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Extending spin ice concepts to another geometry: The artificial triangular spin ice
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In this work, we propose and study a realization of an artificial spin-ice-like system in a triangular geometry,
which, unlike square and kagome artificial spin ice, is not based on any real material. At each vertex of the
lattice, the “icelike rule” dictates that three spins must point inward while the other three must point outward.
We have studied the system’s ground state and the lowest energy excitations as well as the thermodynamic
properties of the system. Our results show that, despite fundamental differences in the vertex topologies as
compared to the artificial square spin ice, in the triangular array the lowest energy excitations also behave like
Nambu monopoles (two opposite monopoles connected by an energetic string). Indeed, our results suggest that
the charge intensity of the monopoles may have a universal value while the string tension could be tuned by
changing the system’s geometry, probably allowing the design of systems with different string tensions. Our
Monte Carlo findings suggest a phase transition in the Ising universality class where the mean distance between
monopoles and antimonopoles increases considerably at the critical temperature. The differences in the vertex
topologies seem to facilitate the experimental achievement of the system’s ground state, thereby allowing a more
detailed experimental study of the system’s properties.
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I. INTRODUCTION

Geometrical frustration and fractionalization are key con-
cepts in modern condensed matter theory. While the former
is related to the impossibility of simultaneously minimizing
the energy for all constituents of a system due to geometrical
constraints, the latter is related to the appearance of collective
excitations that carry only a fraction of the elementary con-
stituents’ properties. In some systems, these phenomena are
closely related, as is the case of spin ice materials (Dy2Ti2O7

and Ho2Ti2O7).1–7 There, due to a geometrical frustration, the
energy is minimized by the appearance of the two-in/two-out
ice rule, where at each vertex of a lattice two spins point
inward and two outward. Violations of this rule are viewed
thus as a fraction of a dipole,1 since these collective excitations
behave as magnetic monopoles, constituting the first example
of fractionalization in three-dimensional (3D) materials.

With the aid of modern experimental techniques, mainly the
capability to construct and manipulate nanostructured systems,
artificial arrays with properties very similar to the spin ice
material were recently built.8–12 In particular, in an artificial
frustrated 2D square array that mimics the spin ice behavior,
the excitations above the ground state are viewed as a kind of
Nambu magnetic monopoles,13–17 since the end points of the
energetic string behave like particles with magnetic charge,
which leads to a Coulomb interaction (we remark that the
Coulomb is a particular case of the Yukawa potential present in
the Nambu calculations). Therefore, there is, of course, a huge
amount of interest in accessing the ground state of the artificial
square spin ice (ASSI) to test theoretical predictions concern-
ing the appearance and behavior of monopole excitations.18–21

However, demagnetization protocols22–24 used so far were not
able to drive the ASSI to its lowest energy state. Morgan et al.16

successfully achieved what seems to be the thermalization of
the ASSI during fabrication, although, they could not obtain a
single ground-state domain.

In this work, we investigate whether the same fractional-
ization phenomenon manifested in the ASSI is also present

in another artificial setting. We consider here a particular
realization of an artificial spin ice in a triangular geometry.
Unlike the square and kagome spin ice, our proposal is not
based on any real material and was motivated by inquiring
into what changes arise when the geometry of an artificially
frustrated magnetic system is not the usual type for typical
spin ices. By doing this, we have found that in the triangular
geometry, the ground state is very likely to be easily obtained
experimentally, which enables the experimental investigation
of the existence and behavior of collective excitations above
the ground state. In addition, we have found that the artificial
triangular system also has collective excitations that can
be described by a kind of Nambu monopole. As expected
for a system which can be described by the same kind
of excitation present in the ASSI, many similarities with
ASSI were found. On the other hand, there are fundamental
differences between the ASSI and the artificial triangular spin
ice (ATSI), particularly with regard to the vertices’ topologies.
The existence of monopole-like excitations in the ATSI may
also stimulate the search for other crystalline 3D materials
where magnetic monopoles could appear.

