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We study a modified frustrated dipolar array recently proposed by Möller and Moessner �Phys. Rev. Lett.
96, 237202 �2006��, which is based on an array manufactured lithographically by Wang et al. �Nature �Lon-
don� 439, 303 �2006�� and consists of introducing a height offset h between islands �dipoles� pointing along
the two different lattice directions. The ground states and excitations are studied as a function of h. We have
found, in qualitative agreement with the results of Möller and Moessner, that the ground state changes for h
�h1, where h1=0.444a �a is the lattice parameter or distance between islands�. In addition, the excitations
above the ground-state behave like magnetic poles but confined by a string, whose tension decreases as h
increases, in such a way that for h�h1 its value is around 20 times smaller than that for h=0. The system
exhibits an anisotropy in the sense that the string tension and magnetic charge depends significantly on the
directions in which the monopoles are separated. In turn, the intensity of the magnetic charge abruptly changes
when the monopoles are separated along the direction of the longest axis of the islands. Such a gap is attributed
to the transition from the antiferromagnetic to the ferromagnetic ground state when h=h1.
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I. INTRODUCTION

Geometrical frustration in magnetic materials occurs
when the spins are constrained by geometry in such a way
that the pairwise interaction energy cannot be simultaneously
minimized for all constituents. A special example is an exotic
class of crystalline solid known as spin ice �Dy2Ti2O7 and
Ho2Ti2O7�. Recently, Castelnovo et al.1 have proposed that
these materials are the repository of some elegant physical
phenomena: for instance, collective excitations above its
frustrated ground state surprisingly behave as pointlike ob-
jects that are the condensed-matter analogs of magnetic
monopoles. Some recent experiments2–5 have reported the
observation and even the measurement of the magnetic
charge and current of these monopoles in spin ice materials;
in addition, simulations also support these ideas.6,7 Besides,
to turn the research of monopoles into a proper applied sci-
ence, it will be necessary to ask if the basic ideas of dipole
fractionalization1,8 that give an usual spin-ice material its
special properties can be realized in other magnetic settings.
One of the most promising candidates for accomplishing
that, is the artificial version of spin ices recently produced by
Wang et al.9 In this system, elongated magnetic nanoislands
are regularly distributed in a two-dimensional square lattice.
The longest axis of the islands alternate its orientation point-
ing in the direction of the two principal axis of the lattice.9

The magnetocrystalline anisotropy of Permalloy �the mag-
netic material commonly used to fabricate artificial spin ice�
is effectively zero so that the shape anisotropy of each island
forces its magnetic moment to align along the largest axis
making the islands effectively Ising-type. Actually, the fab-
rication and study of this kind of lower dimensional analogs
of spin ice have received a lot of attention.9–16 Indeed, the
ability to manipulate the constituent degrees of freedom in
condensed-matter systems and their interactions is much im-
portant toward advancing the understanding of a variety of
natural phenomena. Particularly in this context, the possibil-
ity of observing magnetic monopoles in artificial spin
ices14,16 is a timely problem given that these magnetic com-
pounds could provide the opportunity to see them up close

and also watch them move �for example, with the aid of
magnetic force microscopy�. Very recently, the direct obser-
vation of these defects in an artificial kagome lattice was
reported by Ladak et al.17 However, there is a stimulating
challenging for such an observation �or not� in artificial
square lattices as pointed out in advance.

In a previous work14 we have pointed out that monopoles
do not appear as effective low-energy degrees of freedom in
two-dimensional square spin ices, as they do in the three-
dimensional materials �Dy,Ho�2Ti2O7. Due to the antiferro-
magnetic order in the ground state, the constituents of a pair
monopole-antimonopole become confined by a string which
forbids them to move independently. However, we have also
argued that above a critical temperature, the string configu-
rational entropy may lose its tension leaving the monopoles
free. The quantitative analysis of such a possible phase tran-
sition is under current investigation.18 Meanwhile, other
strategies to find monopoles in synthetic spin ices have been
proposed. Möller and Moessner16 have suggested a modifi-
cation of the square lattice geometry in which they argue
that, considering a special condition, the string tension van-
ishes at any temperature. This modification in the system
produced by Wang et al.9 consists of introducing a height
offset h between islands pointing along the two different
directions10,16 �see Fig. 1; such a system is currently under
experimental planning19�. Their idea comprises basically the
following: if h is chosen so that the energies of all vertices
obeying ice rule become degenerate, then, an ice regime is
established leaving the monopoles “free” to move �indeed,
there is a Coulombic interaction between the monopoles�.16

