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Abstract
In this work we have used extensive Monte Carlo simulations and finite size scaling theory to
study the phase transition in the dipolar planar rotator model (dPRM), also known as dipolar
XY model. The true long-range character of the dipolar interactions was taken into account by
using the Ewald summation technique. Our results for the critical exponents do not fit those
from known universality classes. We observed that the specific heat is apparently non-divergent
and the critical exponents are ν = 1.277(2), β = 0.2065(4) and γ = 2.218(5). The critical
temperature was found to be Tc = 1.201(1). Our results are clearly distinct from those of a
recent renormalization group study from Maier and Schwabl (2004 Phys. Rev. B 70 134430)
and agrees with the results from a previous study of the anisotropic Heisenberg model with
dipolar interactions in a bilayer system using a cut-off in the dipolar interactions (Mól and
Costa 2009 Phys. Rev. B 79 054404).

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The planar rotator model (PRM) in two dimensions, also
known as the XY model, is known to have a critical line
in the low temperature region [1–3]. The PRM is described
by the following Hamiltonian: H = −J

∑
〈i, j〉 �Si · �Sj =

−J
∑

〈i, j〉(Sx
i Sx

j +Sy
i Sy

j ), where �Si is a two-dimensional vector
(Sx

i , Sy
i ) defined in the sites i of a two-dimensional lattice

and 〈i, j〉 means that the summation is to be evaluated for
nearest neighbor sites. As a prototype the PRM is expected
to describe the magnetic properties of ferromagnetic thin films
where the spins lie in the film plane. Although very simple,
this model presents some unusual characteristics, such as the
absence of spontaneous magnetization for any T > 0, which is
a consequence of the Mermin and Wagner theorem [4]. Thus,
the system cannot have a phase transition of the order–disorder
type; nevertheless, there is still a phase transition in the model
characterized by a change in the spin–spin correlation function
behavior. An algebraic decay of the correlation function
is observed below a characteristic temperature, TBKT, above
which the decay is exponential. Besides that, the correlation

length is expected to diverge exponentially as long as TBKT

is approached from above, i.e. ξ(r) ∼ a exp (b/
√

T − TBKT)

for T > TBKT, while it remains infinity for any T < TBKT.
This transition is called the Berezinskii–Kosterlitz–Thouless
(BKT) phase transition [2, 3]. Several works, analytical as
well as numerical, dealing with the subject have been published
since the seminal work of Berezinskii and Kosterlitz and
Thouless [5–9]. Besides that, it is also observed that the
specific heat does not diverge; instead, it has a broad maximum
at a temperature slightly higher than TBKT [10–13]. There are
two interpretations for the mechanism leading to this transition:
Berezinskii [2] and Kosterlitz and Thouless [3] assume that
it is driven by a vortex–anti-vortex unbinding mechanism,
while Patrascioiu and Seiler [14] were able to obtain the
critical temperature and predicted the existence of a phase
transition in the Coulomb gas in any dimension (d > 1) by
considering that the mechanism responsible for the transition is
a polymerization of domain walls. (As a matter of unification
of terminology we use in this paper the label BKT for this kind
of transition.)

However, in order to achieve a deeper insight into the
magnetic properties of thin films, one has to include dipolar
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interactions between the magnetic moments of the lattice. This
inclusion changes the scenario drastically, as discussed by
Maleev [15]. The long-range dipolar interactions stabilize
the magnetization at low temperatures in such a way that
an order–disorder phase transition is now expected to take
place. In a recent paper, Maier and Schwabl [16] analyzed the
phase transition in the dipolar planar rotator model (dPRM)
by using renormalization group techniques. Their results
indicate that the dPRM belongs to a new universality class
characterized by an exponential behavior of the magnetization,
susceptibility and correlation length. Besides that, the specific
heat was found to be non-divergent, as occurs in the BKT phase
transition. In this work, we have used extensive Monte Carlo
simulations to study phase transition in the dPRM. Our results
clearly indicate that the transition is of the order–disorder
type and is characterized by a non-divergent specific heat and
unusual critical exponents.

