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Nambu monopoles interacting with lattice defects in a two-dimensional artificial square spin ice
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The interactions between an excitation (similar to a pair of Nambu monopoles connected by their associated
string) and a lattice defect are studied in an artificial two-dimensional square spin ice. This is done by considering
a square array of islands containing only one island different from all others. This difference is incorporated in the
magnetic moment (spin) of the “imperfect” island and several cases are studied, including the special situation
in which this distinct spin is zero (vacancy). We show that the two extreme points of a defective island behave
like two opposite magnetic charges. Then, the effective interaction between a pair of Nambu monopoles with the
defective island is a problem involving four magnetic charges (two pairs of opposite poles) and a string. We also
sketch the configuration of the field lines of these four charges to confirm this picture. The influence of the string
on this interaction decays rapidly with the string distance from the defect.
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I. INTRODUCTION

Artificial spin ices1 are systems composed by an array of
lithographically defined two-dimensional (2D) ferromagnetic
nanostructures with single-domain islands (elongated permal-
loy nanoparticles, in general), where the net magnetic moment
of each island is assumed to be well approximated by an
Ising-like spin (for a regime out of the Ising behavior in a single
elliptic island, see Ref. 2). They can be produced in diverse
types of geometries with lattices like the square,1 brickwork,3

honeycomb or kagome,4,5 triangular,6 etc. Recently, these
artificial materials have been objects of intense experimental
and theoretical investigations1,3–17 associated mainly with the
appearance of collective excitations that are expected to behave
like magnetic monopoles.

The theoretical and experimental studies concerning the
physical properties of the ground state and excitations of
the artificial square spin ices have deserved a great deal of
attention in recent years.7,9–12,17 In this system, there are four
Ising spins at each vertex and they can be distributed in
16 configurations grouped in four different topologies (see
Fig. 1). Nowadays, it is well established that its ground state
has a configuration that obeys the ice rule (two spins point
inward while the other two point outward in each vertex, but
following only topology T1 as shown in Fig. 1). In addition,
theoretical results show that the elementary excitations are
quasiparticles akin to opposite magnetic monopoles connected
by an energetic string9–12,17 (this string is an oriented line
of dipoles passing by vertices that obey the ice rule, but
sustaining only topology T2). The string energy is associated
with the fact that the ice rule is not degenerate in two
dimensions, since topology T2 has more energy than topology
T1.1,9 These monopoles can be then referred to as Nambu
monopoles due to their similarities with the monopoles studied
by Nambu in the 1970s in a modified Dirac monopole theory.18

Indeed, in Nambu’s theory,18 the string connecting the opposite
monopoles has the following features:18 (a) The end points of
the string (of length Z) behave like monopoles interacting
by a Yukawa potential. The string energy is proportional to
Z. Therefore, for a sufficiently long string, the string energy
is dominant and for a short string, the Yukawa interaction

becomes important. (b) The string is oriented, having an
intrinsic sense of polarization, like a magnet. Therefore,
these Nambu particles have a phenomenology similar to that
observed6,9,10 for artificial square spin ices. Really, for a simple
comparison, we notice that the forces that bind “monopoles”
and “antimonopoles” in a 2D artificial square spin ice are
of two kinds.9,10 One is the tension b of an energetic string;
the other is the Coulomb force (which is a particular case
of the Yukawa force) given by q/R2, where q measures the
strength of the interaction and R is the distance between
the poles. These features show that the excitations present
in the 2D artificial square ice are more similar to that of
Nambu theory than that of Dirac theory, justifying the use of
this terminology for distinguishing the “monopole” excitations
in different spin ice materials. Then, differently from the
three-dimensional crystalline spin ices19 in which the string
is observable but does not have energy, in the 2D case, there
is an oriented and energetic one-dimensional string of dipoles
that terminates in the monopoles with opposite charges. This
string costs an energy equal to bX, where X is the string length.
Thus, the interaction potential between two opposite charges
is generally given by VN (R,X,φ) = q(φ)/R + b(φ)X + c(φ),
where φ is the angle that the line joining the monopoles
makes with the x axis of the array (there is a small anisotropy
in the interaction10). Numerically, the theoretical values10,11

for the constants arising in the potential VN (R,X,φ) are
q(0) ≈ −3.88Da, b(0) ≈ 9.8D/a while q(π/4) ≈ −4.1Da,
b(π/4) ≈ 10.1D/a, where D = μ0μ

