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In this work we apply the stochastic series expansion quantum Monte Carlo method to study the

quantum phase transition of the spin 1 three-dimensional XY model with easy-plane anisotropy D. We

simulate this model in cubic lattices (L� L� L) with LAð4,24Þ and periodic boundary condition. Using

finite size scaling we obtained the phase diagram for the model, the critical exponent zn¼ 0:501ð5Þ and

the quantum critical point Dc ¼ 9:7950ð3ÞJ. Using a low temperature expansion for the magnetic

susceptibility we obtained zn¼ 0:59ð1Þ.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Classic order–disorder transitions are characterized as a
change in the balance between the ordering arising from mini-
mizing energy and the disordering arising from maximizing
entropy, both driven by the temperature of the system. The
expression quantum phase transition (QPT) is widely used when
a transition takes place at temperature T¼0, i.e., at any point of
non-analyticity of the ground state energy of the system under
investigation [1,2]. Classical transitions are driven by thermal
fluctuations while QPT are driven by quantum fluctuations at T¼0
as a parameter of the Hamiltonian, let us call it D, is tuned to
disorder the ground state of the system at the critical point Dc. In
general the physics behind a QPT is quite complex. The quantum
critical point (QCP) can appear at an isolated point in a T�D

diagram or at the end point of a continuous classical transition
line [1]. At the QCP, quantum fluctuations exist on all length
scales, therefore it can be seen at the vicinity of Dc for T � 0.

Many techniques like Quantum Monte Carlo, Exact Diagonali-
zation, the self-consistent harmonic approximation (SCHA) and
the bond operator formalism can be used to search the QCP. In
this paper we use a Quantum Monte Carlo technique to study the
three-dimensional anisotropic XY model of localized quantum
spins described by the Hamiltonian

H¼
X
/i,mS

JkSx
i Sx

mþSy
i Sy

mþ
X

i

DðSz
i Þ

2, ð1Þ
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where /i,mS stands for a nearest neighbor pair of S¼1 spins and
k¼1, 2 label inter-plane and intra-plane exchange interactions
respectively. D is the single ion anisotropy. In Fig. 1 it is shown a
croquis of the arrangements used in this work.

The present study is restricted to the case of antiferromagnetic
interactions ðJ1,J240Þ, with easy plane anisotropy ðD40Þ. For
D4Dc the system is in a disordered, gapped phase (massive),
characterized by the total magnetization Mz

total ¼
P

iS
z
i ¼ 0. The

region DoDc is gapless (massless) and the system is in an
ordered phase. When the system approaches Dc on the T¼0 line
it undergoes a pure QPT. The correlation time diverges: tcpxz,
where x is the correlation length and z is the dynamical critical
exponent. This model has been studied by Pires and Costa [3]
using the SCHA and the bond operator formalism in the small
and large D phases respectively. The authors obtained the entire
Tc � D critical diagram using SCHA formalism. It was found that
as D approaches Dc from above the energy gap vanishes con-
tinuously as DpðD�DcÞ

B. They obtained: B¼1 for a¼ J2=J1 ¼ 0,
B¼0.6 for 0oao1, B¼0.5 for a¼ 1 and B¼0 for J2=J1 ¼ 0. The
value B¼0.5 is in agreement with the work of Wang and Wang [4].
An expression for the gap as a function of temperature was
obtained as m2 ¼ c0þc1T3=2e�c2=T [3] where c0, c1 and c2 are
constants that depend on D and J2=J1. The phase diagram obtained
by Pires and Costa is pictured in Fig. 2 in a plot Tc � D as a solid
line. An interesting result obtained was a slight increase in Tc with
increasing D for small D. A more pronounced effect was observed
by Wang and Wang [4] and by Wang and Wong [5] using the
bond operator and the series expansion method respectively. This
effect can also be seen in the Heisebeng model [4–6]. As it is well
known, the SCHA is a reasonable semi-classical approximation
to calculate the transition temperature and low-temperature
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Fig. 1. Croquis of the interaction arrangements used in this work.
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Fig. 2. Phase diagram, Tc as a function of D for J2=J1 ¼ a¼ 1:0. The solid line is the

result obtained by Pires and Costa [3] using the self-consistent harmonic

approximation. The squares represent the results of Wang and Wang [4] using

the bond operator approximation. The circles are the results of the present work

using QMC. As a matter of comparison we plot the results of Pan [6] for the

isotropic Heisenberg model as a dashed line.

