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What is Simulation ? 

A Narrow definition 
In its narrowest sense, a computer simulation is a program that is run on a computer and that uses step-by-step methods to 
explore the approximate behavior of a mathematical model. Usually this is a model of a real-world system (although the system 
in question might be an imaginary or hypothetical one). Such a computer program is a computer simulation model. One run of the 
program on the computer is a computer simulation of the system. The algorithm takes as its input a specification of the system's 
state (the value of all of its variables) at some time t. It then calculates the system's state at time t+1. From the values 
characterizing that second state, it then calculates the system's state at time t+2, and so on. When run on a computer, the 
algorithm thus produces a numerical picture of the evolution of the system's state, as it is conceptualized in the model. 

No single definition of computer simulation is appropriate. In the first place, the term is used in both a narrow and a broad sense. 
In the second place, one might want to understand the term from more than one point of view. 

A Broad Definition 
More broadly, we can think of computer simulation as a comprehensive method for studying systems. In this broader sense of the 
term, it refers to an entire process. This process includes choosing a model; finding a way of implementing that model in a form 
that can be run on a computer; calculating the output of the algorithm; and visualizing and studying the resultant data. The 
method includes this entire process—used to make inferences about the target system that one tries to model—as well as the 
procedures used to sanction those inferences. This is more or less the definition of computer simulation studies in Winsberg 2003 
(111). “Successful simulation studies do more than compute numbers. They make use of a variety of techniques to draw 
inferences from these numbers. Simulations make creative use of calculational techniques that can only be motivated extra-
mathematically and extra-theoretically. As such, unlike simple computations that can be carried out on a computer, the results 
of simulations are not automatically reliable. Much effort and expertise goes into deciding which simulation results are reliable 
and which are not.” When philosophers of science write about computer simulation, and make claims about what epistemological 
or methodological properties “computer simulations” have, they usually mean the term to be understood in this broad sense of a 
computer simulation study. 

http://plato.stanford.edu/entries/simulations-science/ 



Partition Function 

The Partition Function describes completely the equilibrium properties 
of a thermodynamic system 
 

𝑍 ≡ 𝑒−𝛽𝐻 𝑥

𝑥

  or  𝑍 = 𝑔(𝐸)𝑒−𝛽𝐸

𝐸

 

 
For example 

𝑬 = −
𝒅

𝒅𝜷
𝒍𝒏𝒁 

Energy 

𝑺 = 𝒌𝑩 𝐥𝐧𝒁 + 𝜷 𝑬  Entropy 

𝝌 =
𝟏

𝑻
𝒙𝟐 − 𝒙 𝟐  

Susceptibility 
 



Phase Transitions 

Splash and snowflake. This picture is intended to illustrate the 
qualitative differences between the fluid and solid phases of water. 
On the left is liquid water, splashing up against its vapor phase. It 
fluidity is evident. On the right is a crystal of ice in the form of a 
snowflake. Note the delicate but rigid structure, with its symmetry 
under the particular rotations that are multiples of sixty degrees. 

Leo P. Kadanoff  The Perimeter Institute Waterloo, Ontario, Canada and The James 
Franck Institute The University of Chicago  
http://jfi.uchicago.edu/~leop/RejectedPapers/ExtraV1.2.pdf 



How to Define a Phase ? 

A thermodynamic phase of a simple material is an open, 
connected region in the space of thermodynamic states 
parametrized by the variables T and µ, the pressure P being 
analytic in T and µ. Specifically, P is analytic in T and µ at 
(T0, µ0) if it has a convergent power series expansion in a 
ball about (T0, µ0) that gives its values. Phase transitions 
occur on crossing a phase boundary. 

There are various thermodynamic variables one can use to 
describe matter in thermal equilibrium, some of the 
common ones being: mass or number density ρ, energy 
density e, temperature T, pressure P, and chemical potential 
µ (assuming for simplicity that the material is composed of 
one pure substance). By definition the states of a “simple” 
system can be parameterized by two such (independent) 
variables, in which case the others can be regarded as 
functions of these. 

From Michael E. Fisher and Charles Radin  

(www.aimath.org/pastworkshops/phasetransition.html 



Phase Transitions 

Ehrenfest Fisher 

First Order 
Discontinuity in the first 
derivative of the Free Energy 

First Order 
Latent Heat 

Second order 
Discontinuity in the second 
derivative 

 

Continuous 
Divergent susceptibility 
 Infinite correlation length 
 Power-law decay of correlations near 
criticality 

Third Order (?) 
Discontinuity in the third 
derivative 

Non-analyticities in the free energy are central to the 
theoretical account of phase transitions. 

From Michael E. Fisher and Charles Radin  

(www.aimath.org/pastworkshops/phasetransition.html 



Analytical Functions 

A  𝐶∞  function is a function that has all derivatives. 

 

For instance 𝑓 𝑥 = 𝑒−2𝑥 is  𝐶∞   because its   𝑛𝑡ℎ derivative    exists and is continuous. 