2/4πa3 is the coupling
constant for the dipolar interaction among the islands, a

is the lattice spacing, μ0 and μ are the vacuum magnetic
permeability and the island’s magnetic moment, respectively.
The constant c(0) ≈ 23D is associated with the pair creation
energy, Ec ≈ 29D,10,11 which is independent of φ. The
modulus of the magnetic charge is, therefore, given by
|QM (φ)| = √

[4π |q(φ)|/μ0].
Although the fabrication of these systems is relatively

easy, the limitations of the lithographic techniques are a
significant barrier for building “perfect” arrays with identical
islands disposed at all lattice sites. Indeed, a large number
of samples are made, for example, with malformed islands,
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FIG. 1. The four topologies for the vertices in an artificial square
spin ice. The energy of these topologies increases from left to right.
Topologies T1 and T2 obey the ice rule (two in/two out) but, they are
not degenerate. Topology T3 exhibits the configurations with three
in/one out or one in/three out while in the topology T4, one has four
in or four out. Topology T1 gives the ground state. Topology T2 is
associated with the stringlike excitations and T3,4 are associated with
magnetic monopolelike excitations.

resulting in a quenched disorder in the system (see, for
example, Refs. 5,14,20–25). On the other hand, defects can
also be introduced intentionally into the system (for instance,
by removing an island from the array or making, by design,
some islands with holes5,26,27). Then, as it happens with natural
materials, lattice defects could also play an important role in
the properties of these artificial frustrated compounds. Our
primary aim in this paper is to study the effects that a single
defective island causes on the elementary excitations of the
artificial square spin ices. Our results show that the defective
island induces magnetic charges on adjacent vertices, giving in
this way further and strong support to the magnetic monopole
picture for the excitations of the artificial square spin ice.
This picture is also corroborated by the determination of the
magnetic field lines produced by excitations. Our results also
suggest that by changing the shape and size of some islands
of the system it may be possible to tailor design systems with
desired properties.

II. DEFECTIVE ARTIFICIAL SQUARE ICE

Defects may be either naturally present in the system (due
to the limitations of experimental techniques) or intentionally
introduced in the artificial arrays. For example, one could
remove an island (“spin”) from a 2d square lattice. Thus, it is
important to study the effects of these defects on the properties
of the system. Here, we will consider an arrangement of dipoles
similar to that accomplished in Ref. 1; however, at a particular
site (denoted by site l) the island is defective and may be larger
or smaller than the other ones. In our calculations, such island
deformation is incorporated in its magnetic moment which
is proportional to the island volume (the spin or magnetic
moment �Sl is considered to be proportional to the island’s
volume). In our approach, the magnetic moment of each
island is replaced by a unity Ising-like point dipole at its
center (| �Si | = 1) which is restricted to point along the x or
y direction depending on its position for all islands, except
for the defective one, site l, whose magnitude is chosen in
the interval 0 � | �Sl| � 2. Comparisons between an Ising and
a non-Ising-like description of the nanoislands can be found,
for example, in Refs. 2, 24, and 28. Note that the special
limiting case of a missing island (�Sl = 0) is included in our

FIG. 2. (Color online) Particular configuration of excitations in
a lattice with a defective island [yellow (light gray) arrow between
numbers 3 and 4]. We use two basic shortest strings in the separation
process of the magnetic charges, which are indicated by the marked
white arrows. Pictures (a) and (b) exhibit two kinds of strings, I and
II, respectively. The black circle is the positive charge while the red
(dark gray) circle is the negative charge.

range. In this way, the system is described by the following
Hamiltonian:9,10

H = Da3
∑
i �=j

[ �Si · �Sj

|�rij |3 − 3
(�Si · �rij )(�Sj · �rij )

|�rij |5
]

, (1)

where �rij is the vector that connects sites i and j , D =
μ0μ

2/4πa3 is the coupling constant for the dipolar interac-
tions. In all calculations, periodic boundary conditions were
implemented by means of the Ewald summation.29,30