M. Guimar ~aes et al. / Journal of Magnetism and Magnetic Materials 332 (2013) 103–108104
ðToTcÞ properties of a system, however it is of limited value in
estimating critical properties [7–10]. The bond operator is best
suited to the large D phase, provided that the transition occurs at
a relatively large D [3]. Nevertheless, a control of the calculations
based on such approaches is very difficult. Only rigorous analy-
tical results or numerical simulations can estimate the regime of
validity of these methods. In this work we employ the QMC
method to obtain the phase diagram of the model and the critical
exponents B and n. We compare our results with the analytical
calculations available from previous works as shown in Fig. 2. We
found that SCHA and the Bond operator reproduce the phase
diagram reasonable well. The fact that the SCHA gives better
results than the bond operator approach in the entire phase space
when compared with our results is noteworthy. We also develop
an approach in order to judiciously obtain the critical exponent n.
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Fig. 3. Figs. a, b show the finite size scaling stiffness analysis of the spin stiffness

for D¼0 and a¼ 1. Fig. (a) shows the fixed point for LrðTcÞ. In Fig. (b) is shown the

collapse of the curves for several values of L. From an analysis of these figures we

obtain kbTc ¼ 2:93J and n¼ 0:66.
2. Quantum Monte Carlo—results

In our Quantum Monte Carlo (QMC) simulations of the
Hamiltonian 1 we use the code developed by the ALPS group [11]
which is based on the Stochastic Series Expansion (SSE) [12] and use
the directed loop update scheme developed by Sandvik [13]
implemented with an optimal-local stochastic matrix for the
algorithm [14]. The SSE approach is based on the high tempera-
ture expansion of the partition function up to order M, being a
generalization of Handscomb’ algorithm [15] used to study the
ferromagnetic Heisenberg model. The SSE method does not bear
from usual convergence difficulties found in the Suzuki–Trotter
formulation [16,17].

Thermodynamical quantities, such as the total energy /ES,
susceptibility /wS and spin stiffness /rS are straightforwardly
obtained as derivatives of the free energy. The spin stiffness in
particular can be defined as the increase in the free energy due to
imposing a twist in the boundary condition on the order para-
meter [18]. In the simulation the spin stiffness is given by the
‘‘winding numbers’’, i.e., the net spin current across the periodic
boundaries in the directions x and y (for simulations performed in
the z quantization axis). In analogy with the superfluid density of
a boson system [19,20] one can demonstrate that [21]

r¼ @
2EðyÞ
@y2

����
y ¼ 0

¼
/W2

xSþ/W2
yS

2Nb
, ð2Þ

where EðyÞ is the internal energy per spin, b is the inverse
temperature and Wx and Wy are the winding numbers.

To build the phase diagram we use the finite size scaling
behavior of the thermodynamic functions. We have simulated
systems of size (L� L� L) with periodic boundary conditions. For
parameters Do0:9Dc we used 20 000 Monte Carlo Steps (MCSs)
for thermalization for even lattice sizes LA ½4,16�. For D�Dc we
used 50 000 MCS for even lattice sizes LA ½4,24�. In both cases the
number of configurations used for measurements was 10 times the
number of MCS used for thermalization. For D4Dc we used
100 000 MCS for thermalization for even lattice sizes LA ½4,10�
and around 5 000 000 MCS for measurements. Throughout this
work the error bars are not shown in figures, only if they are
smaller than the symbols. At the critical temperature, Tc, the spin

stiffness has a fixed point that scales as r� L2�dPrð9ðTc�TÞ=Tc9L
1=v
Þ

[18], where L is the linear lattice size. Ploting rL as a function of T

we expect that all curves intercept at a fixed point rðTcÞL¼ const.
The critical temperature is obtained assuming the scaling,

Tc � Tcð1ÞþAL�1
þOðL�2

Þ, holds for DoDc . Slightly above the
T � 0 line we notice a continuous drop of the spin stiffness order
parameter as the anisotropy is increased from DoDc to D4Dc .

