state Vs5Vp so that

V f5Vp3rs /r f . ~1!

Since the solute diffusion coefficient in the solid phase is
orders of magnitude smaller than the one in the fluid phase,
the transport of solute in the solid phase can be neglected.
Therefore, we will consider only the solute transport in the
fluid phase. In the moving crystal-surface reference frame
~system of reference moving with velocity Vs! the diffusion
equation for the solute concentration in the fluid phase (c f)
can be written as:7

]c f
]t 5D

]2c f
]z2 1V f

]c f
]z , ~2!

where D is the solute diffusion coefficient in the fluid
phase and Vs and V f where defined above. Equation ~2! must
be supplemented with boundary conditions: ~a! c f5c0 at z
5infinity, ~b! (12K)V fc f52Ddc f /dz at z50. The condi-
tion ~b! is just the solute mass conservation at the interface.

At steady state Vs and V f are constant and Vs5Vp . The
solution of the above equation is:

cL~z !5c0F12S 12K
K D expS 2

V fz
D D G

5c0F12S 12K
K D expS 2

Vprsz
r fD

D G , ~3!

where in the last equality we used Eq. ~1!. At steady state,
the solute concentration in the solid is constant and equal to
c0 . In Fig. 5 we show the theoretical prediction for the solute
concentration profile during steady-state directional growth.
This is the experimentally observed behavior as shown in
Fig. 2. Our molecular-dynamics results for solute segregation
during directional growth display the same type of behavior
as will be shown in Sec. IV. An important length scale for
this problem is the diffusive length lD5Dr f /Vprs . The sys-
tem can be considered large for boundary condition (a) to
apply, if the length of the fluid phase along z is much larger
than lD .

III. SIMULATION

Our simulation is carried out using molecular-dynamics
approach with all particles interacting through a modified LJ
potential.

FIG. 4. Solute concentration profile near an equilibrium solid-
liquid interface, for a solute concentration in the melt equal to c0
and K,1.

FIG. 5. Solute concentration profile near a steady-state advanc-
ing solid-liquid interface for K,1.
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F i , j~ri , j!5H f i , j~ri , j!2f i , j~rc!2S df i , j~ri , j!
dri , j

D
ri , j5rc

~ri , j2rc! ri , j,rc

0 ri , j.rc ,

where f i , j(ri , j) is the LJ~12-6! potential:

f i , j~ri , j!5e i , jF S s i , j

r i , j
D 12

2S s i , j

r i , j
D 6G . ~4!

The indexes i and j stand for particles in the positions r i and
r j , respectively, and 0<i , j<N , where N is the total number
of particles and ri , j5ur i2r ju. A cutoff rc52.5saa is intro-
duced in the potential in order to accelerate the simulation. If
the force on a particle is found by summing contributions
from all particles acting upon it, then this truncation limits
the computational effort to an amount proportional to the
total number of particles N . Of course this truncation intro-
duces discontinuities both in the potential and force. To
smooth this discontinuity we introduce the constant term
f(rc). Another term (df/dr)r5rc

(r2rc) is introduced to
remove the force discontinuity. Particles in our simulation
move according to Newton’s law, that generate a set of 2N
coupled equations of motion which are solved by increasing
forward in time the physical state of the system in small time
steps of size Dt50.02saa(ma /eaa)1/2. The resulting equa-
tions are solved by using Beeman’s method of integration. In
order to improve the method we use a Verlet and a cellular
table.10 The Verlet table consists of an address vector which
contains the number and position of each particle inside a
circle of radius rv53saa . After some steps in time, the
neighborhood of each particle changes, so that we have to
refresh the Verlet table. This refreshment process can take a
long time. In order to make it shorter we divide the system in
cells of size cx3cz5(3.5saa)2, such that in recalculating the
Verlet table we have to search only in neighbor cells.