 

An analytical function is smooth. But a smooth function is not necessarily analytic. 

 

“Analytic” is used to name any function that can be written as a convergent power serie in 

a neighborhood of each point in its domain. 

 

For example:   

𝑓 𝑥 =  
0,          𝑓𝑜𝑟 𝑥 ≤  0

𝑒−1/𝑥 𝑓𝑜𝑟 𝑥  > 0
  is  𝐶∞  but not analytical. 

 

The function can fail to be analytic at a set of discrete singular points or at branch cuts. 



Averages - Histograms 

𝑍 = 𝑔(𝐸)𝑒−𝛽𝐸

𝐸

 

Averages are calculated as:  

𝑨 =  
 𝑨(𝑬)𝒈(𝑬)𝒆−𝜷𝟎𝑬𝑬

𝒁
.  

The probability of a configuration E at temperature 𝛽0 is  

𝑷𝜷𝟎 𝑬 =
𝒈 𝑬 𝒆−𝜷𝟎𝑬

𝒁𝜷𝟎
,   

We can generate a histogram  
𝑯𝜷𝟎

𝑬

𝑵
≗ 𝑷𝜷𝟎 𝑬 . 

 

𝒈 𝑬 = 𝑵−𝟏𝑯 𝑬 𝒁𝜷𝟎𝒆
𝜷𝟎𝑬 

With this estimate for 𝑔 𝐸   averages 𝐴  are obtained  at any 
temperature. 
 

𝑷𝜷 𝑬 =
𝑯 𝑬 𝒁𝜷𝟎

𝑵
𝒆−𝑬 𝜷−𝜷𝟎  

𝑬𝒏 = 𝒏𝜺 
𝜺 

𝑯𝜷𝟎(𝑬) 



Monte Carlo and Equilibrium 

Select an initial configuration 𝒙𝟎  Select an initial configuration 𝒙𝟎  

1 – Find 𝐸0 = 𝐸 𝒙𝟎  1 – Find 𝐸0 = 𝐸 𝒙𝟎  

2 – Move at random 𝒙𝟎 → 𝒙𝟏  2 – Move at random 𝒙𝟎 → 𝒙𝟏  

3 – Find 𝐸1 = 𝐸 𝒙𝟏  3 – Find 𝐸1 = 𝐸 𝒙𝟏  

4 – If(𝑬𝟏 < 𝑬𝟎)THEN 
 
                         accept 𝒙𝟏  
 
       ELSE  
 
𝒙𝟏   

 
 
ENDIF 

4 – If(𝑬𝟏 < 𝑬𝟎)THEN  
          accept 𝒙𝟏  
       ELSE 
 
If(𝐸1 > 𝐸0) THEN  
         accept 𝒙𝟏  with probability 

(𝑟 ≤ 𝑝) 𝑝 = 𝑒−𝛽∆𝐸 , ∆𝐸 = 𝐸1 − 𝐸0 
ELSE 
 
𝒙𝟏   

 
ENDIF 
ENDIF 

5 – Back to -1-  5 – Back to -1-  
 

Something is missing ! ENTROPY !!! 



Finite Size Scaling 

T 

T T 

𝜒
(𝐿
)

 

𝐶
𝑣
(𝐿
)

 

𝑀
(𝐿
)

 

For a system of volume V, make a sequence of 
simulations 

𝒱1 < 𝒱2< …  < 𝒱𝑁 
We expect to recover the thermodynamic limit when 
𝑁 → ∞. 



Universality Class  

In statistical mechanics, a universality class is a collection of mathematical models which share a single scale 
invariant limit under the process of renormalization group flow. While the models within a class may differ 
dramatically at finite scales, their behavior will become increasingly similar as the limit scale is approached. In 
particular, asymptotic phenomena such as critical exponents will be the same for all models in the class.  

Close to their critical point, greatly different physical systems exhibit a strong similarity. Various macroscopic 
properties turn out to be independent of microscopic details, but are solely determined by a small number of 
global parameters, such as the dimensionality of the system and the symmetry and range of the interactions 
between the particles. This fascinating phenomenon, universality, is explained by the renormalization-group 
theory, which was developed in the early seventies by Kenneth G. Wilson (Nobel Prize in Physics 1982). In the 
last 25 years, the universal properties of a variety of critical systems have been calculated. Many of these 
predictions have been verified by computer simulations, especially for so-called spin models. 