For DoDc , if we plot rðL,tÞL=T as a function of 9t9L1=n we can
choose n such that the results for several values of L collapse into
the same curve. This procedure gives an estimate of the critical
index n. In Fig. 3 it is shown the typical behavior of the spin
stiffness for D¼0 and a� J2=J1 ¼ 1. The estimate obtained for the
critical temperature and the critical exponent is kbT ¼ 2:93J and
n¼ 0:66 respectively. The value of Tc is quite close to the one
obtained by the use of the SCHA approach even though far from
the bond operator result (see Fig. 2).

As observed in previous works [3–6] we can confirm an increase
in Tc with increasing D, for small D as seen in Fig. 2. One could
argue that the increase of D from 0 slightly changes the behavior of
the system from XY to planar rotator, which has a higher transition
temperature. As D is increased further quantum fluctuations
reduces the magnetic order, thus reducing the transition tempera-
ture until it reaches the critical value Dc at T¼0.
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Fig. 4. Evaluation of the exponent n of Eq. (3) using the derivative of the logarithm

of susceptibility for lattice size 4 (top); n¼ 1:0270:08 and 6 (bottom)

n¼ 1:070:1 for anisotropy D¼10.1.
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Fig. 5. (a) Finite size gap obtained for several lattice sizes as the intercept of plot

T lnðTw1Þ by T at anisotropy D¼10.0. (b) Finite size scaling of the gap for several

anisotropies D4Dc according to Eq. (4).
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Fig. 7. The figure show log–log plot of finite size gap as a function of the relative
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Beyond the critical anisotropy D4Dc , we assume a low
temperature expansion for the magnetic susceptibility based on
an expression derived by Troyer [22]

wðLÞ � b�n expð�bDðLÞÞ, ð3Þ

where DðLÞ is the gap for the finite size lattice and b is the inverse
temperature. The parameter n depends on the shape of the
dispersion relation. The derivative of the logarithm of the sus-
ceptibility �@ lnðwðLÞ=@b provides a way to estimate the para-
meter n. At low temperature this derivative is DðLÞþnT. The slope
n is close to �1 for small systems sizes (4, 6) (see Fig. 4). In a very
naive approach we can estimate the gap by supposing that
DðLÞ �Dð1ÞþALm. Solving the equation of wðLÞ for DðLÞ and
substituting in the previous equation with n¼�1 we obtain

DðLÞ ¼�T lnðTwðLÞÞ ¼D1þALm: ð4Þ

Logarithmic corrections, if present, require simulations of
much larger lattice sizes than the ones performed in the present
work. In Fig. 5(a) we show a plot of �T lnðTwÞ as a function of the
inverse temperature for several lattice sizes. By adjusting a
straight line to the data, an estimate of the finite size gap is given
by the intercept of the curve. In Fig. 5(b) we show a plot of DðLÞ as
a function of inverse lattice size for several anisotropies. By
adjusting a curve to the data, according to Eq. (4), an estimate
of the infinite size gap is obtained.