II. THE ARTIFICIAL TRIANGULAR SPIN ICE

The study of spin-ice-like systems has somehow been
restricted, until now, to two kinds of vertices: vertices with
three spins, as in the kagome and brickwork lattices, and
vertices with four spins, as in the natural spin ice materials
(Dy2Ti2O7 and Ho2Ti2O7) and in the artificial square spin ice
(ASSI). We may therefore ask what happens if we have a
lattice with six spins per vertex instead of three or four. This is
the basic question that motivated this study. To answer it, we
have considered an array of elongated magnetic nanoparticles
having a single domain pattern, such as those used to build the
ASSI (Permalloy nanoislands), placed in a geometry such that
the longest axis of each island points along the lines joining
two vertices in a triangular lattice (see Fig. 1).
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FIG. 1. (Color online) Left: A lattice with L = 3 in its ground
state. The array proposed in this work has six spins in each vertex
(small dots). The ice rule is now three in/three out. Right: By applying
a strong magnetic field in the −x direction the state shown here should
be achieved, and by reversing the applied field the system should be
driven to the ground state shown on the left side of the figure.

We have modeled the proposed system by replacing the
magnetic moment of each island by a pointlike, Ising-like
dipole (�Si) that is constrained to point along the line that
joins two vertices in the lattice, such that the interactions are
expressed as follows:

HSI = Da3
∑
i �=j

[ �Si · �Sj

r3
ij

− 3(�Si · �rij )(�Sj · �rij )

r5
ij

]
, (1)

where D = μ0μ
2/4πa3 is the dipolar interaction coupling

constant, a is the lattice spacing, and �rij is a vector that
connects islands i and j . In Fig. 1, we present a sketch of the
system, where the vertices and the island’s magnetic moments
are shown.

We start our analysis by considering a single vertex and
its six spins. It can be easily shown that it is energetically
favorable when the moments of a pair of islands are aligned,
so that one is pointing into the center of the vertex and the other
is pointing out, while it is energetically unfavorable when both
moments are pointing inward or both are pointing outward.
Therefore, the system is expected to be frustrated because
for a particular configuration obeying the icelike rule (three-
in/three-out), from the 15 possible pairs of islands in a vertex,
only 9 can minimize the energy. For the sake of comparison,
we remember that in the square spin ice there are 6 pairs at
each vertex and only 4 can minimize the energy when the ice
rule is considered.

Each vertex of the system has 64 configurations distributed
in 8 different topologies (let us recall that the square lattice
has only 16 configurations distributed in 4 topologies). In
Fig. 2 we show these configurations and topologies, grouped
by increasing energy. Types 1, 3, and 5 obey the three-
in/three-out “ice rule,” and analogously to the square lattice,
they are energetically split. The remaining types of vertices
shown in Fig. 2 possess monopole-like magnetic charges.
These correspond to the flip of one, two, or even three
spins in a particular vertex. For instance, types 2, 4, and 6
are monopoles with single charges (with four-in/two-out or
two-in/four-out configurations), while types 7 and 8 are doubly
(five-in/one-out or one-in/five-out) and triply (six-in or six-out)
charged monopoles, respectively. There are, therefore, three
different classes of monopoles with single charge and only
one class of doubly and triply charged.

FIG. 2. (Color online) The 64 possible vertices, grouped by
increasing energy (left to right) in 8 topologies. Vertices type 1, 3, and
5 satisfy the three-in/three-out ice rule, while vertices type 2, 4,
and 6 are single magnetic charges. Vertices type 7 and 8 are double
and triple charged vertices, respectively.