Kadanoff ? 

https://en.wikipedia.org/wiki/Statistical_mechanics
https://en.wikipedia.org/wiki/Statistical_mechanics
https://en.wikipedia.org/wiki/Statistical_mechanics
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Scale_invariance
https://en.wikipedia.org/wiki/Scale_invariance
https://en.wikipedia.org/wiki/Scale_invariance
https://en.wikipedia.org/wiki/Renormalization_group
https://en.wikipedia.org/wiki/Renormalization_group
https://en.wikipedia.org/wiki/Renormalization_group
https://en.wikipedia.org/wiki/Asymptotic
https://en.wikipedia.org/wiki/Critical_exponent
https://en.wikipedia.org/wiki/Critical_exponent
https://en.wikipedia.org/wiki/Critical_exponent


Fisher Zeros and Phase Transitions 

𝑍𝑁 =  𝑔 𝑛𝜀 𝑒−𝛽𝑛𝜀
𝑁

𝑛=0

=  𝑔 𝑛 𝓏𝑛
𝑁

𝑛=0

 

Let us describe a finite system with discrete energy spectrum, such that 
𝐸 = 𝑛𝜀,     𝑤𝑖𝑡ℎ       𝑛 = 0, 1, 2, … . , 𝑁 

and the degeneracy of the 𝑛𝑡ℎ microstate given by 𝑔 𝑛   

𝑍𝑁 can be factorized as 

𝑍𝑁 = 𝓏0 𝓏𝑛 − 𝓏

𝑁

𝑛=1

 

𝑧𝑛 are the N zeros of 𝑍𝑁 and 𝑧0 is a constant. 
 
Since the 𝑔 𝑛  are positive  the zeros of 𝑍𝑁 can not be real and 
positive. The zeros 𝑧𝑛 lie in the complex plane away from the real axis. 
In other words 𝑍𝑁 is analytical on the real axis. 



Fisher Zeros and Phase Transitions 

Clearly this scenario does not allow a phase transition since we 

identify a transition through the existence of a discontinuity in a 

derivative of the free energy. 

 

In order to deal with real thermodynamics we must assume that the limit 

 

lim
𝑁→∞

𝑙𝑛𝑍𝑁 𝓏

𝑁
 

exists. 

 
The zeros can be written as 

𝑧𝑛 = 𝑎𝑛 + 𝑖𝑏𝑛 
We should expect  that in the thermodynamic limit ( lim

𝑁→∞
) at the transition 

𝒂𝒏 → 𝒂𝒄 and 𝒃𝒏 → 𝟎 



Fisher Zeros and Phase Transitions 
A few examples 

Im(z) 

Re(z) Re(z) 

Im(z) 

Zeros for a flexible polymer chain with N monomers representing first order 
transitions. Left: N=55. Right: N=300. (J C. S. Rocha, S. Schnabel, D. P. Landau, M. Bachmann, 

PHYSICAL REVIEW E 90, 022601 (2014)) 



Fisher Zeros and Phase Transitions 
A few examples 

Characteristic map for a second 
order phase transition (4 states 
Clock Model) (Partial results, Laboratório 

de Simulação) 

Re(z) 

Im(z) 

1 

1 

0 

0 𝑅𝑒 𝔷𝑐 = 𝑒−𝛽𝑐𝜀 𝔷 = 0 



Fisher Zeros and Phase Transitions 
A few comments 

In both cases, first and second order phase transitions, the appearing of “leading” 
zeros is evident. 

The zeros, and thus their distribution, do generally depend on the choice of ε, but the 
transition temperature estimates is unaffected if ε is changed 

A striking feature is the observation of an increased accumulation of zeros on a circle 
containing  the pair of the leading zeros associated with the liquid-solid transition. 
The circular distribution has to be attributed to the self-reciprocity of the partition 
function polynomial at a phase transition with coexisting phases, in which case the 
energetic canonical distribution is bimodal and virtually symmetric. Therefore, the 
circular pattern can be interpreted as the signature of first-order-like transitions. 



The XY Model in two Dimensions 

Planar Rotator 𝑺 = 𝑆𝑥 , 𝑆𝑦  

Anisotropic Heisenberg (XY) 𝑺 = 𝑆𝑥 , 𝑆𝑦 , 𝑆𝑧  

𝐻 = −𝐽 𝑆𝑖
𝑥∙𝑆𝑗

𝑥 + 𝑆𝑗
𝑦
∙ 𝑆𝑗

𝑦

𝑖,𝑗

 

Mermin-Wagner Theorem 
 
Continuous symmetries cannot be spontaneously broken at finite temperature in 
systems with sufficiently short-range interactions in dimensions d ≤ 2. 
 
The theorem does not prevent the existence of two regimes of correlation length! 



The XY Model in two Dimensions 

𝑻𝑩𝑲𝑻 

𝐺~𝑟−𝜂 𝑇  𝐺~𝑒
−𝑟 𝜉  

𝐺 𝑟 ≡ 𝑆(0) ∙ 𝑆(𝑟)  𝜼 𝑻𝑩𝑲𝑻 = 𝟏
𝟒  

𝜂 𝑇𝐵𝐾𝑇 = 1
4  𝜉 𝑇 ≈ 𝑒

𝑏𝑡−
1
2 

   ;   t =
𝑇 − 𝑇𝐵𝐾𝑇
𝑇𝐵𝐾𝑇

 

𝑚𝑋𝑌 ≡
1

𝑉
 𝑚𝑥

2 + 𝑚𝑦
2
= 0 𝜒𝑥𝑦 ≡

1
𝑇 𝑚𝑥𝑦 − 𝑚𝑥𝑦

2
=  

𝜉2−𝜂 , 𝑇 >  𝑇𝐵𝐾𝑇
∞     , 𝑇 < 𝑇𝐵𝐾𝑇

 

𝐶𝑣 ≡
1

𝑇2
𝐸 − 𝐸 2  is finite. The free energy is 𝐶∞ 

A critical line 



The zeros distribution for the XY Model 
What we expect? 

