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Abstract. We investigate the thermodynamics of artificial square spin ice
systems assuming only dipolar interactions among the islands that compose
the array. Emphasis is given to the effects of temperature on elementary
excitations (magnetic monopoles and their strings). By using Monte Carlo
techniques we calculate the specific heat, the density of poles and their average
separation as functions of temperature. The specific heat and average separation
between monopoles with opposite charges exhibit a sharp peak and a local
maximum, respectively, at the same temperature, Tp ≈ 7.2D/kB (here, D is
the strength of the dipolar interaction and kB the Boltzmann constant). When
the lattice size is increased, the amplitude of these features also increases
but very slowly. Really, the specific heat and the maximum of the average
separation dmax between oppositely charged monopoles increase logarithmically
with system size, indicating that completely isolated charges could be found
only at the thermodynamic limit. In general, the results obtained here suggest
that, for temperatures T > Tp, these systems may exhibit a phase with separated
monopoles, although the quantity dmax should not be larger than a few lattice
spacings for viable artificial materials.
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1. Introduction

New methods of exploring geometric frustrations in magnetic systems have recently
been developed. Such methods consist in creating arrays of nanomagnets designed to
resemble the disordered magnetic state known as spin ice. They are essentially composed
of lithographically defined two-dimensional (2D) ferromagnetic nanostructures (elongated
permalloy nanoparticles) with single-domain elements organized in diverse types of geometries
(square lattice [1], hexagonal, brickwork [2], kagome [3, 4], etc). Since their geometries
are determined lithographically, lattice symmetry and topology can be directly controlled,
allowing experimental investigation of a large set of important theoretical models of statistical
physics [5]. These artificial magnetic compounds have the potential for increasing our
understanding of disordered matter and may also lead to new technologies. Therefore, artificial
spin ices are the object of intensive theoretical and experimental investigations [1–4, 6–14].

The trouble is that, in artificial spin ice patterns, the magnetization is unaffected by thermal
fluctuations because the magnetic islands contain a large number of spins. Despite the fact
that the moment configuration is athermal, these artificial materials can be described through
an effective thermodynamics formalism [15, 16]; in addition, some works have introduced a
predictive notion of effective temperature [7, 16]. For instance, an external drive, in the form
of an agitating magnetic field, behaves as a thermal bath and controls the temperature [7, 16].
Alternatively, this problem was addressed very recently by using a material with an ordering
temperature near room temperature [17]; such an experimental work on a square lattice in an
external magnetic field confirms a dynamical ‘pre-melting’ of the artificial spin ice structure at
a temperature well below the intrinsic ordering temperature of the island material, creating a
spin ice array that has real thermal dynamics of the artificial spins over an extended temperature
range [17]. These findings and other future possibilities make it evident that a more detailed
analysis of the effects of thermal fluctuations on a lower-dimensional spin ice material should
be of great interest for a better understanding of these frustrated systems. In particular, it would
also be important to know the role of elementary excitations in the thermodynamic properties
of artificial magnetic ices.

The main aim of this work is to perform such an investigation. We are interested in the
temperature effect on the excitations (‘magnetic monopole defects’ and their strings). Actually,
since the prediction of monopoles in the usual 3D spin ice materials [18] and their experimental
detection [19–23], the search for these objects in artificial compounds has become an important
issue [3, 8, 10, 11]. The possible existence of these excitations in artificial and controllable
systems is of great interest because they could be studied at room temperature and, more
important, they could be directly observed with modern experimental techniques. Curiously,
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in the case of artificial systems, while the square lattice was the first to be produced [1], the
direct observation of magnetic monopole defects and their motion was first accomplished in
a kagome geometry [3]. Still, in this kagome lattice, a direct, real-space observation of the
interplay between strings and monopoles was reported by Mengotti et al [4]. For a square lattice,
the direct observation of such excitations came only afterwards because there was a primary
experimental problem: until last year, none of these systems had achieved its ground state
through thermodynamic equilibrium [13]. Despite predictions [6, 8, 9], until recently, studies
have not shown a long-range ordered configuration, perhaps because researchers have used
only non-thermal methods to randomize the array. This problem was experimentally solved by
Morgan et al [10]. These authors have reported that by allowing the magnetic islands to interact
as they are gradually formed at room temperature, the artificial square spin ice can be effectively
thermalized, allowing it to find its predicted ground state very closely; thus, they could also
identify the small departures from the ground state as elementary excitations of the system, at
frequencies that follow a Boltzmann law. Subsequently, magnetic force microscopy images of
a large number of isolated excitations with their string shapes and corresponding moment flip
maps were described in square lattices [10]. Therefore, the experimental results considering
magnetic artificial square ices obtained in [10] (which demonstrates the thermal ground-state
ordering and the elementary excitations) and [17] (which achieves a thermodynamic melting
transition by using a material with ordering temperature near room temperature) lead us to
think that more progress in the development of such arrays may become available in the near
future, establishing opportunities to experimentally elucidate their real thermodynamics.