At this point, a fundamental difference between the ASSI
and the ATSI appears: while in the ASSI all vertices violating
the ice rule have more energy than the vertices that satisfy
it, for the ATSI this is not true. In an energy scale we have
type 1 vertices, which satisfy the ice rule, followed by type 2
vertices, which have four-in/two-out or four-out/two-in spins
and of course do not satisfy the ice rule. Indeed, type 2 vertices
have less energy than type 3 and 5 vertices, which have three
spins in, three spins out. In addition, type 4 vertices, which do
not satisfy the ice rule, have less energy than type 5 vertices.
From this perspective, one should expect many differences in
the collective behavior of the ATSI and ASSI, for example
in the lowest energy excitations and in the thermodynamic
properties; but as will be shown soon, they are much more
similar than expected.

Going beyond the study of a single vertex, we have checked
by a simulated annealing process (a Monte Carlo simulation
where the system’s temperature is slowly decreased)14 that
the system’s ground state is indeed composed only by type 1
vertices, as can be expected by the vertex energies shown in
Fig. 2. Details of the Monte Carlo procedure, including lattice
sizes, etc., are given in Sec. V. A sketch of the system in its
ground state is shown in Fig. 1.

III. LOWEST ENERGY EXCITATIONS

The lowest energy excitation that can be obtained above the
ground state is achieved by flipping one spin creating two type
2 vertices, as shown in Fig. 3(a). This process has an energy
cost of approximately 66D. The second lowest energy state is
obtained by flipping a plaquette [Fig. 3(b)] and has an energy
cost of approximately 77D. In this case, three type 3 vertices
are created.

Of particular interest is the case in which after flipping
one spin, which creates two type 2 vertices, more spins are
flipped (without further violation of the ice rule) in order to
separate them. As can be seen in Fig. 3(a), to move a excitation
to the right side, keeping the neutrality (three-in/three-out) in
between, we have three options: flip the spins 1, 2, or 3. By
symmetry, it is clear that flipping spins 1 or 3 has the same
effect in the system and generates the configuration shown in
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FIG. 3. (Color online) (a) Flipping the spin marked in gray results
in a monopole-antimonopole pair (big dots). This is the lowest energy
excitation of the system. By flipping spins 1, 2, or 3, the configurations
of (c) and (d) can be obtained. (b) The second lowest energy state,
which is obtained by flipping the marked spins. (c) The third lowest
energy state. By repeating this process, a sawtooth-like string can
be formed. (d) The fourth lowest energy state, obtained by flipping
the marked spins. (e) A linear string path, where spins marked in
dark gray were flipped. By flipping the spin marked in light gray, the
monopoles are separated by one more lattice spacing. Type 5 vertices
that compose the string are marked with small (yellow) dots. (f) A
sawtooth string, where spins marked in dark gray were flipped. By
flipping the spins marked in light gray, the monopoles are separated
by one more lattice spacing while the string length increases by two
lattice spacings. Type 3 vertices that compose the string are marked
with small (green) dots.

Fig. 3(c), where a type 3 vertex is created. On the other hand,
if spin 2 in Fig. 3(a) is flipped, the configuration shown in
Fig. 3(d) is formed, which comprises the appearance of a type
5 vertex. As expected, the configuration in Fig. 3(c) has less
energy than the configuration of Fig. 3(d). While the former
costs about 91D to be created, the latter needs an energy about
123D. This process can be repeated in order to separate type
2 vertices, and the energy of each configuration can be readily
obtained in such a way that we can get the potential energy of
the system as a function of the distance between the vertices.
Therefore, we have used the same methods of Refs. 14 and 15
to determine the potential that better describes the interaction
between type 2 vertices. Our results are very similar to those
obtained in these references, such that the potential reads

V (R) = qt/R + btX(R) + ct , (2)
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FIG. 4. (Color online) Inset: Potential energy as a function of the
distance (R) between two single charged monopoles separated by a
straight string. Outset: The black dots represent the potential minus
the linear contribution obtained by fitting βR + α to it. The lines are
the best nonlinear curve fits of the potential according to the functions
(qt/R + btR + ct ) Coulomb, [qt exp(−κR)/R + btR + ct ] Yukawa,
and qt/(R + Rc) + btR + ct minus βR + α.

where R is the distance between the monopoles and X(R) is
the string length.

