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We use the self consistent harmonic approximation together with the Linear Response Theory to study
the effect of nonmagnetic disorder on spin transport in the quantum diluted two-dimensional
anisotropic Heisenberg model with spin S=1 in a square lattice. The model has a BKT transition at
zero dilution. We calculate the regular part of the spin conductivity ¢"*8(w) and the Drude weight Dg(T)
as a function of the non-magnetic concentration, x. Our calculations show that the spin conductivity
drops abruptly to zero at x* ~ 0.5 indicating that the system changes from an ideal spin conductor
state to an insulator. This value is far above the site percolation threshold x ~ 0.41. Although the SCHA
fails in determining precisely the percolation threshold, both the spin conductivity and the Drude weight
show a quite regular behavior inside 0 <x<x{™ indicating that the transition stays in the same

universality class all along the interval.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The transport properties of materials are the corner stones for
many applications. Once having these properties determined, it is
possible to calculate the parameters for devices which can operate
on the basis of these structures. Transport refers to the movement
from one point to another induced by an external force. In a regular
medium, propagation is ballistic: the average square of the distance
covered after a time t scales like (x2(t)) oc v2t> with v being the
particle velocity. In a disordered medium containing impurities, the
movement is no more ballistic. Quenched disorder is fixed for each
realization of an experiment, but varies from experiment to experi-
ment when samples are changed. Predictions about observables will
involve an average over impurity configurations.

Recently, the spin transport phenomenon has attracted special
attention due to its connection with spintronics [1]. The XXZ
model, sometimes called the Quantum Anisotropic Heisenberg
model (or quantum XY model), is a prototype for several magnetic
materials and is of considerable interest in the context of statistical
physics [2,3]. It can be obtained as the limit of several physical
systems such as strongly correlated ultracold bosons in optical
lattices or Josephson junction arrays [5-10]. It can also be used to
describe the magnetic properties of some solid state materials [4].
The Mermin-Wagner theorem [11]| predicts that there is no
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spontaneous broken symmetry in two dimensional systems with
continuous symmetry. However, the pure (non-diluted) XXZ sys-
tem undergoes a Berezinskii—Kosterlitz-Thouless, BKT, transition
at a finite temperature, Tpkr, [12,13] characterized by a universal
jump in the spin-wave stiffness (or helicity), p, of the system at
Tskr [14-16]. At low temperature, T < Tggr, the correlation func-
tion, C** (With a =x,y), presents an algebraic decay C**(r) ~r—".
On the other hand, in the high temperature phase, the correlation
function decays exponentially, C** ~e~%. The situation for the
diluted version of the model, when nonmagnetic disorder is
included [17-21,23], is not clear.

The 2d model on a square lattice with nearest-neighbor
exchange interaction undergoes a percolation transition upon
dilution [24]. For the case of bond dilution, the transition occurs
at the non-magnetic concentration x2°" =1/2. For site dilution
the percolation threshold is at x$ ~ 0.41 [17].

Under the point of view of the transport phenomenon in two
dimensions, the XXZ model is gapless. Sentef et al. [25] analyzed
the spin transport in the easy-axis Heisenberg anti-ferromagnetic
model in two and three dimensions, at T=0. Damle and Sachdev
[26] treated the two-dimensional case using the non-linear sigma
model in the gapped phase. Pires and Lima treated the two-
dimensional easy plane Heisenberg antiferromagnetic model
[27-29]. Lima [30] studied the case of the Heisenberg antiferro-
magnetic model in two dimensions with Dzyaloshinskii-Moriya
interaction. Chen et al. [31] analyzed the effect of spatial and spin
anisotropy on spin conductivity for the S=1/2 Heisenberg model
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on a square lattice. Within a self consistent harmonic approxima-
tion it is found that the XXZ model has a BKT transition. Upon site
dilution the transition is extinguished at x; = 0.28 [32], far below
the percolation threshold x{. On the other hand Sandvik [33]
made a very careful quantum Monte Carlo simulation of the model
at x¥, He found that the system has a transition which is
compatible with a BKT transition. Costa et al. [32] made a quantum
Monte Carlo simulation exploring the range [0<x <x{]. They
followed the transition finding that it is possible that can change
its character from BKT to another class of universality that they
were not able to describe in detail.