2. The model and outlook

Here, we consider an arrangement of dipoles similar to that experimentally investigated in [1].
In our approach, however, the magnetic moment (‘spin’) of the island is replaced by an Ising-
like point dipole at its center. In this approach, the internal degrees of freedom of each island
are not being considered, as well as higher-order interactions. We expect that this simplification
does not significantly change the main physical properties of the system. As shown in [24], if
the lattice spacing is about twice as large as the island’s longest axis, the effect of higher order
interactions is negligible. For smaller lattice spacings the effect of higher order interactions is
to give more stability to the lowest energy states. In this way one may expect that as the island
size increases, approaching the lattice spacing, the ground state should be more robust and
the appearance of excitations would cost more energy. While the consideration of the internal
degrees of freedom would reduce the energy scale, the consideration of higher order interactions
would increase it, but none of them are expected to change the physical picture discussed
here. Thus, in our approach, at each site (xi , yi) of the square lattice two spin variables are
defined: ESx(i) with components Sx = ±1, Sy = 0, Sz = 0 located at Erx = (xi + 1/2, yi) and ESy(i)

with components Sx = 0, Sy = ±1, Sz = 0 located at Ery = (xi , yi + 1/2). Therefore, in a lattice
of volume L2

= l2a2 (a is the lattice spacing) one gets 2 × l2 spins. Representing the spins of
the islands by ESi , which can assume either ESx(i) or ESy(i), then the artificial spin ice is described
by the following Hamiltonian:

HSI = Da3
∑
i 6= j

[
ESi · ES j

r 3
i j

−
3(ESi · Eri j)(ES j · Eri j)

r 5
i j

]
, (1)
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where D = µ0µ
2/4πa3 is the coupling constant of the dipolar interaction. We use standard

Monte Carlo techniques to obtain thermodynamic averages of the system defined by
Hamiltonian (1). Periodic boundary conditions were implemented by means of the Ewald
summation [25, 26], used here to avoid spurious results brought about by the use of a cutoff
radius [27]. Our Monte Carlo procedure comprises a combination of single-spin flips and loop
moves [28], where all spins contained in a closed random loop are flipped according to the
Metropolis prescription. In our scheme one Monte Carlo step (MCS) consists of 2 × l2 single-
spin flips and 0.7 × l2 worm moves. Usually, 104 MCS were shown to be sufficient to reach
equilibrium configurations and we have used 105 configurations to get thermodynamic averages.