In Figs. 6 and 7 it is shown a plot of ln D as a function of D�Dc

obtained by this approach. The slope of the curves provides an
estimate for B¼ zn [1].
As the anisotropy approaches the critical value Dc the quantum
fluctuations become stronger in such a way that the finite size
scaling for the spin stiffness has to be modified to [23]

rðL,t,TÞ ¼
1

Ld�2Lt
FrðL

zT,tL1=v
Þ, ð5Þ

where FrðTLz,tL1=v
Þ is a homogeneous function of its arguments,

t¼ 1�D=Dc and xt-Ltp1=T.
Similarly, the modified finite size scaling for the uniform

magnetic susceptibility is given by [23]

wðL,t,TÞ ¼
Lt

Ld
FwðL

zT ,tL1=v
Þ, ð6Þ

Using Eq. (5) we can sweep z and Dc until a good collapse in a
plot of rðL,tÞLd�2=T by TLz is found. In Fig. 8 it can be seen the best
collapses for a¼ 1:0 and a¼ 0:5 with Dc ¼ 9:8, z¼ 0:9 and
Dc ¼ 8:0, z¼ 0:6 respectively. A value of zo1 is obviously not
the correct asymptotic behavior, and upon going to larger systems
we believe that z would increase to 1. A collapse can be seen in
Fig. 9 for the susceptibility assuming z¼1.

If the temperature is low enough Eq. (5) can be used ignoring
the first argument in the scaling function [24]. A plot of rL2 by
9tL1=n9should produce the intended collapse as shown in Figs. 10
and 11 for a¼ 1:0 and a¼ 0:5 respectively. As usually seen in the
path integral formulation, the mapping of the quantum to a
classical corresponding system relates temperature with a ima-
ginary time dimension Ltp1=T [25]. Since time and space are not
equivalent, we have two correlation ‘‘lengths’’, a spatial x and a
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temporal xt correlation. These are connected by the dynamical
critical exponent z : xtpxz.

If a fixed aspect ratio between the imaginary time (inverse
temperature) and space is set as const ¼ Lz=LtpTLz then Eq. (5)
reduces to

rðL,tÞLdþ z�2
¼ Frðconst,tL1=v

Þ: ð7Þ

At the critical anisotropy (t¼0) curves for different lattice sizes
should cross each other. In Fig. 12 it can be noticed that three data
points with highest lattice sizes cross each other close to the same
point assuming z¼1. Each of these three crossing points give an
estimate for the critical anisotropy. Repeating this calculation for
four different simulations we obtain Dc ¼ 9:7945ð5Þ.

A precise estimative of Dc and n can usually be achieved by
collapsing the stiffness data for different L using a correction to
Eq. (7). The usual ansatz is the choice NðLÞ ¼ 1þcL�w [24,26].

The corrected stiffness scaling relation is given by

rðL,tÞLdþ z�2
¼NðLÞFrðconst,tL1=v

Þ: ð8Þ

The N(L) normalization factor is introduced to take into
account subleading corrections to scaling. Any attempt to adjust
our results with this ansatz or other ansatz [27] were fruitless,
generating large error bars to the exponents. For example, the
exponent n adjusts well for any value in the interval 0.5 and
0.6 for Dc close to 9.78 and 9.80 for a wide range of values of w.
The leading term itself was difficult to determine accurately,
which can be seen in Fig. 13 where noticeably different values of n
still produce fine collapses.

The main concern at this point is the way the N(L) dependence
can be removed. Suppose that the scaling function Fr in Eq. (8)
admits a series of expansion in t¼ 1�D=Dc � 0

rðL,tÞLdþ z�2
¼NðLÞðFrð0ÞþF 0rð0ÞtL

1=v
þOðt2ÞÞ, ð9Þ

rðL,tÞLdþ z�2
� AðLÞþBðLÞt: ð10Þ

By performing a linear fit to rðL,tÞLdþ z�2 it is then possible to
obtain the independent term AðLÞ ¼NðLÞFrð0Þ � rðL,0ÞLdþ z�2. The
N(L) dependence is then eliminated by dividing rðL,tÞLdþ z�2
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by A(L)