For pointlike dipoles they considered that a degenerate state
is obtained when the interactions between nearest neighbors
�J1� and next-nearest neighbors �J2� are equal, leading to the
following value for the height offset where free monopoles
occur: hice�0.419a �where a is the lattice spacing�.10 Taking
into account the finite extension of the dipoles, the height
offset diminishes and as ��1− l /a→0 �l is the length of the
island�, the end points of the islands form a tetrahedron so
that at h=�a /	2 the ordering disappears and the monopoles
become free to move.16
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Here we numerically calculate the energetics of the
ground states and excitations in the modified square lattice as
a function of h. In our calculations we consider pointlike
dipoles forming the lattice. Although the main physical as-
pects of the system must be correct with this approximation,
some parameter values �such as magnetic charge, string ten-
sion, critical height, etc.� should be quantitatively altered for
the realistic case in which l has a finite length. On the other
hand since we take into account all the long-range dipole-
dipole interactions, it is expected that our results could better
describe the actual system. For instance, while in the calcu-
lations of Refs. 10 and 16, the ground-state changes its con-
figuration at h=0.419a, our results indicate that it occurs at
h=h1=0.444a. Besides, we noted that at least one of the
several configurations that satisfy the ice rule does not have
the same energy of the “ground-states” �GS1 and GS2� at this
very height, indicating that for h=h1 the system is not in a
completely degenerate state. We have also shown that the
string tension decreases rapidly as h increases but it does not
vanish at any value �h�a�: rather, at h=h1, its strength reads
about 20 times smaller than that of the usual case for h=0. A
possible cause of the finite strength of the string tension even
at h1 is the fact that, concerning the spin configurations in a
tetrahedron, the artificial spin ice has a slight difference with
its natural counterpart. For the artificial compounds proposed
in Ref. 16, the localized magnetic moments forming a
corner-sharing tetrahedral lattice are forced to point along the
longest axis of the islands �here, x or y directions, see Fig. 2�
while in the original 3d spin ices, they point along a 
111�
axis �indeed, in this case, the magnetic dipoles point along
axes that meet at the centers of tetrahedra�. As a result of this
mismatch, there is always a single ordered ground state in
the artificial systems, which is responsible for the residual
value of the string tension and its anisotropy. Another inter-

esting result obtained here with the pointlike dipole approxi-
mation is that the magnetic charge of the monopoles jumps
as the system undergoes a transition in its ground state. In
addition, in general, this strength of the interaction between a
monopole and its antimonopole is anisotropic, depending on
the lattice direction and on the type of order. However, as
expected from the above discussions, we note that the system
anisotropy diminishes as h goes to h1. Actually, as h in-
creases from zero, the differences found in the values of the
“charges” �as distinct directions for the monopoles separa-
tion are taken into account� decreases, and they tend to dis-
appear as h→h1, i.e., in the ice regime �nevertheless, h=h1
is not really an optimal ice regime, at least for pointlike
dipoles�.

II. MODEL AND RESULTS

We model the system suggested in Refs. 10 and 16 assum-
ing the magnetic moment �spin� of the island is replaced by
a point dipole at its center. At each site �xi ,yi ,zi� of a
“square” lattice two spin variables are defined: S���i�
with components Sx= �1, Sy =0, and Sz=0 located at
r��= �xi+a /2,yi ,h� and S���i� with components Sx=0,
Sy = �1, and Sz=0 at r��= �xi ,yi+a /2,0�. Spins pointing
along the y direction and spins pointing along the x direction
are in different planes, separated by a height h �see Fig. 1�.
Hence, in a lattice of volume L2=n2a2 one gets 2�n2 spins
�we have studied systems with n=20, 30, 40, 50, 60, and 70�.
Representing the spins of the islands by S� i, assuming either
S���i� or S���i�, then the modified artificial spin ice is described
by the following Hamiltonian:

HSI = Da3�
i�j
S� i · S� j

rij
3 −

3�S� i · r�ij��S� j · r�ij�
rij

5 � , �1�

where D=	0	2 /4
a3 is the coupling constant of the dipolar
interaction. The sum is performed over all n2�2n2−1� pairs

FIG. 1. �Color online� The modified square lattice studied in this
work. Top: top view of the system. The arrows represent the local
dipole moments �S���i� or S���i��. Bottom: lateral view of the system
showing the height offset between islands. The original material
produced by Wang et al.�Ref. 9� is two-dimensional with h=0.