Before presenting the Monte Carlo calculations, it would be interesting to remark on
some previous results [8, 9, 11] and some expectations for these arrays. The ground-state
configuration of the system in a square lattice is twofold degenerate. If one considers the
vorticity in each plaquette, assigning a variable σ = +1 and −1 to clockwise and anticlockwise
vorticities, respectively, the ground state looks like a checkerboard, with an antiferromagnetic
(AF) arrangement of the σ variable [8, 10]. Of course, the ground state clearly obeys the ice
rule (two spins point inward and two point outward in each vertex), but with configurations
of topology 1 (in 2D, there are two topologies that obey the ice rule. However, they are not
degenerate and topology 2 is more energetic than topology 1; see [1, 8] for more details).
The most elementary excitation is related to the inversion of a single spin (dipole) to generate
a localized pair of defects. This is the 3-in, 1-out state in a particular vertex and the 3-out,
1-in state in its adjacent vertex. In principle, these defects could be separated without further
violation of the ice rule. Indeed, in our previous papers [8, 9], we have numerically shown that
these defects behave as a monopole pair since their interaction follows a d = 3 Coulomb law
q/R, where q measures the strength of the interaction and R is the distance between the poles.
However, we have also pointed out that an isolated monopole should be hard to see as effective
low-energy degrees of freedom in the 2D square spin ice, because the background AF order in
the ground state confines them [8], since the ice rule is not degenerate in 2D. Actually, in 2D,
there are additional excitations not present in the usual 3D spin ice [18], namely energetic 1D
strings of dipoles (resultant spins at each vertex along a line of adjacent vertices) that terminate
in monopoles with opposite charges. Such string excitations could be seen as lines which pass
by adjacent vertices that obey the ice rule but sustaining topology 2 (instead of topology 1) and
hence they cost an energy equal to b times their length X , where b is the string tension. When
the temperature T of the system is near absolute zero, the shortest path length connecting the
monopoles gives the potential energy. The most general expression for the total cost of a pair
of monopoles separated by a distance R is the sum of the usual Coulombic term roughly equal
to q/R and a term roughly equal to bX resulting from the string joining the monopoles (there
is, of course, also a constant term associated with the creation energy of a pair). Note that there
is not a unique identification of a given path connecting the ends (monopoles) of the excitation.
It is explicitly considered in the fact that the energy is proportional to X , which can assume
different values for a given R. For a sufficiently long string, the string energy is completely
dominant; for a short string the Coulomb interaction may have some importance if the size of
the end-point monopoles is even smaller (as always occurs for these systems). With the above
features, these excitations are, to some extent, more similar to Nambu monopoles [29] than to
Dirac monopoles. Really, as Nambu suggested, for a modified Dirac monopole theory, the string
connecting monopoles has energy and is oriented, having a sense of polarization [29].
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In the artificial square ices, the ordering causes an anisotropy in the system making the
monopoles interaction highly dependent on the direction in which the monopoles are separated
in the crystal plane [9]. This anisotropy is manifested in both the Coulomb and linear terms of
the potential in such a way that we explicitly write [9]

V (R) = q(φ)/R + b(φ)X + c, (2)

where φ is the angle that the line joining the monopole defects makes with the x-axis of the
array. Numerically, for instance, q(0) ≈ −3.88Da, b(0) ≈ 9.8D/a, while q(π/3) ≈ −4.1Da,
b(π/3) ≈ 10.1D/a. The constant c ≈ 23D, associated with the pair creation energy [9] (Ec ≈

29D), is independent of φ. Similar results can be found in the experimental work for the
square lattice. Indeed, in [10], the authors have found that, at a temperature T , these excitations
arise in the system according to the Boltzmann law ∼ exp(−βV (R)) with b ≈ 10D/a, V (a) =

Ec ≈ 30D and β = 1/kBT , where kB is the Boltzmann constant. They have also classified the
elementary excitations by the number of flipped spins (given by n) and a mnemonic character
for shape. The three most observed defects are represented by 1 (a single pair with charges
separated by only one lattice spacing) followed by 2L (a pair with n = 2 with the shape of L)
and 4O (an isolated string loop with no charges and having n = 4 flipped spins) [10]. Curiously,
the second excited state should be 4O since its energy is smaller than the energy of the 2L
defect.

In principle, for the thermodynamics of these systems, the following argument should
be valid: at low temperatures, there is insufficient thermal energy to create long strings (with
length X larger than one lattice spacing) and so the monopoles (with opposite charges) are
bound together tightly in pairs. On the other hand, as the temperature is increased, the average
separation between the constituents of a pair should also increase, which means that larger
strings may become present in the system. Of course, there are several ways of connecting two
monopoles by a string of length X . Therefore, considering states with X � R, we remember
then that the number of configurations for the m-step self-avoiding random walk is N = δm ,
where δ is a constant and equal to 3 for a 2D square lattice. For a string with a sufficiently
large X , N is well approximated by the random walk result and one obtains N ' δX/a. So
the entropy of strings is proportional to X , i.e. the many possible ways of connecting two
monopoles with a string give rise to a string configurational entropy proportional to X . Crudely
speaking, then, the string free energy F = [b − (ln 3)kBT/a]X will imply an effective string
tension [b − (ln 3)kBT/a] which is positive in the low temperature region and the monopoles
are completely confined. Above a certain temperature, it becomes negative; namely, the string
loses its tension. The tension decreases like [b − (ln 3)kBT/a] with increasing T , vanishing
at some critical temperature kBTc ≈ ba/ln 3. Using the average value for the string tension in
equation (2), i.e. b ≈ 10D/a, we then estimate that kBTc ≈ 9.1D. Of course, these theoretical
arguments always overestimate the critical temperature. Although this picture leads to rich
physics for this system, predicting free magnetic monopoles and a phase transition, things
may be a little more complicated. Really, additionally to the entropic effect discussed just
above, there is another entropic contribution which manifests against monopole separation; the
monopoles should become close together because it would provide more ways of arranging
the surrounding dipoles in the lattice. Such an effect introduces a 2D Coulombic interaction
between the poles, which is proportional to T (i.e. Vs = T ln(R/a)). If the temperature at
which the string loses its tension is high enough, of the order of 9.1D as estimated, then,
around this value of T , the confining potential Vs must be very strong, possibly preventing
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Figure 1. Specific heat as a function of temperature. The figure exhibits a sharp
peak at a temperature Tp ∼ 7.2D/kB, at which the amplitude increases very
slowly with system size L . Inset: the specific heat peak diverges logarithmically
with system size L .