Initially we distribute N5nx3nz5273270 particles over
the two-dimensional surface Lx3Łz527321/63451saa

2 .
We assume periodic boundary conditions in the x direction.
In the z direction we divide the system in two distinct re-
gions, a solid and a fluid one. In the solid region particles
stand initially in their equilibrium position in a total of 27
330 particles. On the fluid region the density is initially r

50.5saa
22 , giving a total of 273240 particles, randomly dis-

tributed in a triangular lattice and slightly dislocated from
their equilibrium position. We impose a temperature gradient
along the z direction using a velocity renormalization
approach.10 We divide the system in two regions: The first
one defined by 2210saa<z<2231saa , where temperature
is fixed to T050, the other one defined by 80saa<z
<220saa , where the temperature is fixed to Th , higher than
the melting temperature Tm of the pure material. We let the
system evolve for 1.23105 steps in time of size Dt , which
seems to be enough to equilibrate the system. Once the equi-
librium is reached we start pulling the system in the 2z
direction, at a pulling velocity vp5431023(eaa /maa)1/2.
Particles which reach zmin are frozen, working as a sink.
Once a bunch of particles are frozen at zmin the same amount
is introduced at zmax with the same solute initial concentra-
tion.

In order to obtain an estimate for Tm we did an indepen-
dent simulation with 1.53103 particles in a box of fixed
dimensions and initial density 0.5saa

22 , below the solid den-
sity. The result is shown in Fig. 6. We can see that Tm
50.403eaa /kB .

A. Units

In our simulation we consider a system consisting of two
different types of particles: the solvent ~a particles! and the
solute ~b particles!. We define three types of interactions,
solute-solute (b-b), solvent-solvent (a-a), and solute-
solvent (b-a). The initial solute concentration is c055%.
This concentration is defined as the ratio between the number
of particles of the solute and the total number of particles of
the solvent. To calculate the density along the crystal being
grown we use strips of size Dz520saa ~so that we can easily
map the impurity concentration along the crystal!. As a mat-
ter of simplicity, from now on we measure energy in units of
eaa , distance in units of saa and mass in units of ma , and
we chose the LJ parameters as eab50.5, ebb50.1, sab
5sbb5saa51, and mb5ma51. Also, we measure tem-
perature and time in units of eaa /kB and (masaa

2 /eaa)1/2,
respectively.

IV. RESULTS

We observed a decrease in computation time to achieve
steady state as the density of the fluid was decreased. There-
fore we worked with a fluid density 5.7 times smaller than
the solid density, as can be seen from the density profile
shown in Fig. 7. For a given pulling speed Vp the time for
the system to achieve steady state, and consequently the
simulation time, is of the order of ;D/V f

25D/Vp
2(rs /r f)2.

Since D in the fluid phase increases with decreasing r f /rs ,
but not as fast as (r f /rs)2, by decreasing the fluid density

FIG. 6. Plot of total energy as function of temperature for the
pure material.
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the computation time dt also decreases.
For r f150.7 ~liquid! and r f250.15 ~vapor! we obtained,

respectively, D1'0.1 and D2'1.2. Therefore dt2 /dt1
;D2(r f2)2/D1(r f1)2;0.55, since rs and Vp are constants,
the computation time decreased by almost a factor of 2 as the
fluid density decreased by almost a factor of 6. As far as
diffusive transport is assured the large density difference be-
tween the two phases will not change, either qualitatively or
quantitatively, the conclusions drawn from Sec. II B. Com-
puter efficiency can be improved by increasing the mass ra-
tio. We, however, did not make systematic simulations with
different mass ratios, since we had already a large number of
parameters to vary.

We checked the velocity profile of the fluid phase and
determined that the solute transport is mainly diffusive for
our simulations. Therefore the solute concentration profile
should follow the behavior predicted by Eq. ~3!.

A. Interface structure for pure material

It is the structure of the interface at atomic level that
determines if a particular crystal will display faceted ~smooth
interface! or nonfaceted ~rough interface! morphology. Fluid
particles will attach preferably on kink sites on the interface.
On smooth interfaces, kink sites are created by two-
dimensional nucleation or by screw dislocations through
growth steps. Lateral growth ~layer-by-layer! occurs by at-
tachment of fluid particles at growth steps. On the other
hand, on rough interfaces, thermodynamic fluctuations can
create many kink sites. The fluid particles then attach to
those sites and growth proceeds normally to the interface,
because no lateral displacement of growth steps is required.