Before showing numerical results, some points deserve
further explanation. At first glance, the potential function
seems to be linear (see the inset of Fig. 4). However, after sub-
tracting from the potential the linear contribution (see Fig. 4),
one can see that a diverging contribution to the potential for
small enough distances must be added to the potential. Among
the many possible functions that could be used, we found that
the addition of a Coulombian term (qt/R) to the potential is the
best way to describe the ASSI and ATSI data using a function
with only three parameters. For the sake of comparison, the
χ2/d.o.f. is about 0.3 for the pure linear fit and about 6 × 10−4

for the potential of Eq. (2). Besides that, as can be seen in Fig.
4, the potential of Eq. (2) better describes the data. As is well
known, one should be very careful when doing a nonlinear
curve fitting, especially when the fitted function has many
parameters, such that the use of functions with more than
three parameters was avoided. This is the reason why we have
opted to describe the excitations by means of Eq. (2). We
have also tested other functional forms instead of the Coulomb
one, especially the Yukawa potential [qt exp(−κR)/R] and the
function qt/(R + Rc), both with four parameters. Using the
Yukawa potential, we found approximately the same values for
the constants (qt , bt , and ct ) and the χ2/d.o.f. diminished by
less than one order of magnitude. The use of the qt/(R + Rc)
diminished the χ2/d.o.f. by about one order of magnitude.
Nevertheless, the fit convergence is highly dependent on the
initial values, such that for all purposes we are considering
Coulombian interactions between the monopoles. It is worth
noticing that the values shown here are approximate results
that depend on the number of points used in the nonlinear fit.
Differences up to 20% in qt may be expected.

When single-charged monopoles (type 2 vertices) are
separated in a straight line by a straight string composed
of type 5 vertices only [see Fig. 3(e)], the constants in the
potential are ql

t = −3.5Da, bl
t = 56D/a, and cl

t = 13D. The
monopoles can also be separated in a straight line by creating
only type 3 vertices [see Fig. 3(f)], such that the string has a
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L. A. S. MÓL, A. R. PEREIRA, AND W. A. MOURA-MELO PHYSICAL REVIEW B 85, 184410 (2012)

sawtooth shape. In this case, the constants are qs
t = −3.9Da,

bs
t = 25D/a, and cs

t = 46D, where the string length X is
related to the charge distance, R, by X = 2R. The huge
difference in the string tension in these situations can be
easily understood by recalling that type 3 vertices have less
energy than type 5 vertices. It is important to stress that the
string in this system is energetic, observable, and unique, in
the sense that it is composed of type 3 or type 5 vertices
on a background of type 1 vertices. In addition, the value of
qt is almost the same of that found in the square spin ice
(−4Da � qs � −3.4Da),15 while the string tension is about
six times higher when the string is composed of type 5 vertices
only and about two times higher when the string is composed
of type 3 vertices (bs ∼ 10D/a). The difference in the string
tension for the shapes considered indicates that there is a huge
anisotropy in the system.

IV. GROUND-STATE CONSIDERATIONS

From an experimental point of view, the achievement of the
system’s ground state is an important step toward the study
of monopole physics. Considering the ATSI, we believe that
two different approaches can drive the system to its ground
state, or at least to a state close enough to it. The first one
is the same approach used by Morgan et al.16 to study the
ASSI. In their work, they studied the as-grown system and
found the appearance of ground-state domains with sparse
excitations that follows Boltzmann statistics. Considering, for
instance, the same island sizes and lattice spacings used by
Morgan et al.,16 we may expect the achievement of larger
domains in the ATSI as compared to the ASSI since in the
ATSI, the internal magnetic fields should be stronger. This is
by virtue of the presence of more islands in the same area of the
material. However, due to experimental difficulties, namely the
resolution of the lithography process, it may not be possible
to use the same sizes and lattice spacings used by Morgan
et al.16 However, a simpler approach can also be very efficient
to drive the system to its ground state, as will be discussed in
what follows.