freedom of the poles. With all these expectations, it would be important to investigate how the
elementary excitations behave as a function of temperature. Our calculations are a first step in
this direction.

3. Results

We now present the results of Monte Carlo simulations. The calculations shown here are for
lattices with sizes 10, 20, 30, 40, 50, 60 and 70 lattice spacings, but in all figures we present
only the results for lattice sizes 40, 60 and 70. We start by presenting the results for the specific
heat (see figure 1). We note that, for all lattice sizes studied, the specific heat exhibits a sharp
feature at a temperature Tp approximately equal to 7.2D/kB. Indeed, the position of this peak
does not seem to move as the lattice size L is varied. On the other hand, its amplitude Cmax

increases very slowly as L increases. In the inset of figure 1, we show how Cmax behaves with
L . Therefore, with the obtained data we expect a logarithmic divergence of the specific heat in
the thermodynamic limit. We also analyzed the pair density and the average separation between
monopoles with opposite charges as a function of T . It is useful here to distinguish two types
of monopoles: the less energetic ones in which the spins (in a vertex) are in the 3-in, 1-out or
3-out, 1-in states (here referred to as unit-charged monopoles) and the most energetic ones in
which the spins are in the 4-in or 4-out states (doubly charged monopoles). Figure 2 shows the
density of pairs containing monopoles with unitary charge (ρS) and also the density of pairs
containing doubly charged monopoles (ρD, see the inset). They are calculated as one-half of
the thermodynamic average of the absolute value of the charge (±1) and (±2), respectively,
summed over the lattice. For both cases, the density increases monotonically up to a maximum
value achieved in the high-temperature limit.

The size of the monopole pairs constitutes an internal degree of freedom, since the energy
of a pair depends on the distance between the members of the pair. Here we would like to
know the average distance rM between two opposite poles as a function of temperature. Such a
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Figure 2. The density of pairs of unit-charged monopoles as a function of
temperature. Inset: the density of doubly charged monopole pairs.
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Figure 3. The average separation between charges exhibits a maximum around
the same temperature Tp at which the specific heat has a sharp feature. The inset
shows, in more detail, the region around the maximum.

thermodynamic quantity may contain information about the possibility of monopole separation
and how they are organized into the system. For this calculation we consider only defects with
unitary charges. The grouping of monopoles into pairs is unique as long as the distances between
them are smaller than the average distance between the monopoles rM = 1/

√
ρS. As the size of

the monopole pairs becomes larger than rM, one would simply have to redefine the monopole
pairs. The average size rM of the monopole pairs is calculated by using the method of assignment
problems; it deals with the question of how to assign n items (jobs, students) to n other items
(machines, tasks) [30]. In our case, we would like to assign n positive charges to n negative
charges for a given configuration in such a way that the sum of distances of all possible pairings
be a minimum. The results are shown in figure 3. The average separation has a local maximum
at the same temperature Tp at which the specific heat exhibits a peak (∼7.2D/kB). We note that
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Figure 4. The maximum of the average separation dmax between opposite charges
increases logarithmically with the system size L .