2. Dipolar planar rotator model and the Monte Carlo
method

The model we are interested in consists of a square lattice with
dimension L×L. At each site we place a classical spin variable
�Si = (Sx

i , Sy
i ) with �S2

i = 1. The interactions are defined by the
following Hamiltonian:

H = −J
∑

〈i, j〉
�Si · �Sj + D

∑

i �= j

[ �Si · �Sj

r 3
i j

− 3(�Si · �ri j )(�Sj · �ri j )

r 5
i j

]

.

(1)
Here, J > 0 defines a ferromagnetic exchange constant
and D is the dipolar constant. �ri j connects sites i and
j while 〈i, j〉 means that the first summation is evaluated
for nearest neighbors only. For the dipolar interactions the
summation is evaluated over all pairs i �= j . Periodic
boundary conditions have been used in the film plane (x and
y directions) while open boundary conditions were applied in
the z direction. Ewald summation techniques [17, 18] have
been used to take into account the true long-range character of
the dipolar interactions3. In all simulations we have assumed
J = 1 and D = 0.1 and for these values only ferromagnetic
configurations were found in the low temperature regime.
In this work the energy is measured in units of J S2 and
temperature in units of J S2/kB.

Our Monte Carlo procedure consists of a simple
Metropolis algorithm [19, 20] where one Monte Carlo step
(MCS) consists of an attempt to assign a new random direction
to each spin in the lattice. To equilibrate the system we have
used 100 × L2 MCSs which has been found to be sufficient
to reach equilibrium, even in the vicinity of the transition. In
our scheme, two sets of simulations have been performed. In
the first one, we preliminarily explored the thermodynamic
behavior of the model in order to estimate the position of
the maxima of the specific heat and susceptibilities and the
crossings of the fourth order Binder cumulant. In this first
approach we used lattice sizes in the interval 20 � L � 50.

3 The Ewald summation allows one to evaluate the dipolar energy without
cutoffs, and details about this method can be found in [17, 18].

Once the possible transition temperature is determined, we
refined the results by using single and multiple histogram
methods [21, 22]. We produced the histograms for each lattice
size in the interval 20 � L � 120 and they were built
at/close to the estimated critical temperatures corresponding to
the maxima and/or crossing points obtained in step 1. Details
of the histogram techniques can be found in [21, 22].

3. Thermodynamic quantities and finite size scaling
theory

We have devoted our efforts to determine a number
of thermodynamic quantities, namely the specific heat,
magnetization, susceptibility, fourth order Binder cumulant
and moments of magnetization as described below. The
specific heat is defined as

cv = 〈E2〉 − 〈E〉2

NkBT 2
, (2)

where E is the internal energy of the system (computed using
equation (1)) and N = L2 is the lattice volume. The
magnetization is

M = 1

N
〈m〉, (3)

where

m =
√
√
√
√

( N∑

i=1

Sx
i

)2

+
( N∑

i=1

Sy
i

)2

. (4)

The susceptibility is defined by the magnetization fluctuations
as

χxy = 〈m2〉 − 〈m〉2

NkBT
. (5)

The fourth order Binder cumulant reads

U4 = 1 − 〈m4〉
3〈m2〉2

. (6)

In order to calculate the critical exponent ν, we also define the
following moments of the magnetization [23]:

V1 ≡ 4[m3] − 3[m4], (7a)

V2 ≡ 2[m2] − [m4], (7b)

V3 ≡ 3[m2] − 2[m3], (7c)

V4 ≡ (4[m] − [m4])/3, (7d)

V5 ≡ (3[m] − [m3])/2, (7e)

V6 ≡ 2[m] − [m2], (7 f )

where,

[mn] ≡ ln

∣
∣
∣
∣
∂〈mn〉
∂T

∣
∣
∣
∣. (8)

In critical phenomena the thermodynamic quantities are
expect to behave in the vicinity of the phase transition
as [20, 24, 25]

cv ∼ t−α (9a)

χ ∼ t−γ (9b)
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Figure 1. Log–log plot of the maxima of susceptibility as a function
of the lattice size for L = 20, 40, 80 and 120. The error bars are
shown inside the symbols. The straight line is the best linear fit
which gives the exponent γ /ν = 1.737(1).