FIG. 2. �Color online� Up: in the artificial spin ice proposed in
Ref. 10, the spins obeying the ice rule do not point along directions
passing by the center of a tetrahedron as they do in the natural spin
ice compounds. Down: configurations of the spins obeying the ice
rule in a tetrahedron in the artificial �left� and the natural �right� spin
ices. This small distortion of the spins configuration causes a re-
sidual ordering and consequently, an outstanding energetic string
connects the monopoles in the modified artificial system.
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of spins in the lattice for open boundary conditions �OBC�
while for periodic boundary conditions �PBC� a cut-off ra-
dius was introduced when rij �n /2a.

The results presented here consider a lattice with n=70,
which contains 9800 dipoles �islands� and PBC. We observed
exactly the same behavior for OBC and PBC and the size
dependence of the results is not appreciable. By using a
simulating annealing process �see Ref. 14�, the first thing to
notice is that the ground-state configuration changes for a
critical value of h. Indeed, as shown in Fig. 3�a�, for all
values h�h1=0.444a, the system ground state �hereafter re-
ferred to as GS1� has exactly the same form as that of the
usual case in which h=0. However, for h�h1, the ground-
state changes to GS2 �see Fig. 3�b��. Really, as h→h1, the
energies of both states are comparable, whereas for h�h1
the state GS2 is less energetic �see Fig. 4�. Such a result is in
qualitative agreement with findings of Ref. 10, which pre-
sents the transition at h=hice=0.419a. As expected, both con-
figurations obey the ice rule �two spins point in and two
point out in every vertex�, but while in GS1 the magnetiza-
tion is zero at each vertex, in GS2 it points diagonally, but
with net vanishing magnetization. As shown in Fig. 4, the
energy of GS1 increases rapidly as h increases while the
energy of GS2 is constant. Actually, for this latter configura-
tion, the horizontal and vertical sublattices are decoupled.
We note that these two ground states are metastable in the
sense that they are local minima and cannot be continuously

deformed one into another without spending a considerable
amount of energy; trying to align the dipoles from one state
to another costs the inversion of two spins by vertex �half of
the spins have to be inverted in the whole system�. This
changing has an h-dependent energy barrier which is roughly
on the order of 160 D �for h=0.444a and n=70�, making this
process much improbable to occur spontaneously. Thus, con-
sidering the system in the GS1 state and increasing continu-
ously the height from h=0, GS1 may persist even for
h�h1 because of the large energy necessary to change to
GS2. Besides, in Fig. 4 we also present the energy of the
configuration shown in Fig. 3�c�, which also satisfy the ice
rule but has an energy higher than those of GS1 and GS2
even for h=h1. Consequently, the states satisfying the ice
rule are not completely degenerate.

Now, we consider the excitations above the ground state.
In the two-in/two-out configuration, the effective magnetic
charge QM

i,j �number of spins pointing inward minus the num-
ber of spins pointing outward on each vertex �i , j�� is zero
everywhere for h�h1 �GS1� and for h�h1 �GS2�. The most
elementary excited state is obtained by inverting a single
dipole to generate localized “dipole magnetic charges.” Such
an inversion corresponds to two adjacent sites with net mag-
netic charge QM

i,j = �1 which is alike a nearest-neighbor
monopole-antimonopole pair.1,14 Following the same method
of Ref. 14, it is easy to observe that such “monopoles” can
be separated from each other without violating the local neu-
trality by flipping a chain of adjacent spins. We choose four
different ways they may be separated �see Fig. 5�. First, us-
ing the string shape 1 and starting in the ground state GS1
�for h�h1=0.444a� we choose an arbitrary site and then the
spins marked in dark gray in Fig. 5 are flipped, creating a
monopole-antimonopole separated by R=2a. Next, the spins
marked in light gray are flipped and the separation distance
becomes R=4a, and so on. In this case, the string length �X�
is related to the charges separation distance R by X=4R /2
�the monopole and the antimonopole will be found along the
same horizontal or vertical line�. Second, we also consider a
string path of form 2 �for h�h1�, making the separated
monopoles to be found in different lines �diagonally posi-
tioned; now we have X=2R /	2�. More two equivalent ways
were studied for h�h1 in which GS2 is the ground state. In