Apply a strong magnetic field in the −x direction of
the sample (see Fig. 1), so that the system is driven to the
magnetized state shown on the right side of Fig. 1, similarly
to what happens to ASSI. However, the energetics of these
magnetized configurations, and those deviating from them,
are not equivalent in the ASSI and in the ATSI. While the
magnetized state of the ASSI is a local minimum, since it
is composed of vertices that satisfy the ice rule and any
spin flip would increase the system’s energy, in the ATSI
the magnetized state is a kind of saddle point. The ATSI’s
magnetized state is composed of type 5 vertices only. If a spin
in the x direction is flipped, two type 2 vertices are created,
and since type 2 vertices have less energy than type 5 vertices,
the system’s energy diminishes. The first spin flipped in the
x direction would release an energy of about 45D. However, if
a spin in any other direction is flipped, the energy of the system
increases since two type 6 vertices are created (remember that
type 6 vertices are more energetic than type 5 vertices). If
the first spin flipped is not in the x direction, the system’s
energy increases by about 10D. We may thus expect that,
after applying a strong field in the −x direction, another field

applied in the +x direction would induce the formation of
type 2 vertices. Once formed, these vertices can be separated
by the creation of type 1 vertices reducing even more the
system’s energy. In this process, only spins in the x direction
(the field direction) are expected to flip. This process would
occur in such a way that monopole-like excitations are created
above a given state (which is not the ground state, such that
the monopole terminology does not seem to be appropriate)
and induced by the presence of the magnetic field to move
along the field direction. Note, however, that south poles (with
four-in/two-out) in this situation would move in the field
directions instead of moving against the field, as would be
expected by analogy with basic electrostatics. If we restrict
our analysis to vertex energy only, we may see that spins that
are not in the x direction are not expected to flip at all since
the vertices that would be created in such a process (type 6)
are much more energetic than the other vertices present in the
system (types 1, 2, and 5). Even in the presence of a relatively
strong disorder, the energy needed to flip a spin that is not in the
x direction seems to be high enough to prevent its occurrence.
However, a detailed analysis of this hypothesis is required due
to the long-range character of dipolar interactions. A complete
treatment of this possibility is currently in progress and will
be published elsewhere.

V. THERMODYNAMICS

Knowing the ground state and the elementary excita-
tions, the thermodynamics of the proposed system deserves
attention. Despite the fact that in the artificial spin ices
the moment configuration is athermal, some experimental
works have presented alternative methods to overcome this
difficulty.16,21 Materials with an ordering temperature near
room temperature21 are the most recent option; a reduction
in the island’s volume and moment through state-of-the-art
nanofabrication is another, but it has not been accomplished
yet. Besides that, an effective thermodynamic behavior can be
obtained by using a rotating magnetic field.22–24 Independently
of the experimental difficulties, we have theoretically studied
some thermodynamic properties of the proposed array. Indeed,
in an earlier paper considering the ASSI, we have argued that
the string should lose its tension due to entropic effects14 (the
string configurational entropy), rendering free monopoles at
a temperature above a critical one, Tc. The same arguments
should be valid here, such that the verification of this
hypothesis is of great interest.

To study the thermodynamic properties of this system, we
have used conventional Monte Carlo techniques, which are
briefly presented. We have simulated lattices with size L × Ly ,
where Ly is the largest integer resulting from L/

√
3, so that

we have 2 × L × Ly vertices and Ns = 6 × L × Ly spins for
a given L; we have considered systems with L = 16, 24, 32,
48, 64, and 80. Although it is known25 that the introduction
of a cutoff radius in the evaluation of dipolar interactions
may lead to a critical behavior that does not agree with
that found when full long-range interactions are considered,
we have opted in this work to use a cutoff radius at eight
lattice spacings. This choice is justified by our interest in
the basic thermodynamic behavior of the system and not in
the details of the possible phase transitions. In our Monte
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FIG. 5. (Color online) Specific heat as a function of temperature
for different lattice sizes. The inset shows the specific-heat maxima
as a function of ln(L). The line is a guide to the eyes.