Im(z) 

Re(z) 

The model is critical for 𝟎 ≤ 𝑻 ≤ 𝑻𝑩𝑲𝑻 

Line of critical zeros 
(𝑰𝒎 𝔃 = 𝟎, 𝑹𝒆(𝔃) > 𝟎)  

Non critical zeros 
(𝑰𝒎 𝔃 > 𝟎,𝑹𝒆(𝔃) > 𝟎) 

“open” region 
(𝑰𝒎 𝔃 > 𝟎, 𝑻 > 𝑻𝑩𝑲𝑻) 



The zeros distribution for the XY Model 
What we can do 

lim
𝑁→∞

𝑙𝑛𝑍𝑁 𝑧

𝑁
 

𝑍𝑁 =  𝑔 𝑛𝜀 𝑒−𝛽𝑛𝜀
𝑁

𝑛=0

=  𝑔 𝑛 𝑧𝑛
𝑁

𝑛=0

 

The best we can do is to estimate 𝑍𝑁 for a large sequence of 𝑁′𝑠 expecting  
the sequence converges. 

Even for moderate size systems this 
quantity cannot be calculated 

𝑍𝑁 = 𝓏0 𝓏𝑛 − 𝓏

𝑁

𝑛=1

 

A finite Size Scaling analysis can give us 
the behavior of a thermodynamic 
quantity “𝒬”. 

𝒬𝑁 

𝒦 

𝑁2 

𝑁1 

∞ 

𝑁1 < 𝑁2… 



The Wang-Landau Technique 
Random walk in energy space with a flat histogram 

Our task is to calculate 

𝒁 = 𝒈(𝑬)𝒆−𝜷𝑬

𝑬

 

 

1 - Choose an initial state 
2 - Set 𝒈 𝑬 = 𝟏 and (𝒇𝟎 > 𝟏) 
3 - Choose an initial “particle” 

Begin with a simple “guess”, e.g. 
𝑔 𝐸 = 1 

4 - Calculate 𝜹 =
𝒈 𝑬𝟏

𝒈 𝑬𝟐
 

Choose moves according to: 

𝒑 𝑬𝟏 → 𝑬𝟐 = 𝒎𝒊𝒏
𝒈 𝑬𝟏
𝒈 𝑬𝟐

, 𝟏  

5 - Generate a random number 
𝟎 < 𝒓 < 𝟏 
6 - If 𝒓 < 𝜹 accept the move 

Following each move, update 
𝒈 𝑬 → 𝒇𝒊𝒈(𝑬) (f initially > 1)  

7 - Set 𝒈 𝑬𝒊 → 𝒇 × 𝒈(𝑬𝒊)  

A histogram of energies is stored, 
when it is “flat” the process is 

interrupted 

8 – (a) If  histogram is not “flat” go 
to the next move and then to (4) 

       (b) If histogram is flat, 𝒇 = 𝒇 

 

𝑓𝑖+1 → 𝑓𝑖 Repeat steps 3 to 9 until 𝒇 ≤ 𝒇𝒎𝒊𝒏 

Continue the process until  𝑓𝑖 → 1 Done! Calculate properties using 
final 𝒈 𝑬  



The Wang-Landau Technique 
Discrete × Continuous energy 

∆𝐸 = 4𝐽 ∆𝐸 = 3.284𝐽 

𝑬𝒎𝒊𝒏 𝑬𝒎𝒂𝒙 

𝒈(𝑬) 𝒈(𝑬𝒏) 

𝑬𝒏 = 𝒏𝜺 
𝜺 

𝐻 = −𝐽 𝑆𝑖
𝑧∙𝑆𝑗

𝑧

𝑖,𝑗

 𝐻 = −𝐽 𝑆𝑖
𝑥∙𝑆𝑗

𝑥 + 𝑆𝑗
𝑦
∙ 𝑆𝑗

𝑦

𝑖,𝑗

 



Results 

Im(z) 

Re(z) 

Im(z) 

Re(z) 

Fisher zeros map in the 𝒙 = 𝒆−𝜷𝜺 plane for the 2D classical 
XY-model in a 50  50 lattice. The inset is zoom on the inner 
region for 5 distinct simulations. 

Zoom on the real positive semi-axis of the zeros maps in 
the x plane for L = 10  100. The zeros on the internal 
border are highlighted. 