M ∼ tβ (9c)

ξ ∼ t−ν , (9d)

where t = |T − Tc|/Tc is the reduced temperature, M is the
magnetization, ξ is the correlation length and α, β , γ and ν are
critical exponents. Although the critical temperature depends
on the details of the system under consideration, it is observed
that the critical exponents are universal, depending only on a
few fundamental factors [20, 24, 25]. The systems are thus
divided into a small number of universality classes. Systems
belonging to the same universality class share the same critical
exponents. Critical exponents are observed to depend only on
the spatial dimensionality of the system, the symmetry and
dimensionality of the order parameter, and the range of the
interactions within the system.

In a finite system like those used in Monte Carlo
simulations the divergences in the thermodynamic quantities
are replaced by smooth functions. Finite size effects are
therefore of great importance in the analysis of the results
of Monte Carlo simulations. The theory of finite size
scaling [20, 25] provides one way to extract information
concerning the thermodynamic limit properties from results
obtained in finite systems. The basic assumption of this theory
is that in the vicinity of the phase transition the finite size
effects should depend on the ratio between the linear dimension
of the system and the correlation length, say L/ξ . According
to such a theory, specific heat, susceptibility and magnetization
for a finite system, in the vicinity of the phase transition,
behave as

cv ≈ c∞(t) + Lα/νC(t L1/ν), (10a)

χ ≈ Lγ /νX (t L1/ν), (10b)

M ≈ L−β/νM(t L1/ν), (10c)

where M, X and C are proper derivatives of the free energy.
At Tc (t = 0) these functions are constants and the size
dependences of specific heat, susceptibility and magnetization
follow a pure power law. The size dependence of the pseudo-
critical temperature, Tc(L), is [20, 25]

Tc(L) = Tc + wL−1/ν , (11)

Figure 2. Specific heat maxima as a function of the lattice size. The
solid line is the best non-linear fit considering a logarithmic
divergence and the dashed line is the best fit considering a power law
divergence. The error bars are shown inside the symbols.

where Tc is the critical temperature in the thermodynamic limit.
Using the size dependence of the magnetization, equation (10),
and the definition of the moments of the magnetization in
equation (7), one can easily show that such functions behave
as

Vj ≈ (1/ν) ln L + V j (t L1/ν), (12)

for j = 1, 2, . . . , 6. At t = 0 the functions V j(t L1/ν)

are constants and then the curves for all Vj have the same
slope [23] providing a very precise method to determine both
the critical exponent ν and the critical temperature.

Concerning the fourth order Binder cumulant, it is
expected that its curves should cross at the same point U ∗ =
U(T = Tc) for large enough L. Besides that, its size
dependence is expected to obey [26]

U4 ≈ U4(t L1/ν). (13)

4. Results

In the following we show the results obtained by using the
histogram method. Each histogram consists of at least 3 × 107

configurations. In figure 1 we show a log–log plot of the
maxima of the susceptibility as a function of the lattice size
for L = 20, 40, 80 and 120. The data are very well adjusted
by a straight line with slope γ /ν = 1.737(1) exhibiting a
power law behavior. The specific heat maxima as a function
of the lattice size are shown in figure 2. In this figure, the solid
line represents the best non-linear adjustment of a logarithmic
divergence while the dashed one the best power law divergence
adjustment. It is clear that neither of these can adjust our
data satisfactorily. This result is similar to that obtained for
the PRM without dipolar interactions, and indicates a possible
non-divergent specific heat. In figure 3 we show the value of
1/ν for some temperatures obtained by using the moments of
the magnetization defined in equations (7) and (12). Using
this method we get T

Vj
c = 1.1982(18) and 1/ν = 0.74(2).
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Figure 3. Value of 1/ν obtained by linear fits of Vj versus ln(L) for
each value of j at different temperatures. Note that for T = 1.2000
the value of 1/ν is almost the same for all quantities.