In the system with a single deformed island defect, we have
observed, by using a simulated annealing process (see Refs. 9
and 10), that the ground state is the same as that of a perfect
array (all vertices obeying the ice rule with topology T1).
However, at the two particular adjacent vertices shared by the
defective island, there is a nonzero net magnetic moment due
to the unbalance caused by the defect, since its spin is smaller
(or greater) than the other three normal spins that complete
the vertex (see Fig. 2). Therefore, although this ground state
is neutral, in the sense that it is composed by T1 vertices only,
it should exhibit, in principle, a pair of opposite magnetic
charges separated by a distance of the order of the lattice
spacing. To better understand this picture one may think that
an augmentation in the magnitude of the spin, for example, was
caused by the inclusion of another (smaller) spin in the vertex,
which is located at the same place and that points in the same
direction as the increased one. In this case one has five spins
instead of four at the adjacent vertices shared by this island,
and thus there is no way to achieve neutrality in the vertex
that contains the defect. Since vertices that do not satisfy the
ice rule are viewed as magnetic monopoles, these defective
vertices can also be viewed as a pair of monopoles. One may
also easily arrive at the same conclusion by using a dumbbell
picture as used by Castelnovo et al.19 There is thus a pair of
magnetic charges of magnitude QD , whose value depends on
the unbalance at the vertices shared by the defective island.

III. RESULTS

In order to verify these assumptions, we consider now
an elementary excitation in the system with one defect. It
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is a single pair of Nambu monopoles and its associated
string placed in the vicinity of the static lattice defect as
illustrated in Fig. 2. We have analyzed the two particular
string shapes shown in Fig. 2; other string shapes were also
studied, giving similar results. In Fig. 2, numbers 1 and 2
indicate the positions of the Nambu monopoles, with charges
−QM and QM , respectively, while numbers 3 and 4 indicate
the extremes of the lattice defect, which are represented by a
small yellow (light gray) arrow (at these points, as discussed
above, two hypothetical opposite magnetic charges −QD and
QD are positioned). Also, the two string shapes considered are
referred to as strings I and II as shown in Figs. 2(a) and 2(b),
respectively. In our calculations, the Nambu pair size R (the
smallest distance of separation between the two charges) is
varied but only the position of charge 1 will be shifted for
convenience; position 2 is kept fixed while positions 3 and
4 cannot change naturally, since we are considering a static
defect. Making a suitable choice of the origin at position 2, we
get |�r1| = R. Then, in principle, we now have four poles in the
array: two coming from the static lattice defect and two from
the induced excitation (Nambu pair).

First, we would like to know the effects of this defect
on the interaction potential between the monopoles 1 and 2,
VD(R). The potential VD(R) can be obtained by calculating
the system’s energy for each configuration and subtracting the
ground-state energy (see Refs. 9 and 10). To extract the effects
of the defective island on the interaction energy we look for the
difference � = VD(R) − VN (R), where VD(R) is the potential
obtained for the system with the defective island and VN (R)
is the potential obtained for a uniform system, where | �Sl| = 1.
Since VN (R) contains the interactions between the monopoles
1 and 2 and the string energy, � gives the interaction between
the defective island and the monopoles 1 and 2 as well as
the interaction between the defective island and the string.
In this way we can write a general analytic expression for
� by considering the Coulomb interaction energy between
four charges (1 and 2 with magnitude QM and 3 and 4
with magnitude QD) added with the interaction between the
defect and the string. The interaction between charges and
strings and also between strings may be very complicated to
explicitly write. Thus, for the moment, we are including in
the general expression for � an ad hoc term, such that �

reads

� = K1

[
1

|�r13| − 1

|�r14| + 1

|�r24| − 1

|�r23|
]

+ K2θ

(
�Rd · �r1

|�r1| − |�r1|
)

, (2)

where

K1 = μ0

4π
QDQM (3)

and K2 are constants that must be determined, θ (z) is the step
function [θ (z) = 0 for z < 0 and θ (z) = 1 for z > 0], �rij is the
distance between vertices i and j , �r1 is the position of charge
1, and �Rd is the position of the defective island. The first term
of Eq. (2) is simply the Coulomb interaction energy between
the four charges (the interactions between charges 1 and 2 are
not present in � as well as the interaction between the defects
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FIG. 3. (Color online) Data for � as a function of r = R/a,
considering string type I (a) and II (b) (the string shapes I and II
are shown in Fig. 2). In these figures the smallest distance between
position 1 and the defect δ is larger than one spacing lattice. The
magnitude of dipole moment is | �Sl | = 0. The simulation data � are
the points and represent the case with δ = 5a. The dashed lines are
the fits to expression (2).