Results, Laboratório de Simulação. To appears… 



Results 

Internal border of the zero distribution obtained by using for L = 10 
 200.  
 
The location of the inflection point position is 𝑻𝒛 𝑳 . 𝑻𝒛 𝑳 → 𝑻𝑩𝑲𝑻 
as 𝑳 →  ∞.  
 

𝑻𝒛 𝑳  



Results 

𝑇𝐵𝐾𝑇 =  

𝟎. 𝟕𝟎𝟗(𝟐)
𝟎. 𝟕𝟎𝟒(𝟑)

0.700 1 ∗
 

(*) H.G. Evertz and D.P. Landau, Phys. Rev. B 54, 12302(1996) 
B. V. Costa, P. Z. Coura, and S. A. Leonel, Physics Letters A 377, 
1239 (2013). 

Finite size scaling analysis of the imaginary part of the internal 
border. 

Finite size scaling of the inflection point position, Tz(L). 
Discarding the point corresponding to L = 10 the BKT 
temperature is estimated as 0.709(2) (dashed blue line) and 
discarding L < 40, TBKT = 0:704(3) (solid red line) in excellent 
agreement with earlier results. 



A possible pathway to analyze the 
zeros’ map 

Consider a function ℱ 𝑧  that behaves as 

 

ℱ 𝑧 ≈ 𝐴 1 −
𝑧

𝑧𝑐

𝛾
 ;   𝑧 → 𝑧𝑐 ,  γ =  

<  0                        𝑎 𝑝𝑜𝑙𝑒 𝑎𝑡 𝑧0
= 0 − log 𝑜𝑟 𝑤𝑒𝑙𝑙 𝑏𝑒ℎ𝑎𝑣𝑒𝑑
> 0                     𝑤𝑒𝑙𝑙 𝑏𝑒ℎ𝑎𝑣𝑒𝑑

 

Suppose ℱ 𝑧   can be represented by 
 

ℱ 𝑧 =  𝑎𝑛𝑧
𝑛

∞

𝑛=0

 

with radius of convergence 𝑧0. 



A possible pathway to analyze the 
zeros’ map 

If lim
𝑛→∞

𝑎𝑛
−1

𝑛 = 𝑧0 the series converges inside the ball 𝑧 <  𝑧0  , diverges for 

𝑧 >  𝑧0 and has at least a pole over 𝑧0. 
 
The “character” of the coefficients are determined by the singularities of ℱ 𝑧 . 
The singularity closer to the origin determines the asymptotic behavior. (Let as 
say 𝑧0). 
 
If 𝑧0 is real + 𝑠𝑖𝑔𝑛(𝑎𝑛) = 𝑠𝑖𝑔𝑛(𝑎𝑚) 
If 𝑧0 is real - 𝑠𝑖𝑔𝑛(𝑎𝑛) = −𝑠𝑖𝑔𝑛(𝑎𝑛+1) 
If 𝑧0 is ℂ  𝑠𝑖𝑔𝑛(𝑎𝑛)  𝑖𝑠 𝑖𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟 
 
 



A possible pathway to analyze the 
zeros’ map 

ℱ 𝑧 ≈ 𝐴 1 −
𝑧

𝑧𝑐

𝛾

= 𝐴 −1 𝑛 𝛾
𝑛

𝑧𝑐
𝑛𝑧𝑛

∞

𝑛=0

 

The amplitude is given by 

𝐴 = lim
𝑧→𝑧𝑐

ℱ 𝑧

1 − 𝑧
𝑧𝑐 

−𝛾 

Comparing with the Taylor expansion 

𝑎𝑛 = 𝐴 −1 𝑛 𝑛 + 𝛾 − 1
𝑛

𝑧𝑐
−𝑛 

Taking the quotient 

𝜇𝑛 =
𝑎𝑛
𝑎𝑛−1

=
𝐴

𝑛 + 𝛾 − 1
𝑛

𝑧𝑐
−𝑛

𝐴
𝑛 + 𝛾 − 2
𝑛 − 1

𝑧𝑐
−𝑛+1

=
Γ 𝑛 + 𝛾 Γ 𝑛

Γ 𝑛 + 𝛾 − 1 Γ 𝑛 + 1
𝑧𝑐

−1 

 

For 𝑛 𝑙𝑎𝑟𝑔𝑒 𝑒𝑛𝑜𝑢𝑔ℎ … 𝜇𝑛~𝑧𝑐
−1 1 +

𝛾−1

𝑛
+ 𝑂 1

𝑛2  



A possible pathway to analyze the 
zeros’ map 

It does not work ! 
 
Why? Because we do not have the TRUE series for the free energy. 
 
Only in the thermodynamic limit (𝑉𝑜𝑙𝑢𝑚𝑒 → ∞) our ℱ𝑉 𝑧  has a GOOD asymptotic 
behavior. 
 