FIG. 3. �Color online� �a� Ground-state configuration for
h�h1=0.444a, GS1. Note that this is exactly the same state ob-
tained in Refs. 10 and 14. �b� Configuration of the ground state GS2

obtained for h�0.444. In GS2, each vertex has a net magnetization
but globally the magnetization vanishes. Note that the ice rule is
manifested in every vertex. �c� Another configuration that satisfy
the ice rule but has an energy higher than the configurations shown
in �a� and �b� when h=h1.
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FIG. 4. �Color online� The energy per island of the two ground
states �GS1 and GS2� and of the configuration shown in Fig. 3�c� �in
units of D� as a function of h �in units of the lattice spacing a�.
Black circles represent the GS1 energy while red squares concern
GS2 and blue diamonds are for the configuration shown in Fig. 3�c�.
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this case, however, differently from the situation in the GS1
state, now the monopoles can be separated by using a linear
string path �so that X=R� without any violation of the ice
rule. Finally, another monopoles separation studied for GS2
is the “diagonal path” �or path 3�, in which the charges are
put in different lines. Our analysis shows that besides the
Coulombic-type term q�h� /R �where q=

	0

4
q1q2�0 is the
coupling constant which gives the strength of the interac-

tion�, the total-energy cost of a monopole-antimonopole pair
has an extra contribution behaving like b�h�X, brought about
by the stringlike excitation that binds the monopoles, say,

V�R,h� = q�h�/R + b�h�X�R� + V0�h� , �2�

where V0�h� is a h-depended constant related to the mono-
pole pair creation �for instance, for h=0 V0�0��23D and
V�a ,0��29D�. The results for the “charge” q�h� are shown
in Fig. 6 for the range 0�h�a. When h�h1, the excitations
are considered above GS1 and we observe that there is a
small h-dependent difference in the q value for paths 1 and 2,
which vanishes as h→h1. At higher heights h�h1, q is val-
ued with respect to GS2 and is h independent for a linear
string path. However, for path 3, it comes back to increase as
h increases. Therefore, the interaction of a monopole with its
partner �antimonopole� is anisotropic in artificial spin ices.
Perhaps, it would be more appropriate to redefine things in
such a way that q=

	0

4
Q1Q2��h ,��, where q1q2
=Q1Q2��h ,�� and the actual value of the charges
Q1=−Q2 is independent of the angle � that the line connect-
ing the poles makes with the x axis. In this case, the aniso-
tropy of the interaction �coming from the background� is
implicitly considered in the function ��h ,�� but its complete
expression was not evaluated here. Since ��h1 ,�� tends to be
a constant �independent of �, we set ��h1 ,��=1 and so, only
around the ice regime �i.e., h�h1� the interaction tends to be
isotropic. Thus we can find the genuine strength of the
magnetic charge in this artificial compound as being
Q1= �	4
�q�h1�� /	0� �1.95 	 /a, where we have used
�q�h1��=3.8 Da. Just for effect of comparison, using some
parameters of Ref. 9 such as a=320 nm, we get a charge
value which is about 80 times larger than the typical value
found for the original 3d spin ices1 �or about 100 times
smaller than the Dirac fundamental charge�. Besides its an-
isotropy, another interesting fact about the Coulombic inter-
action in the artificial compounds is that it jumps at
h=h1. Indeed, at this point, q abruptly changes from
q��−3.8 Da to q��−3.4 Da when the linear path is taken
into account. Such a discontinuity may be attributed to the

FIG. 5. �Color online� Three of the four basic shortest strings
used in the separation process of the magnetic charges. Pictures �1�
and �2� exhibit strings 1 and 2, respectively, used for
h�h1=0.444a. The red circle is the positive charge �north pole�
while the blue circle is the negative �south pole�. For h�h1 the
ground state is GS2 and we used a linear string path �not shown
above� and a diagonal path �picture �3��.
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FIG. 6. �Color online� The monopole charge q �see Eq. �2��
obtained analyzing the energy in the separation process of the
charges for the two string shapes shown in Fig. 5 for h�h1. When
h�h1, the charges variation is shown for a linear and diagonal
string paths. Here, q is in units of Da while h in units of a. Note
how the anisotropy of the monopole interaction decreases consider-
ably as h→h1 from below.
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ground-state transition and that above GS2 the Coulombic
interaction between a pair somewhat incorporates the re-
sidual magnetization stored in each vertex. On the other
hand, keeping a diagonal separation of the monopoles along
the ground-state transition, the magnetic charge parameter q
increases almost continuously.