the amplitude of this maximum increases slowly as the system size increases. Indeed, like the
specific heat peak, the maximum in the average separation dmax also increases logarithmically
with the system size L (dmax ∝ ln L , see figure 4) and hence one could expect that a certain
number of monopoles may be almost isolated for very large arrays. Indeed, in our simulations
for temperatures T > Tp considering lattices with L 6 80a, we could observe some charges
relatively distant from their respective counterparts (separated by distances of the order of 5a).
For instance, we show in figure 5 a distribution of positive (red circles) and negative (black
circles) monopoles in a small lattice with L = 10a observed in our simulations for a temperature
T = 6.0D/kB (i.e. below Tp). Note that there are a very few excitations and all monopoles with
opposite charges are coupled by a string, forming pairs. On the other hand, figure 6 shows the
same system for a temperature above Tp (T = 7.6D/kB). In this case, we see that a small number
of monopoles are not connected by strings. In principle, they are free, although some of them
are not completely isolated (i.e. far away from other opposite poles). Furthermore, we also note
that some strings seem to be detached, not terminating in monopoles; there are a few pieces of
string dispersed along the system (as stated before, strings could be seen as lines which pass
by adjacent vertices that obey the ice rule but sustaining topology 2 rather than topology 1).
Of course, these figures exhibit only samples from a large number of data, but most of the data
should be similar to the features of figure 5 for the regime of low temperatures and the features of
figure 6 for the regime of high temperatures. Things must be clearer in the thermodynamic limit;
in this case, some monopoles should become infinitely separated from their counterparts for
temperatures T > 7.2D/kB. However, as the temperature is increased from zero, the monopole
pair density grows simultaneously with an increase in pair size (see also figure 2). As the
pairs become denser, there is less space to put in new pairs and hence the average pair size rM

decreases for high temperatures. Really, we observe that, for T < Tp, the average separation rM

does not depend on the lattice size L , while for T > Tp, this quantity has a tiny dependence on L
(at least in the range 7.2D/kB < T < 12D/kB). In this case, it is possible that monopoles may
become completely isolated even for high temperatures (T > Tp) when L → ∞. This picture
for infinite systems corroborates the theoretical expectations for the existence of a phase with
free monopoles [8] in large 2D artificial square ices, but the transition temperature (∼7.2D/kB)
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Figure 5. Snapshot of a particular configuration of excitations for a temperature
T = 6.0D/kB in a lattice with L = 10a. Red and black circles are positive
and negative charges, respectively. In general, for all temperatures below Tp,
each monopole is clearly confined to its counterpart by a string (see the blue
arrow indicating the direction of the string for the larger pair). Small pairs (i.e.
monopoles bound together tightly in pairs) are indicated by a green arrow.

should be a little smaller than the estimated value ∼9.1D/kB discussed earlier (remember that
the arguments of energy-entropy, in general, overestimate the correct quantity).

We have also calculated the density of string loops 4O , which is the defect with no charge
but having the second lowest energy (second excited state). Like the specific heat and the
average separation, the density of defects 4O also displays a feature at Tp (see figure 7). Note
that the string loops 4O almost do not appear in the system for temperatures smaller than Tp.
Indeed, they surge suddenly at Tp and then, for temperatures above Tp, their number starts to
decrease while the density of monopole pairs starts to increase more appreciable. Figures 8
and 9 show typical distributions of defects 4O in the system for temperatures below and above
Tp, respectively.

4. Discussion

In summary, assuming the spin–spin interaction to be purely dipole–dipole, we note that, at
a temperature Tp, there is a maximum in the mean separation of opposite monopoles that
increases logarithmically with the system size L (dmax ∝ ln L). Hence, the distance between
monopoles with opposite charges in the thermodynamic limit (L → ∞) should diverge weakly,
suggesting a possible unbinding of monopole pairs (T < Tp) into ‘free’ monopoles (T > Tp).
However, to the authors’ knowledge, for a finite monopole density there is no diagnostic for
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Figure 6. Snapshot of a particular configuration of excitations for a temperature
T = 7.6D/kB in a lattice with L = 10a. Red and black circles are positive and
negative charges, respectively. For a temperature above Tp, a small number
of monopoles do not have a string connecting them to their counterparts and
therefore seem to be isolated. There are also some pieces of strings (i.e. 1D
regions obeying topology 2, as indicated by blue paths) that do not connect
monopoles. Small pairs are indicated by a green arrow.