Is there any way to explore ℱ𝑉 𝑧  to get the asymptotic behavior? 
Probably, but we do not know how! 



Final Remarks 

1. The Study of Phase Transitions is a Challenge. Its Importance ranges from 
Cosmology, Appearing of Life (Conscience?), Proteins, Magnetism, Quantum 
Phase Transitions and much more. 
 

 
1. Analytical results are restricted to a few Toy Models 

 
 

2. Computer Simulations play  an (the most ?) important role in describing the 
physics of Phase Transitions. 

 



Thank you 
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c. Wang-landau 
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a. High Precision Determination of 𝑻𝒕 
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Partition Function 

The Partition Function describes completely the equilibrium properties 
of a thermodynamic system 
 

𝑍 ≡ 𝑒−𝛽𝐻 𝑥

𝑥

  or  𝑍 = 𝑔(𝐸)𝑒−𝛽𝐸

𝐸

 

 
For example 

𝑬 = −
𝒅

𝒅𝜷
𝒍𝒏𝒁 

Energy 

𝑺 = 𝒌𝑩 𝐥𝐧𝒁 + 𝜷 𝑬  Entropy 

𝝌 =
𝟏

𝑻
𝒙𝟐 − 𝒙 𝟐  

Susceptibility 
 



Averages - Histograms 

𝑍 = 𝑔(𝐸)𝑒−𝛽𝐸

𝐸

 

Averages are calculated as:  

𝑨 =  
 𝑨(𝑬)𝒈(𝑬)𝒆−𝜷𝟎𝑬𝑬

𝒁
.  

The probability of a configuration E at temperature 𝛽0 is  

𝑷𝜷𝟎 𝑬 =
𝒈 𝑬 𝒆−𝜷𝟎𝑬

𝒁𝜷𝟎
,   

We can generate a histogram  
𝑯𝜷𝟎

𝑬

𝑵
≗ 𝑷𝜷𝟎 𝑬 . 

 

𝒈 𝑬 = 𝑵−𝟏𝑯 𝑬 𝒁𝜷𝟎𝒆
𝜷𝟎𝑬 

With this estimate for 𝑔 𝐸   averages 𝐴  are obtained  at any 
temperature. 
 

𝑷𝜷 𝑬 =
𝑯 𝑬 𝒁𝜷𝟎

𝑵
𝒆−𝑬 𝜷−𝜷𝟎  

𝑬𝒏 = 𝒏𝜺 
𝜺 

𝑯𝜷𝟎(𝑬) 



The Wang-Landau Technique 
Random walk in energy space with a flat histogram 

Our task is to calculate 

𝒁 = 𝒈(𝑬)𝒆−𝜷𝑬

𝑬

 

 

1 - Choose an initial state 
2 - Set 𝒈 𝑬 = 𝟏 and (𝒇𝟎 > 𝟏) 
3 - Choose an initial “particle” 

Begin with a simple “guess”, e.g. 
𝑔 𝐸 = 1 

4 - Calculate 𝜹 =
𝒈 𝑬𝟏

𝒈 𝑬𝟐
 

Choose moves according to: 

𝒑 𝑬𝟏 → 𝑬𝟐 = 𝒎𝒊𝒏
𝒈 𝑬𝟏
𝒈 𝑬𝟐

, 𝟏  

5 - Generate a random number 
𝟎 < 𝒓 < 𝟏 
6 - If 𝒓 < 𝜹 accept the move 

Following each move, update 
𝒈 𝑬 → 𝒇𝒊𝒈(𝑬) (f initially > 1)  

7 - Set 𝒈 𝑬𝒊 → 𝒇 × 𝒈(𝑬𝒊)  

A histogram of energies is stored, 
when it is “flat” the process is 

interrupted 

8 – (a) If  histogram is not “flat” go 
to the next move and then to (4) 

       (b) If histogram is flat, 𝒇 = 𝒇 

 

𝑓𝑖+1 → 𝑓𝑖 Repeat steps 3 to 9 until 𝒇 ≤ 𝒇𝒎𝒊𝒏 

Continue the process until  𝑓𝑖 → 1 Done! Calculate properties using 
final 𝒈 𝑬  



Finite Size Scaling 

T 

T T 

𝜒
(𝐿
)

 

𝐶
𝑣
(𝐿
)

 

𝑀
(𝐿
)

 

For a system of volume V, make a sequence of 
simulations 

𝒱1 < 𝒱2< …  < 𝒱𝑁 
We expect to recover the thermodynamic limit when 
𝑁 → ∞. 



Universality Class  

In statistical mechanics, a universality class is a collection of mathematical 
models which share a single scale invariant limit under the process of renormalization 
group flow. While the models within a class may differ dramatically at finite scales, 
their behavior will become increasingly similar as the limit scale is approached. In 
particular, asymptotic phenomena such as critical exponents will be the same for all 
models in the class.  