Carlo scheme, a combination of single spin flips and loop
moves was used. A loop move26 is a random closed path
of aligned spins that are flipped or not according to the
METROPOLIS prescription [p = exp (−�E/kBT )]. One Monte
Carlo step (MCS) is the combination of Ns single spin flips and
three loop moves. In most simulations, we have used 2 × 104

MCSs to equilibrate the system and 2 × 105 MCSs to take
averages.

We start by presenting the results for the specific heat
(see Fig. 5). We notice that the specific heat exhibits a
peak at a temperature Tc approximately equal to 15D/kB .
The amplitude of this peak increases as the system size L

increases, as can be seen in the inset of the same figure,
where the specific-heat maximum is plotted as a function
of ln(L). Therefore, it may indicate a phase transition in the
Ising universality class.27 We have also analyzed the charge
density and the average separation between monopoles and
antimonopoles as a function of T . In Fig. 6, we show the
density of single charges (vertices types 2, 4, and 6), ρ1,
double charges (type 7 vertices), ρ2, and triple charges (type

0 5 10 15 20 25 30
T

0

0.1

0.2

0.3

0.4

ρ1

0 5 10 15 20 25 30
T

0

0.0001

0.0002

0.0003

0.0004

ρ3

0 5 10 15 20 25 30
T

0

0.01

0.02

0.03

ρ2

FIG. 6. (Color online) Monopole density as a function of temper-
ature for different lattice sizes. The outer plot shows the density of
single charges (ρ1) while in the insets the density of double (ρ2) and
triple (ρ3) charges is shown. The symbols are the same as those used
in Fig. 5.
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FIG. 7. (Color online) Mean distance between single charges as a
function of temperature. The inset shows the maximum mean distance
as a function of ln(L). The line is a guide to the eyes.

8 vertices), ρ3, as a function of temperature. It is remarkable
that the density of double and triple charges is much smaller
than the density of single charges.

The mean distance between monopoles and antimonopoles,
S, as a function of temperature was obtained by considering
only defects with unit charge. This quantity is calculated by
using the method of assignment problems.28 In our case, we
would like to assign n positive charges to n negative charges for
a given configuration in such a way that the sum of distances of
all possible pairing will be a minimum. Note that in studying
the system’s thermodynamics, we are not able to determine the
exact pair’s energy nor which charge forms a pair with which
other charge. The results are shown in Fig. 7. The average
separation has a local maximum at the same temperature Tc in
which the specific heat exhibits a peak (∼15D). We notice that
the amplitude of this maximum also increases as the system
size increases. Indeed, the maximum average separation Sm

increases logarithmically with the system size L (Sm ∝ ln L,
see the inset of Fig. 7) and hence one could expect that a certain
quantity of monopoles may be almost isolated for very large
arrays. For low temperatures, the average separation S does not
depend on the lattice size L, while for high temperatures, this
quantity has a tiny dependence on L. This picture is suggestive
and indicates a different behavior of monopoles and strings at
low and high temperatures.14,19

At this point, we should stress that the similarities between
these results and the results for the ASSI of Ref. 19 are
remarkable. As discussed before, one would expect many
differences between those systems since some vertices that
do not satisfy the ice rule have less energy than some vertices
that do satisfy it. Indeed, the fact that the vertices of a string
(types 3 and 5) have more energy than one kind of charge
(type 2 vertices) would be expected to considerably change
the system’s properties, especially those concerning monopole
behavior. However, the only difference that can be noticed is in
the critical temperature, which is about 15D/kB for the ATSI
and 7D/kB for the ASSI. The specific heat and magnetic
charge behaviors are qualitatively the same, including the
mean distance between opposite magnetic charges and their
finite-size behavior. Of course, as the string in the ATSI has
stronger tension, the maximum value of the mean distance
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between the monopoles is smaller than that of the ASSI for
the same lattice size.