A criterion to determine if a particular solid-fluid interface
will be smooth or rough at atomic level was introduced by
K. A. Jackson.2 Modeling the solid-fluid interface as an Ising

system, he introduced the a factor defined as a5jL/kbTm ,
where L is the latent heat of the transformation per particle,
Tm is the temperature of the transformation, kB the
Boltzmann constant, and j is the ratio between the number of
nearest neighbors at the interface and the number of nearest
neighbors in the bulk. If a.2 the interface is smooth, if a
,2 the interface is rough. Even though this is a semiquan-
titative criterion it works very well for solid-liquid transfor-
mations. Metals growing from the melt usually have a,1
and do not present facets. With this criterion transparent ma-
terials which solidify like metals were discovered. They are
the so-called plastic crystals with a factors smaller than 1.
From the data of energy as a function of temperature for the
pure system displayed in Fig. 6 one can obtain the latent heat
of the transformation L50.59 and the melting temperature
Tm50.40. For a two-dimensional triangular lattice and direc-
tion of growth ~0,1!, j52/3. Since we are using kB51 we
obtain a50.98, a typical value for metals. Indeed, the inter-
face displays a morphology of rough interface and no evi-
dence of faceting was found.

B. Solute concentration proÞle

Our simulations of directional growth were done with sol-
ute concentration in the fluid of c055%, for fixed pulling
velocity of Vp50.004. An example of solute segregation by
the crystal-fluid interface during growth is shown in Fig. 8.

After averaging over many runs to improve statistics one
obtains the steady-state solute concentration profile repre-
sented as data points with error bars in Fig. 9 ~compare this
with Fig. 2!.

A fit of the concentration profile in the liquid using Eq.
~3! is displayed as a dashed curve. From this fit one obtains
K50.09460.005 and an effective diffusion length lD560
65. Using Eq. ~3!, with rs /r f55.7 and Vp50.004, we ob-
tain an effective diffusion constant D51.460.1. To measure
D independently we use the relation ^r2&54Dt , where r is
the displacement of b particles and t is time. We obtain an
effective diffusion constant D51.360.1. By calculating D
from the velocity-velocity correlation function we obtain es-
sentially the same result. Therefore, quantitative results can
be obtained from molecular-dynamics simulation of direc-
tional growth of binary mixtures.

FIG. 8. Typical result for the crystal growth simulation using the
parameters set described in the text. Larger circles represent solute
and smaller represent solvent. A higher solute concentration is
clearly observed near the fluid side of the interface.

FIG. 7. Density profile in our simulation. The solid phase den-
sity was 5.7 times larger than the fluid phase density.

FIG. 9. Plot of the fraction of solute along the crystal. The
interface is at z'0. Solute segregation at the interface is clearly
seen.
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C. Thermal length and cellular instability

The temperature profile inside the material is shown in
Fig. 10. We see that the first solid formed is at temperature
of ;0.35. The melting temperature of the pure material is
0.40. Therefore mC0;0.4020.3550.05. Since the thermal
length lT5mc0(12K)/KG ,7 K'0.1, and G'0.005 we ob-
tain the value lT;20. Because lD@lT we are in the stable
region for a cellular instability, i.e., the interface remains
planar. By decreasing K and increasing Vp we can make lT
.lD and observe a cellular instability as seen in Fig. 11. A
detailed study of cellular instabilities using molecular-
dynamics simulations is under way and will be the subject of
a future publication.

V. CONCLUSIONS

By using molecular dynamics we simulated the direc-
tional growth of binary mixtures in a LJ system. Our simu-

lations are able to generate segregation profiles similar to the
ones observed experimentally. Comparison with analytical
results from literature shows that our simulations give quite
good quantitative results. The great advantage of simulations
is that we can access a wide region of interesting parameters
by simply tuning the LJ potential. It is then possible to easily
investigate regions that are difficult to access experimentally.
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FIG. 10. Temperature profile across the sample. At z,2220 the
temperature is fixed at T50 and between 80<z<220 is fixed at
T50.70.

FIG. 11. Example of cellular instability originated after K was
decreased by tuning sa ,b of the LJ potential. Larger circles repre-
sent solute and smaller represent solvent particles.
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