Figure 4. Tc(L) versus L−1/ν . From a linear adjustment we get
T χ

c = 1.200 22(9) and T cv
c = 1.2150(3).

With the value of 1/ν we may estimate the critical temperature
using the finite size scaling properties of the maxima of the
susceptibility and specific heat (see equation (11)). In figure 4
we show a plot of Tc(L) as a function of L−1/ν . We obtain
T χ

c = 1.200 22(9) and T cv
c = 1.2150(3). Using the crossing

points of the fourth order Binder cumulant [26] (see figure 5)
we estimate the critical temperature T U4

c = 1.203(1). Our best
value for the critical temperature is thus the mean value of
the previous estimates T U4

c , T
Vj

c and T χ
c discarding the value

obtained by finite size scaling of the specific heat, since its
behavior is apparently non-critical. This procedure gives Tc =
1.201(1). Plotting ln(Mxy) versus ln(L) at Tc it is possible
to obtain the exponent β/ν. From a linear adjustment we get
β/ν = 0.1617(2). In order to verify the validity of our results
we show in figures 6–8 the scaling plots of the susceptibility,
magnetization and fourth order Binder cumulant according to
their finite size scaling functions (see equation (10)). Note that
all figures show a very good collapse of the curves for different
lattice sizes.

Figure 5. Fourth order Binder cumulant. The critical temperature
was estimated by the crossing point of the largest lattice sizes as
being T U4

c = 1.203(1). Only a few error bars are shown for clarity.

Figure 6. Scaling plot of susceptibility. According to finite size
scaling theory [20, 25] the susceptibility is expected to behave as
χ ≈ Lγ/νX (t L1/ν). Note that the curves for different lattice sizes
collapse into a single curve. In the outer plot the scaling is done
using results from conventional Monte Carlo simulations (step 1) for
L = 20, 30, 40 and 50. The inset shows the scaling for the histogram
results (step 2 in our simulations) for L = 20, 40, 80, 120.

5. Discussion

In this work we have studied the phase transition in the
ferromagnetic dipolar planar rotator model (dPRM). Our
results indicate that the phase transition in this model is of
the order–disorder type and is characterized by the exponents
ν = 1.277(2), β = 0.2065(4) and γ = 2.218(5) and by a non-
divergent specific heat. Our results also indicate that the system
has long-range order at low temperatures. This conclusion
is based on the following facts: (i) the magnetization for
T < Tc does not display a significant decrease as the lattice
size is augmented, as for example has been found in Rapini’s
work [27] and as expected for a BKT phase transition; (ii) our
results are very well described by a finite size scaling theory
based on the existence of a low temperature phase with long-
range order and finite correlation length [20, 25]. In a
BKT phase transition there is no long-range order in the low

4
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Figure 7. Scaling plot of magnetization. According to finite size
scaling theory [20, 25] this quantity is expected to behave as
m ≈ L−β/νM(t L1/ν). Note that the curves for different lattice sizes
collapse into a single curve. In the outer plot the scaling is done
using results from conventional Monte Carlo simulations (step 1) for
L = 20, 30, 40 and 50. The inset shows the scaling for the histogram
results (step 2 in our simulations) for L = 20, 40, 80, 120.

temperature phase as a consequence of the Mermin–Wagner
theorem [4]. Indeed, the results of Maleev [15] predict the
existence of long-range order at low temperatures in the dPRM
and our results are consistent with this scenario.

As discussed earlier, recent results by Maier and
Schwabl [16] have predicted that this system may belong to
a new universality class, characterized by the presence of
long-range order at low temperatures and by an exponential
behavior of thermodynamic quantities in the vicinity of the
‘critical’ temperature. By an exponential divergence we mean
that the correlation length diverges as the ‘critical’ temperature
(Tc) is approached as ξ ∝ exp(b/