(de)confinement based on a pair distribution function, for reasons analogous to the failure
of the Wilson loop (which only knows perimeter laws in the presence of dynamical matter)
to diagnose deconfinement in gauge theories. Indeed, from the three approaches that have
been used to measure the static potential associated with the breaking of a long flux tube
between two quarks in quantum chromodynamics (i.e. correlation of Polyakov loops, variational
ansatz and Wilson loops), string breaking has been seen only using the first two methods.
On the other hand, the divergence found in rM could be understood in two different ways.
It may be associated with either a vanishing string tension (which would lead to effectively
free poles) or simply the fact that in an order–disorder transition the correlation length
(which is the only characteristic length of the system) diverges at the critical temperature.
In this case, since the mean distance should be given in terms of the correlation length, it
should also diverge. Of course, these two distinct ways of describing the system are closely
related. We are faced thus with the question of the existence or not of a phase transition
in this system. If there is a phase transition, another question arises: what is its nature?
It is worthy of note at this point [31] that, although this system is closely related to the
16-vertex model, for which an exact solution is known, the range and symmetry of the
interactions differ and thus we do not expect to observe the same critical behavior. Nevertheless,
one point that deserves remark is the possible similarities between this system and the Ising
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Figure 7. The density of string loops and of pairs with opposite charge as a
function of temperature. The density of string loops 4O (ρO) also exhibits a
maximum around the temperature Tp ' 7.2D (green balls). This defect carries
no charge and is the second excited state. Just for comparison, the density of
pairs with opposite charges (ρs) is also shown (red balls).

Figure 8. A typical configuration of string loops of the type 4O for a temperature
below Tp (here, T = 6D/kB). At Tp, the number of 4O excitations proliferates in
such a way that a percolated cluster seems to be formed. The figure also shows
the pairs of monopoles.
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Figure 9. A typical configuration of string loops of the type 4O for a temperature
above Tp (here, T = 8D/kB). The figure also shows the pairs of monopoles.

model. In the two degenerate ground states, the σ variables, related to the vorticity of each
plaquette, can be seem as the spins of an AF Ising model. In the AF Ising model, as the
temperature rises, clusters of flipped spins are found in the system and at the critical temperature
one can find percolated clusters of spins. If there are some similarities between these systems
one may expect thus that the 4O excitations, which can be viewed as flipped σ variables, form
clusters at low temperature that percolate at the critical temperature, justifying the increasing
number of these excitations at the transition temperature. This picture is corroborated by
the logarithmic divergence of the specific heat. Unfortunately, our results are not conclusive
about the possibility of a phase transition, and much more work has to be done in order to
answer this question. To try to throw some extra light on the topic, we have also performed
some calculations restricting the islands interaction to nearest neighbors converging in the
same vertex, which would lead to a kind of generalized 2D Ising system with the same
ground state. Nevertheless, we found that the vertices with topology 3, in the 3-in/1-out and
3-out/1-in states, remain connected by strings (but now there is no Coulomb interaction
anymore). The interaction energy between two opposite vertices in topology 3 (type III vertices)
is given by bI X + cI, where bI = 26D/a and cI = 34D, much bigger than the usual results
obtained for the long-range dipolar interaction. Since the string tension persists, the arguments
associated with the string configurational entropy should remain valid and again we have the
same problem as before (but with different energetics; for instance, the value of the temperature
at which the quantities show a maximum changes to 16D/kB). Indeed, the specific heat, the
average separation between opposite type III vertices, etc, show the same behavior as that found
for the system with long-range dipolar interaction (not shown here).
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From the practical point of view, the divergence in rM in the thermodynamic limit,
and thus the phase of large separation among monopoles, should not be expected in finite
systems. Due to the slow logarithmic divergence, the extrapolation of our results to a 2D lattice
containing Avogadro’s number (N 2/3

a = 1016
= 108

× 108) of islands will imply dmax ∼ 2.5a
only. On the other hand, even with small values for dmax, some monopoles may become
isolated for temperatures near 7.2D (see figure 6). The challenge of building arrays using
new materials (with an ordering temperature near room temperature) and/or with reduced
island volume and moment (and possibly with larger L) should thus be an important issue
in technological applications. Indeed, it concerns the excitation evolution in these artificial
compounds. These developments may experimentally determine the possibility of monopole
dynamics, their lifetimes and so on. For instance, on the basis of only the average separation
results, we speculate that near the temperature Tp, the annihilation process of monopoles
(without strings) will more probably occur in small arrays than in large arrays, because the
mean separation between such opposite charges increases with system size.
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