Close to their critical point, greatly different physical systems exhibit a strong 
similarity. Various macroscopic properties turn out to be independent of microscopic 
details, but are solely determined by a small number of global parameters, such as the 
dimensionality of the system and the symmetry and range of the interactions between 
the particles. This fascinating phenomenon, universality, is explained by the 
renormalization-group theory, which was developed in the early seventies by Kenneth 
G. Wilson (Nobel Prize in Physics 1982). In the last 25 years, the universal properties of 
a variety of critical systems have been calculated. Many of these predictions have 
been verified by computer simulations, especially for so-called spin models. 

Leo Kadanoff (?) 

https://en.wikipedia.org/wiki/Statistical_mechanics
https://en.wikipedia.org/wiki/Statistical_mechanics
https://en.wikipedia.org/wiki/Statistical_mechanics
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Scale_invariance
https://en.wikipedia.org/wiki/Scale_invariance
https://en.wikipedia.org/wiki/Scale_invariance
https://en.wikipedia.org/wiki/Renormalization_group
https://en.wikipedia.org/wiki/Renormalization_group
https://en.wikipedia.org/wiki/Renormalization_group
https://en.wikipedia.org/wiki/Asymptotic
https://en.wikipedia.org/wiki/Critical_exponent
https://en.wikipedia.org/wiki/Critical_exponent
https://en.wikipedia.org/wiki/Critical_exponent


Fisher Zeros and Phase Transitions 

𝑍𝑁 =  𝑔 𝑛𝜀 𝑒−𝛽𝑛𝜀
𝑁

𝑛=0

=  𝑔 𝑛 𝓏𝑛
𝑁

𝑛=0

 

Let us describe a finite system with discrete energy spectrum, such that 
𝐸 = 𝑛𝜀,     𝑤𝑖𝑡ℎ       𝑛 = 0, 1, 2, … . , 𝑁 

and the degeneracy of the 𝑛𝑡ℎ microstate given by 𝑔 𝑛   

𝑍𝑁 can be factorized as 

𝑍𝑁 = 𝓏0 𝓏𝑛 − 𝓏

𝑁

𝑛=1

 

𝑧𝑛 are the N zeros of 𝑍𝑁 and 𝑧0 is a constant. 
 
Since the 𝑔 𝑛  are positive  the zeros of 𝑍𝑁 can not be real and 
positive. The zeros 𝑧𝑛 lie in the complex plane away from the real axis. 
In other words 𝑍𝑁 is analytical on the real axis. 



Fisher Zeros and Phase Transitions 

Clearly this scenario does not allow a phase transition since we identify a 
transition through the existence of a discontinuity in a derivative of the free 
energy. 
 

In order to deal with real thermodynamics we must assume that the limit 

 

lim
𝑁→∞

𝑙𝑛𝑍𝑁 𝓏

𝑁
 

exists. 

 
The zeros can be written as 

𝑧𝑛 = 𝑎𝑛 + 𝑖𝑏𝑛 
We should expect  that in the thermodynamic limit ( lim

𝑁→∞
) at the transition 

𝒂𝒏 → 𝒂𝒄 and 𝒃𝒏 → 𝟎 
 

We’ll need this very soon. 



Fisher Zeros and Phase Transitions 
A few examples 

Im(z) 

Re(z) Re(z) 

Im(z) 

Zeros for a flexible polymer chain with N monomers representing first order 
transitions. Left: N=55. Right: N=300. (J C. S. Rocha, S. Schnabel, D. P. Landau, M. Bachmann, 

PHYSICAL REVIEW E 90, 022601 (2014)) 



Fisher Zeros and Phase Transitions 
A few examples 

Characteristic map for a second 
order phase transition (4 states 
Clock Model) (Partial results, Laboratório 

de Simulação) 

Re(z) 

Im(z) 

1 

1 

0 

0 𝑅𝑒 𝔷𝑐 = 𝑒−𝛽𝑐𝜀 𝔷 = 0 



Fisher Zeros and Phase Transitions 
A few comments 

In both cases, first and second order phase transitions, the appearing of “leading” 
zeros is evident. ( I name them: dominant zeroes) 

The zeros, and thus their distribution, do generally depend on the choice of ε, but the 
transition temperature estimates is unaffected if ε is changed 

A striking feature is the observation of an increased accumulation of zeros on a circle 
containing  the pair of the leading zeros associated with the liquid-solid transition. 
The circular distribution has to be attributed to the self-reciprocity of the partition 
function polynomial at a phase transition with coexisting phases, in which case the 
energetic canonical distribution is bimodal and virtually symmetric. Therefore, the 
circular pattern can be interpreted as the signature of first-order-like transitions. 



Filtering Zeroes 

We quickly get in trouble as the system size grows. 
 
WHY? 
 