√
(T − Tc)), similar to

the behavior of the BKT phase transition, while the behavior
of other thermodynamic quantities are given by powers of
the correlation length. Nevertheless, our results for the
dPRM are very well described by power law divergences of
thermodynamic quantities. As can be seen in figures 6–8, we
obtained a very good collapse of the curves from different
lattice sizes for the susceptibility, magnetization and Binder
cumulant. These curves show that the critical exponents
obtained and the conventional finite size scaling theory, that
assumes a power law behavior of thermodynamic quantities,
describe the Monte Carlo data accurately, indicating that the
phase transition in the dPRM is a conventional order–disorder
phenomenon with unusual critical exponents. In order to
definitely rule out the possibility of this phase transition being
in the new universality class proposed by Maier and Schwabl,
we should make a comparison of our Monte Carlo results,
using a finite size scaling theory based in their predictions
and the conventional finite size scaling theory used here.
Unfortunately, it is not very clear in the literature how to obtain
a finite size scaling theory for exponential divergences. Using
a simple replacement of the correlation length by the lattice
size (in a manner similar to that made by Challa and Landau
in [28]), which should be the first choice, does not give a good

Figure 8. Scaling plot of the fourth order Binder cumulant.
According to finite size scaling theory [26] this quantity is expected
to behave as U4 ≈ U4(t L1/ν). Note that the curves for different lattice
sizes collapse into a single curve. In the outer plot the scaling is done
using results from conventional Monte Carlo simulations (step 1) for
L = 20, 30, 40 and 50. The inset shows the scaling for the histogram
results (step 2 in our simulations) for L = 20, 40, 80, 120.

collapse of the curves, mainly because the determination of
the critical temperature is quite imprecise in this case and the
collapse of the curves depends appreciably on the value used
for the critical temperature. In any case, using values for the
critical temperature close to the maxima of the susceptibility
we were not able to obtain even a reasonable collapse of the
curves.

Once the possibility of this phase transition being in the
new universality class proposed by Maier and Schwabl is
discarded, some questions arise: (i) Why do renormalization
group results not agree with our Monte Carlo simulations?
(ii) Is the occurrence of the order–disorder transition due to the
long-range character of dipolar interactions or to some other
property of this model? A definite answer to these questions
may take a very long time to obtain because of the non-
trivial characteristics presented by this model. Nevertheless,
this study gave us some insight into what is happening. The
RG study of Maier and Schwabl [16] is based upon some
approximations, for instance the using of a continuous version
of dPRM, where the lattice character is lost. Since the dipolar
interactions have an intrinsic anisotropy which depends in
a complicated manner on the location of each spin in the
lattice, the lattice geometry could have a strong effect in the
system. The identification and discussion of the finer points
of the RG study of the dPRM that cause the discrepancy in
the results is beyond the scope of this paper. Concerning the
origin of the order–disorder transition the question is even
more complicated. The long-range order observed at low
temperatures is expected to occur only when full long-range
interactions are present. Nevertheless, in a recent study of the
anisotropic Heisenberg model in a bilayer system [29] using a
cut-off in the dipolar interactions we found the same critical
behavior. In fact, the critical exponents found (ν = 1.22(9),
γ = 2.1(2) and β = 0.18(5)) agree within the errors with
those found in this study (ν = 1.277(2), β = 0.2065(4)
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and γ = 2.218(5)). This observation indicates that the
anisotropic character of dipolar interactions may be the main
factor responsible for the observed critical phenomena. Indeed,
this observation is not new in the literature. As an example,
Fernández and Alonso [30] stated that ‘Anisotropy has a deeper
effect on the ordering of systems of classical dipoles in 2D
than the range of dipolar interactions’. In this work the authors
found that the inclusion of a quadrupolar anisotropy drastically
changes the phase transition behavior of a system of classical
dipoles. Apparently, in our system the intrinsic anisotropy of
dipolar interactions plays an essential role in the determination
of the universality class of the dPRM.

The possible new universality class is not surprising. In
the theory of critical phenomena [20, 25] it is expected that
the critical exponents, and thus the universality classes, depend
only on the spatial dimensionality of the system, the symmetry
and dimensionality of the order parameter, and the range of the
interactions within the system, characteristics not shared by the
dPRM and models of well known universality classes. Indeed,
for the pure dipolar model on the square lattice Carbognani
et al [31] have found that the critical behavior is characterized
by unusual critical exponents.
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