rðL,tÞLdþ z�2

AðLÞ
� 1þ

F 0rð0Þ

Frð0Þ
tL1=v

�
rðL,tÞ

rðL,0Þ
: ð11Þ

Therefore, if we plot of rðL,tÞ=rðL,0Þ as a function of tL1=n with
an appropriate value for n and Dc, curves for different values of L

will collapse into the same curve. The result is shown in Fig. 14.
The error bars involved in the collapse procedure were

calculated using two different methods. The first one is done by
taking the average residue of a third order polynomial fit to the
stiffness simulation data of the highest lattice sizes (12, 14, 16, 18,
20, 22, 24). The estimate of Dc and n is given by the values that
produce the smallest average residue. The final result is given by
the average value obtained from four independent simulations.
This procedure yields the following result: Dc A ½9:7912,9:7923�,
and nA ½0:485,0:492�. Performing a similar calculation with the
uniform magnetic susceptibility we obtain Dc A ½9:7870,9:7910�
and nA ½0:505,0:523�. The second method for estimating the error
bars depends on the error involved in the estimate of n. Observing
Eq. (10) we can expect that the slope of rLdþ z�2 has the following
L dependence:

@rðL,tÞ

@t

����
t ¼ 0

Ldþ z�2
�NðLÞL1=n: ð12Þ

We can take its logarithm to find

ðdþz�2Þ lnðLÞþ ln
@rðL,tÞ

@t

� ����
t ¼ 0

�
� lnðNðLÞÞþ lnðLÞ

1

n : ð13Þ
Subtracting the previous equation for different lattice sizes L

and L0, we obtain

ðdþz�2Þ ln
L

L0

� �
þ ln

@rðL,tÞ

@t

����
t ¼ 0

@rðL0,tÞ
@t

����
t ¼ 0

0
BBB@

1
CCCA

0
BBB@

1
CCCA

� ln
NðLÞ

NðL0Þ

� �
þ ln

L

L0

� �
1

n :

Isolating n and assuming lnðNðLÞÞ�lnðNðL0ÞÞ � 0 and z¼1 we
obtain a way to estimate n similar to Ref. [28]

n¼ lnðLÞ�lnðL0Þ

ln L2@rðL,tÞ

@t

� ����
0

�
�ln L02

@rðL0,tÞ
@t

� ����
0

� : ð14Þ

The best collapse is then defined by the values n and DC which
produce the minimum average deviation of n obtained using a set
of couple ðL,L0Þ from the highest simulated lattice sizes (12, 14, 16,
18, 20, 22, 24). Again the final result is given by the average value
of four independent simulations. Using this criterion we obtained
Dc A ½9:7943,9:7951�, and nA ½0:496,0:505� from spin stiffness and
Dc A ½9:7935,9:7946�, and nA ½0:47,0:51� from susceptibility.

The final estimate is given by

Dc¼ 9:7948ð3Þ n¼ 0:501ð5Þ,

Dc¼ 9:7941ð5Þ n¼ 0:49ð2Þ,

using stiffness and susceptibility respectively.
The critical anisotropy DcðaÞ shown in Fig. 15 can be obtained

by the crossing point of rL2 by D according to Eq. (7) for two
different lattice sizes (14, 16). The statistical errors are smaller
than systematic error due to finite size. Therefore, the error bars
were estimated by the difference from the crossing from the
lowest (4, 6) to the highest (14, 16) crossing points.
3. Conclusion

In this work we have studied the quantum phase transition in
the three dimensional anisotropic XY model using a Monte Carlo
numerical calculation. We found that contrary to the expected the
SCHA works quite well in the whole range of anisotropy. The bond
operator method that should work in the large D region does not
give good results when compared to the SCHA. One possible
explanation is that the SCHA works well for low temperatures and
renormalizations of the harmonic interactions considered by Pires
and Costa took into account thermal and quantum fluctuations
while the bond operator results relied on a mean field value for
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the t bosons and the global chemical potential. To obtain the
critical exponent n we have proposed a finite size scaling that
seems to work very well in the present case.
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