VI. CONCLUSIONS

In summary, we have proposed and theoretically studied the
realization of an artificial spin ice in a triangular geometry. The
usual experimental difficulty to achieve the ground state of the
artificial square spin ice (ASSI) should not be so dramatic for
the artificial triangular spin ice (ATSI) array since a simple
demagnetization protocol (similar to a hysteresis loop) will
probably drive the system to its ground state, as discussed
in Sec. IV (see Fig. 1). This hypothesis is under current
investigation. Although there are fundamental differences
between the ASSI and the ATSI, especially concerning the
vertex topologies, these systems show remarkable similarities.
Indeed, the lowest energy excitations of both can be described
by magnetic monopole excitations interacting via a Coulombic
term added by an energetic string potential; the thermodynamic
behaviors are qualitatively the same. However, contrary to
the ASSI, in the ATSI there are three different classes of
magnetic monopoles, and much more work has to be done to
completely understand if all kinds of charged vertices behave
in the same way. The same applies for the different classes of
three-in/three-out vertices.

Another issue that deserves further investigation is the
similarity found in the monopoles’ charge value. While the
string tension of the ATSI can be about six times larger than
that of the ASSI, the monopoles’ charges have roughly the
same value. Indeed, in Ref. 15 we have shown that in a
modified ASSI, where a height offset is introduced between
the islands in the two different lattice directions, the string
tension can be reduced by a factor of about 20 and the
monopoles’ charge does not change appreciably. For example,
the smallest value of the string tension found for the modified
ASSI is about 0.59D/a and the highest value we found in
this study is 56D/a, which gives a difference of about two
orders of magnitude. In general, we expect that the value
of the string tension b will not alter the physical picture
of artificial systems with different geometries; it must only
change the thermodynamic quantities, and Tc should increase

as b increases (for instance, square and triangular lattices
present similar thermodynamic properties but Tc is lower in the
square lattice, which has smaller b). Remember that following
our arguments on energy-entropy balance in ASSI,14 we found
that the effective string tension should be given by b − εkBT ,
with ε = O(a−1). In this way, the critical temperature, the
temperature at which the string loses its effective tension,
is proportional to the string tension b. Of course, Tc → 0 if
b → 0 and hence magnetic monopoles would be found free
for any temperature. Besides, it is expected that smaller string
tension demands a weaker field to move the monopoles. On
the other hand, all monopoles’ charge values are in the range
−4Da � q � −3.4Da.15 This observation may indicate that
these charges have a kind of universal behavior while the string
tension can be tuned by modifying the system’s geometry. In
addition, it is expected that when controlling the monopole
motion, spin ice systems could be used for several practical
applications. Indeed, the ability to design systems with desired
string tension, with regard to the field necessary to move a
charge, would aid in the development of new devices. The main
challenge should then be to find geometries in two dimensions
(or even in three dimensions)15,17 in which b ∼ 0, making the
control of monopole excitations experimentally feasible by
means of externally applied magnetic fields. Of course, a great
deal of effort must be made in order to verify the validity and
applicability of these assumptions.

Another prospect for future investigation is the search
for a three-dimensional natural version of this system, a
hypothetical “bulk spin ice” with a three-in/three-out ice
rule. In this case, the expected crystalline structure would be
composed of Ising-like spins (as in Dy2Ti2O7 and Ho2Ti2O7)
disposed in a network of linked octahedra (which represents
the central intersection of two tetrahedra) in such a way that
they are constrained to point along the line joining the center
of adjacent octahedra.
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