The coefficients of the polynomial 𝑍𝑁 =  𝑔 𝑛𝜀 𝑒−𝛽𝑛𝜀𝑁
𝑛=0 =  𝑔 𝑛 𝓏𝑛𝑁

𝑛=0    
can  easily reach prohibitive values 
 
Ising 2d (96x96) 
  
g 1        =                                     2 × 100  
g 4632 = 1.831951704888848 × 102772 
 
It turns out impossible to calculate the zeros in a reasonable way. 
(In other words, it is impossible to go beyond modest size volumes) 
 
SOLUTION? …YES… 
 
We can filter the relevant zeroes! 



Filtering Zeroes 

𝑍𝑁 =  𝑔 𝑛𝜀 𝑒−𝛽𝑛𝜀
𝑁

𝑛=0

=  𝑔 𝑛𝜀 𝑒−𝛽0𝑛𝜀𝑒−(𝛽−𝛽0)𝑛𝜀
𝑁

𝑛=0

 

This equation can be rewritten as 

𝑍∆𝛽 = 𝑒−𝜀0𝛽  ℌ𝛽0 𝑛 𝜁𝑛 ,

𝑁

𝑛=0

 where now, ζ = 𝑒−(𝛽−𝛽0)𝑛𝜀,

                                     and, 
 

ℌ𝛽0 𝑛 = 𝑔 𝜀0+𝑛𝜀 𝑒−𝛽0 𝜀0+𝑛𝜀  is a distribution at 𝛽0 



Filtering Zeroes 

𝑍∆𝛽 = 𝑒−𝜀0𝛽  ℌ𝛽0 𝑛 𝜁𝑛 = 𝑒−𝜀0𝛽 𝜁− 𝜁𝑛

𝑁

𝑛=1

,

𝑁

𝑛=0

 

 
Where now the coefficients are controlled by the exponential 
 

 ℌ𝛽0 𝑛 = 𝑔 𝜀0+𝑛𝜀 𝑒−𝛽0 𝜀0+𝑛𝜀 . 

 
Any quantity is easily obtained: 
 

𝐸 Δ𝛽  = 𝜀0 +
𝜀  𝑛ℌ𝛽0 𝑛 𝜁𝑛𝑁

𝑛=0

 ℌ𝛽0 𝑛 𝜁𝑛𝑁
𝑛=0

 

 

𝐶 Δ𝛽 =
𝜀2  𝑛2 − 𝑛𝑚 ℌ𝛽0 𝑛 ℌ𝛽0 𝑚 𝜁𝑛+𝑚𝑁

𝑛=0
𝑁
𝑛=0     

 ℌ𝛽0 𝑛 𝜁𝑛𝑁
𝑛=0

2  

We get a new polynomial  



Filtering Zeroes 

One, and only one,  of the zeroes of the polynomial IS = 1! 
 

(ζ = 𝑒−(𝛽−𝛽0)𝑛𝜀) 
 
 

𝐸 Δ𝛽=0  = 𝜀0 +
𝜀  𝑛ℌ𝛽0 𝑛𝑁

𝑛=0

 ℌ𝛽0 𝑛𝑁
𝑛=0

 

 

𝐶 Δ𝛽=0 =
𝜀2  𝑛2 − 𝑛𝑚 ℌ𝛽0 𝑛 ℌ𝛽0 𝑚𝑁

𝑛=0
𝑁
𝑛=0     

 ℌ𝛽0 𝑛𝑁
𝑛=0

2  

 
 

Observe that if we build the histogram at the transition  (𝛽0 = 𝛽𝑡) , then 𝜁 = 1 for 
(𝛽 = 𝛽𝑡)  and consequently 



Filtering Zeroes 

However, the closest zero to  ℜ𝑒 𝜁   ( min{ℑ𝑚 𝜁 }) is a dominant zero. It allow us 
to write the following algorithm : 
 

1. Build a single histogram 𝕳𝜷𝟎
𝒏  (Chose 𝛽0 𝑎𝑡 𝑦𝑜𝑢𝑟 𝑤𝑖𝑙𝑙) 

2. Find the dominant zero , 𝐦𝐢𝐧{𝕴𝒎 𝜻 } 
3. Use the corresponding temperature to build a new histogram 
4. Go back to the (1) 
5. Stop when 𝜻 = 𝟏 
 

 
 
 
 
 

Unfortunately we are not at the thermodynamic limit. 
Our zeros have the form: 𝒂𝒏 → 𝒂𝒄 and 𝒃𝒏 → 𝟎 
 



Some Examples 

No Transition. 



Some Examples 
Continuous 

𝑇𝐿 

𝜷𝒄 = 𝟎. 𝟒𝟒𝟎𝟑 
𝝂 = 𝟏. 𝟎𝟎 



Some Examples 
Two Transitions: First order  & Continuous 



Some Examples 
BKT 



Final Remarks 

1. We developed a new method to study phase transitions 
2. It seems, at least in all our tests, to be of universal application 
3. It is easy 
4. It is cheap 
5. It gives wonderful results for: 

a. Transition temperatures  
b. Exponents 

6. Allow to “guess” the order of the transition 



Thank you so much 