3 and 4). The second term represents the ad hoc interaction of
the string with the defect and will be discussed later.

Figure 3 shows the potential � as a function of the distance
between the Nambu monopoles 1 and 2 (r = R/a) for strings
I and II, using | �Sl| = 0, i.e., considering a missing island in
the system. The results presented here are for a lattice with
size equal to 80a × 80a (with 12 800 spins); however, several
lattice sizes (10a � L � 80a) were also studied but not shown
here since the results are almost the same. In this figure the
smallest distance between the defect and the string is δ = 5a

(δ is measured as the distance between the line that connects
monopoles 1 and 2 and the defective island; note, however,
that for the string shapes used here this distance is exactly the
smallest distance between the string and the defective island).
Since δ is relatively large we may consider that the defect does
not effectively interact with the string, so that the constant
K2 may be set to zero. The dashed red line in Fig. 3 is a
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FIG. 4. (Color online) Data for K1 as a function of the size of the
defective island. Observe the linear behavior of K1 as Sl is increased.

nonlinear curve fitting made by using Eq. (2) with K2 = 0. It
can be seen that the Coulomb interaction between the Nambu
monopoles (charges 1 and 2) and the defect charges (3 and 4)
correctly describes the data. Similar results are obtained for
0 � | �Sl| � 2 and for any value of δ � 2a.

These results show that a vacancy or even a defective island
behave simply like a pair of opposite monopoles separated
by a lattice spacing a as suspected above. The maximum
and minimum of the data in Fig. 3 can be understood by
considering the repulsion and attraction between the mobile
Nambu monopole 1 and the defect charges 3 and 4. Indeed, the
potential changes from repulsive to attractive, or vice versa,
as the monopole 1 passes alongside the defect charges. The
repulsion or attraction occurs if the monopole 1 is closest
to a defect charge of the same or opposite sign, respectively.
Another characteristic of this interaction concerns the presence
of the string. Since K2 was set to zero to fit the data, one could
conclude that the string connecting the Nambu monopoles
does not cause any effect on the interaction if its distance from
the defect is relatively large. This is really the situation, as we
will explain later.

Figure 4 shows the fitted values (K1) as a function of Sl ,
obtained for type-I string (the same result was also obtained
for type-II string). The red dashed line is a linear regression.
For Sl = 0, our results show that K1 ≈ 2Da. Besides, using
the fact that K1 is given in units of Da, it is easy to show that
QD = μ

a
K1
QM

and since QM ≈ 2, QD ≈ 1 ≈ QM/2. It leads to
|QD| ≈ |QM |/2, which should be expected since the defect
topology is an arrangement with configuration two in/one out
and vice versa. The magnitude of K1 decreases with increasing
Sl , vanishing, as expected, when Sl = 1 (which is the case
of a “perfect array”). For Sl > 1, the sign of K1 changes,
indicating that there is a switch in the position of the positive
and negative charges produced by the defect, as shown in
Fig. 5. In this figure, the white and gray circles represent the
negative and positive charges induced by the lattice defect.
In fact, the switch of the position of the induced charges can
be easily seen by observing the change in the net magnetic
moment [red (dark gray) arrow] on the vertices that form the

FIG. 5. (Color online) Ground-state configuration of the system
around the defective island for (a) Sl smaller (b) Sl greater than
other islands. The white circle represents the negative charge induced
by the lattice defect while, the gray circle represents the positive
charge.

lattice defect when Sl is smaller or greater than the other islands
spin. Therefore, the effect of varying Sl from values smaller
than 1 to values larger than 1 is the same as that of inverting the
effective magnetic moment of an island from an arbitrary value
g to 2 − g (0 � g � 1); hence, the characteristic effect of a
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FIG. 6. (Color online) Data for � as a function of r = R/a,
considering strings I (a) and II (b), for δ = 1a and Sl = 0. The
simulation data for � are the black points and the red dashed line is
the fit to expression (2).
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FIG. 7. (Color online) The interaction constant between string
and defect, K2, as a function of their separation δ. The black circles
and red squares are the fitting data obtained for the strings I and II,
respectively.

vacancy is essentially the same as that caused by a defect island
with a spin whose magnitude is twice (Sl = 2) the magnitude
of the spin of the normal islands (for defects with Sl = 0 and
Sl = 2, the magnetic moment has the same modulus but it
points in opposite directions).