A connection of the model with superconductivity and super-
fluidity can be done through the Ginzburg-Landau (GL) theory for
temperatures below Tgkr (see for example Refs. [34-37]). The
symmetric and broken phases in the spin model correspond to
the superconducting (superfluid) and Coulomb (normal fluid)
phases respectively in the GL approach. The key quantity to
characterize the phase transition is the stiffness (or helicity) which
is a response of the system to a twist of the spins along a specific
direction. The stiffness is finite in the low temperature phase
decaying to zero at Tpxr. The aim of this paper is to study the
transport properties of the site diluted XXZ model in two dimen-
sions as a function of the dilution x. Dilution corresponds to
introduce defects in the system. Besides studying the interesting
properties of spin transport we expect that it can give us a clue
about the critical behavior of the system. This work is divided in
the following way. In Section 2 we develop the analytical tools to
obtain the transport properties of the model in the self consistent
harmonic approximation (SCHA) [38-42]. In Section 3 we obtain
the behavior of the conductivity, 6™ (w), as a function of the
dilution x and the Drude weight, Ds. The last section is dedicated to
our conclusions and final remarks.

2. Spin transport

The model we are interested in is defined by the following
Hamiltonian:

H=—] Y &i(S{S; +S/S)). (1)
(ig)

We take here S=1, (i,j) stands for the sum over nearest-

neighbor and ¢; assume values 1,0 for magnetic or non-magnetic

sites respectively. Sites are occupied with a probability distribution

Plen] = [1P(&n),

P(en) = [pS(en — 1)+ (1 —p)S(en)], @)

where p is the concentration of magnetic sites. We use the self
consistent harmonic approximation [38-42] to determine the
regular part of the spin conductivity and the Drude weight. A spin
current appears if there is a gradient of magnetic field B through
the system. It plays the role of a chemical potential for spins. One
connect a low-dimensional magnet with two bulk ferromagnets.
They act as reservoirs for spins [43]. One has a spin current if there
is a difference, AB, between the magnetic fields at the two ends of
the sample. As we are interested in calculating the longitudinal
spin conductivity, we will add an external space and time-
dependent magnetic field, B(x,t), applied along the z-direction to
the Hamiltonian (1). In the Kubo formalism [25,27,44] the spin
conductivity is given by

L (K+A, )
6<w)_;?f; i(@+i0") ° 3

where
K0y = fl]—N%:Snan(S; Snvx+Sa Sivx)- )

Sy (S,) is a creation (annihilation) spin operator, n+x is the
nearest-neighbor site of site n in the positive x-direction and
A(q,w) is the current-current correlation function defined as

AG.o) = /0 dt et ([.7(q.t). T (~ q.0)). 5)

A(q,w+i07) is analytic in the upper half of the complex plane
and extrapolation along the imaginary axis can be reliably done.
Continuity equation for the lattice allows us to write the discrete
version of the current as

aS7
jn+x—»7n——ﬁ- (6)

The Heisenberg equation of motion Si =i[H,S7] can be used

with Eq. (6) to obtain

i _ _
J = ;Jn,nm = %;snenH(S; sn+x =S, Sn++x : @

Here we have assumed a magnetic field gradient along the
x-direction. The real part of o(w), ¢'(w), can be written in a
standard form as [45]

o'(w) = 6o(@)+ 0" (w), ®)

where og(w) is the d.c. contribution given by o(w) = Dsdé(w), here
Ds is Drude's weight

Ds = 7{()+A'(§ = 0,0 0)]. 9
o™8(w), the regular part of o'(w), is given by [45]
"% (w) = w (10)

It represents the continuum contribution to the conductivity. The
Drude's weight measures the ability of the system to sustain a current
without dissipation. In Egs. (9) and (10), A" and A” stand for the real
and imaginary part of A respectively. We expect that at the percolation
threshold both 6™8(w) and Ds should go to zero. We expect that
anomalies in the critical behavior of the model should appear in those
quantities.

3. Self consistent Harmonic approximation

The SCHA was originally proposed by Pokrovsky and Uimin to
study the 2d classical planar rotator model [38]. Later, Minnhagen [5]
pointed out that the SCHA overestimate the transition temperature
because it did not take into account vortex fluctuations. He suggested
a way to improve the thermodynamic described by this method by
replacing the coupling constant, J, of the model by a renormalized, J(T).
This procedure leads to a better estimate of Ty For example, it
describes correctly the transition of the 1d quantum sine-Gordon
model [46]. The reason is that it is equivalent to a renormalization
group analysis in the one loop approach [46]. The approximation was
successfully used in several other models [47]. Menezes et al. [39]
extended the method to the classical XY model and Pires [40] applied
it to its quantum version.