How the string tension b depends upon h is shown in Fig.
7. Note that while GS1 is the ground state �h�h1�, b dimin-
ishes as h increases. At higher heights, and being evaluated
over GS2, the tension remains a nonvanishing small constant
for linear path and turns back to increase for diagonal sepa-
ration �path 3�. In general, since b is also a function of �
�i.e., b�h ,���, it is more favorable energetically that a pole
and its antipole reside at the same line in the array. It should
be remarked that, near the ice regime, b�h1 ,�� is almost
independent of � �almost isotropic limit� and its value is
reduced around 20 times whenever this modified system is
compared to its counterpart at h=0 �at zero temperature�. In
principle, this result indicates that free monopoles do not
appear in this system. Then, the modified array16 faces a
small obstacle by the fact that the islands are placed in such
a way that the spins cannot point to the center of a tetrahe-
dron as they do in the 3d materials. Indeed, as pointed out
before, the spins in the artificial compound point along its
edges �see Fig. 2�; the islands are rigid objects that do permit
the spins to point only along their longest axis. This disparity
causes an ordering in the artificial material, which diminishes
as h increases; eventually it becomes tiny but persists at
h=h1. This persistent ordering contributes for the residual
string tension at the ice regime and also for the different
string tension values as the monopoles are located at differ-
ent angular positions in the array. Such a difficulty may be
overcome when one takes the limit l→a in the modified
array. As pointed out in Ref. 10, the mechanism responsible
for the equivalence between the artificial �2d� and natural 3d
spin ices is not operational in d=2, as it requires also the
dimensionality of the dipolar interaction to coincide with that
of the underlying lattice. Here, we have a d=3 dipolar �1 /r3�
and Coulombic �“monopolar,” 1 /R� interactions in a two-
dimensional array. Independent of this since the state GS1 is
metastable one could imagine if the excitations could be con-
sidered to lie in GS1 for h slightly greater than h1. In this

case the extrapolation of our results indicate that the string
tension may vanish at h�0.502a �see Fig. 7�.

III. SUMMARY

In summary, we have investigated the energetics of the
modified artificial spin ice expressing several quantities, such
as ground-states energy, magnetic charges and string tension,
as a function of the height offset h. Our analysis show that
the ground-state changes from an ordered antiferromagnetic
to a ferromagnetic one at h=h1�0.444a, which is in good
agreement with the value obtained in Refs. 10 and 16,
hice�0.419a. We claim that such a small difference comes
about from the fact that in these cited works, authors as-
sumed equal nearest-neighbor and next-nearest-neighbor in-
teractions, whereas we have taken all the dipole interactions
into account. For the excitations above the ground state we
have found that the magnetic charges interact through the
Coulomb potential added by a linear confining term with
tension b�h� which decreases rapidly as h increases from 0 to
h1, assuming a nonvanishing constant value at higher h. Ac-
tually, the system presents an anisotropy that manifests itself
in both the Coulombic and linear interactions and it tends to
diminish as h increases, almost disappearing at h=h1. The
source of this anisotropy is a residual ordering, which still
persists even in the ice regime �at h=h1 for pointlike di-
poles�. Ordering and anisotropy may disappear completely in
the ideal limit l→a and h→0. Another interesting result is
that the magnetic charge jumps, depending on the direction
in which the monopoles are separated, as the system under-
goes a transition in its ground state. For a separation of the
monopoles, vertex by vertex, along the same line of vertices,
which is possible only for the GS2 ground state, the coupling
q exhibits considerably discontinuity in relation to its limit
value in the GS1 ground state. On the other hand, it tends to
grow up continuously for the diagonal path along the transi-
tion. Although the residual ordering leads to a confining sce-
nario for monopoles, its very small strength, whenever
h�h1, signalizes a significant tendency of monopole-pair
unbinding at a critical �optimal� height offset, even at zero
temperature. Further improvements in model �1�, for in-
stance, taking the actual finite size of the dipoles into con-
sideration could shed some extra light to this issue. Addition-
ally, temperature effects may also facilitate the conditions for
free monopoles. Indeed, the string configurational entropy is
also proportional to the string size and therefore, at a critical
temperature,14 on the order of ba, the monopoles may be-
come free. In view of that, for small b, the monopoles should
be found unbind at very low temperatures. As a final remark
we would like to stress that these results show that the back-
ground configuration of spins has a deep effect in the charges
interactions, being responsible for the string tension,
anisotropies and a kind of screening of the charges.
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