On the other hand, if the “moving” Nambu monopole 1
passes close to the lattice defect at a distance smaller than 2a

(on the order of 1a), a substantial difference in the interaction
potential can be noted, as shown in Fig. 6, which is obtained
for string shapes I and II near a vacancy (δ = 1a). For large
values of r we can see that � goes to a constant value, while
in Fig. 3 it goes to zero. This difference is attributed to the
interaction between the string and defect, which as can be
seen in Fig. 3 decays very quickly. Then, we may expect that
the string interacts only with very close objects. In this way,
we may see that when all parts of the string are far from the
defect, there is no contribution from its interaction with the
defect to the total energy. On the other hand, if a segment of
the string is close enough to the defect (distance smaller than 2
lattice spacings), only the small segment that is close enough
to the defect interacts with it. This justifies the ad hoc term
included in Eq. (2). When the “distance” between the defect
and the “moving” monopole (rd − r1, where rd = �Rd · �r1

|�r1| ) is
negative, the string has not crossed the defect yet, and thus, it is
not close enough to contribute to the total energy. On the other
hand, for rd > 0 there is a segment of the string at a distance δ

from the defect and for δ < 2a this segment contributes with a
constant value K2 to the total energy. In Fig. 6, the dashed red
line was obtained by doing a nonlinear curve fitting according
to general Eq. (2), in such a way that for r < rd , K2 was
set to zero and then, keeping K1 fixed, the remaining points
(r > rd ) were fitted for arbitrary K2. In Fig. 7 we show the
results for the constant K2 as a function of δ. As can be seen,
K2 has a significant value only for δ < 3. The fact that the
main interaction between defects is, in general, short ranged
is in agreement with previous results from Ref. 11, where
the energetics of excitations above a thermalized state are
studied.

FIG. 8. (Color online) Magnetic field intensity of the system’s
ground state. At the center of the plaquettes and at the centers of the
vertices, indicated by the red crosses, the field goes to zero (white
regions). These points were used to obtain the magnetic field produced
by the excitations alone. At the right side of the figure the color palette
for the magnetic field intensity is shown in normalized units.

IV. MAGNETIC FIELD LINES

The above results give strong support to the monopolelike
picture for the excitations and defects of the artificial square
spin ice as presented in Ref. 9. To give further support to
this scenario we have also analyzed the magnetic field lines

FIG. 9. (Color online) This figure exhibits the magnetic field lines
of a pair of Nambu monopoles and its string (the spins located between
the dark gray vertices or red spins) considering the field produced by
the excitation alone. Only a small portion of the system is shown for
clarity.
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(a)Electric charges. (b)Nambu monopoles connected by a type II string and a
vacancy.

FIG. 10. (Color online) (a) Electric-field lines produced by four electric charges: two of unity magnitude representing the Nambu monopoles
and two of one-half magnitude representing the vacancy’s charges. (b) Magnetic field lines of the spin configuration obtained by considering
the field produced by the excitation alone. The red spins (the spins located between the dark gray vertices) were flipped to produce the Nambu
monopoles and its string. Only a small portion of the system is shown. The vacancy is placed approximately at (−1,2).

for this configuration of charges. We start our analysis by
presenting in Fig. 8 a color map of the magnetic field intensity
of a perfect system in its ground state, where all islands have
the same spin value. It is easy to see that the field is null
at the centers of the plaquettes as well as at the centers of
the vertices (two of these points are indicated by red crosses
in the figure). This fact allows us to obtain the field produced by
the excitations alone without considering the detailed structure
of the magnetic field produced by the dipoles. Thus, in our
calculation, the magnetic field produced by the excitation can
be obtained by simply inverting spins (creating excitations)
and then calculating the resulting magnetic field at the center
of the plaquettes and at the center of the vertices, i.e., by
calculating the magnetic field at the points where it is zero
in the ground state. In Fig. 9, we show the stream lines of
the aforementioned field for a configuration where the red
spins were flipped. We notice that the magnetic field lines far
from the flipped spins are very similar to the field lines of a
pair of electric charges, while in the space between them the
magnetic field follows the string. It becomes clear then that the
string carries the magnetic flux back from one charge to the
other. In Fig. 10(b) we show the stream lines of a configuration
containing a vacancy and a pair of magnetic monopoles and its
associated string while, for effect of comparison, in Fig. 10(a)
we show the electric field produced by two unity charges
located at the same position of the Nambu monopoles and
a pair of one half charges located at the same position of the
vertices shared by the defective island. Apart from the region
where the string is present, the similarities between these two
figures is remarkable. Although very simple, this analysis gives

further evidences for the monopolelike behavior of excitations
and defects in the artificial square spin ice.

V. CONCLUSION AND PROSPECTS

We have studied the interaction of two magnetic monopoles
(and the energetic string connecting them) with a lattice defect
present in the square spin ice array. We notice an interesting
resemblance between the single defect and a static pair of
monopoles separated by one lattice spacing. The strength of
the magnetic charges of this small defect was obtained as
a function of the magnetic moment of the defective island
(Fig. 4). Defects with Sl = 0 (vacancy) and Sl = 2 (double
spin) produce similar effects in the lattice, since they have
the same magnetic charges (placed in opposite positions).
There is also a short-range interaction between the string and
the lattice defect, which can be attractive or repulsive,
depending on the orientation and local shape of the string.
Our results are an important step towards understanding how
lattice defects could change the thermodynamics of artificial
spin ices.17 For instance, considering an array with a finite
density � of defects as done, for example, in Ref. 14, it should
be important to know how the properties of the system change
as � increases and how defects could affect the formation
of the ground state experimentally (a problem usually found
in experiments with artificial square ices1,11). In general, we
expect that the presence of a finite density of these lattice
defects will strongly distort the path of the strings and they
could even break or join some different strings. In addition,
since the defects act as small pairs of charges, we expect that
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the presence of them in the lattice should affect the monopole
average separation and density (as calculated in Ref. 17) and,
as � increases, the peak position of these quantities should be
altered for lower temperatures. Of course, it may also have an
effect on the entropically driven monopole unbinding17 and
the critical temperature may decrease as � increases; probably
the fact that the effect of the defect on the Nambu strings
seems irrelevant when their distance exceeds a few lattice
constants means that the transition is unaffected by sparse
disorder, but there might be a critical density of islands above
which the entropic oscillation of the strings can get pinned
thus destroying the transition. A more detailed study of these
questions is currently in progress.

A simple way to model unintentional defects in the system
is to suppose that the islands have a Gaussian size distribution
around a mean value. In a model of point dipoles this would be
achieved by considering a Gaussian distribution of the spins’
magnitudes. In this case, one may expect that, for a small
variance of the size distribution, the ground state would be the
same as in the perfect system. However, for a large variance or
for a system where the defects are not randomly distributed, we
may expect some differences in the ground state. For instance,
one may expect the formation of an ordered arrangement of

charges (like a crystal of charges) similar to what happens in
a kagome lattice31 and in a rectangular lattice.32 The control
of some defects (for example, inducing stronger or smaller
variances of the size distribution) may thus be used to facilitate
the experimental achievement of the system’s ground state.

Another interesting point is the possibility to construct tailor
designed systems to achieve some desired property. Since the
presence of a defective island can be interpreted in terms of the
induced charges at the vertices shared by it, one can think of
designing, for example, a magnetic capacitorlike system. This
would be constructed by designing a system where all spins
in a stripe immersed in a square system have islands smaller
than all others, for example, in such a way that, in the edges
of this stripe, there will be residual charges as far as an icelike
state is achieved. The presence of these residual charges may
significantly change the behavior of other excitations inside
this capacitor. A more detailed analysis of this hypothesis is
under consideration.
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