There is an extensive literature describing the SCHA [38-42], for
this reason we will only sketch the main steps leading to the self
consistent equations. Writing the spin components in the Villain
representation [48]:

, 1\2 1\2
S: :e"ﬁn (S+§> —<Si+§>




LS. Lima et al. / Journal of Magnetism and Magnetic Materials 371 (2014) 89-93 91

1\’ 1\
Sy = (S+§> —(Sﬁ+§> e~ i, a1

we obtain the following commutation relation:
[S;.e*mPn] = + me* M, (12)

Next we write the Hamiltonian (1) in terms of this representation.
At low temperature [48] |S7| «S. By expanding the square root and
the exponential term e/ ~ %), and using Wick's theorem to expand
n-operators expressions in terms of two operator products the
SCHA Hamiltonian can be written as:

=2
S
H=]Zei [Tp(qﬁf — )’ +(Si)2] , (13)
ij

where the stiffness p, renormalized by thermal and quantum
fluctuations, is given by

SN\ -2k -t
p=|(1- 5 e TP, (14)

Taking the Fourier transform of Eq. (13) and defining
R(E)_ Ze eld-r, (15)
we obtain
H=4 ¥ 1PS’R(—= DIR(G + k1 + k2)—R(d
@K1k
+ kl)R(kz - a)]Va(ﬁEl(ﬁ;z

+7-R(— OR(G + k1 + k»)S2 S )
q ki ko

To proceed further we introduce the variable 7(q) which shows
delta [19],
R(q)=8(q)—n(q), with 7(g)=(1/N)Y €' (1-¢.). Denoting a
configurational average of a quantity A with the distribution
n(q)=(1-p)s(q) and

;7(6);7(6/) =(1 —p)zé(a)é(a’). Keeping only linear terms in n(a)
we obtain

H=Ho+H, (16)

where H, stands for the Hamiltonian of the nondiluted system
and H is given by

the deviation of R(E) from Kroneker's

function (2) by A we have

H=-4 % s’ R R C R T b ]n(k1+kz)d) K
kiks
+[}’6+}/T{]+E2]I’](k1+k2)s%sia} 17)

For the configurationally averaged value of the Hamiltonian we
get the final result

H=4L8"p(1 1 )1 =20 d_,+(1-0SiS" ] (18)
q

here x=1-p and I =(1/2) cos(qx+qy). The Hamiltonian (18)
can be diagonalized using the Bogoliubov transformation

z f_ .
55 =Fh;@.—a_),

_ T
q (pa_aa(aa+a_a)7 (19)

where af and a, are boson creation and annihilation operators,
respectively, and

1 _
a; = T[(l —20(1 =01~y )pl~ 4,

iv2 1/4

7[(1 20)(1=x)1-7:)p]

p (20)

q-

From Eq. (18) we derive the following relations

<<_>> 2s;z2// \/m (wﬁ>
(630_4)= zsmcoth< ), 2

where the renormalized spin wave frequency is given by

W= 8]5\/(1 —20(1-0(1—7,)p- (22)

From Eqs. (7), (11) and (19) the spin current can be written, to
the lowest order, as

J = —Jiy;(A=20XE(sin (l<x+qx)52,~<5%¢7,¢73
k 4

45 Sin(’<X)¢E¢E¢_E-a}' (23)

From the expression of the spin current, given by Eq. (23), and
using the Bogoliubov transformation and Egs. (3)-(9), we use
Matsubara Green's function formalism, well described in reference
[45], to find o™8(w) at zero temperature. We start with the spin
current Green's function defined by

GOy = —> HOITTOT0)[0), (24)

where 7 is the time-ordering operator and |0) the ground state.
Using Egs. (23) and (24), Wick's theorem, and Fourier transform
we obtain an expression in terms of the one-particle Green's
functions

Go(d.0)=(0I7a(Da(0)I0), Go(d.H)=(01Ta;(Oa.(©0)0),  (25)

which lead to the bare Fourier transformed propagators
-1

w—a)a—i0+' 26)

Go(q, ) = Go(q, @)=

w—w,+ +i0™’

Finally, after making a tedious, but straightforward calculation,
we find

G0y =272 (1~ 202 L E(F1(d, K)[Go(d, HGo(k, OGo(d + K, 1)

k 4q
+Go(q, HGo(k, )Go(q + k. )]
+F5(d, K)Go(d, Go(k, OGo(q + k.
+Go(d, DGo(k, OGo(q + k. D)
+F3(4, K)Go(q. HGo(k, Co(q + k. £)
+Go(d, Dok, Go(q + k. D)

+Fa(q, K)Go(q, HGo(k, )Go(q + k. )

+Go(d, Dok, OGo(q + k. 0)]), 27
where
F1(d, k) =F1(d, K)+Fa(4, K)+251(4, K)+S5(, k), 28)
Fo(d, k) =F1(d, k)~ F2(4, K)+251(4, k) +S5(, ), 29)
F3(d, k) =F1(d, K)+F2(d, k)—251(d, k)+S2(d, k), (30)
Fa(d, k) =F1(d, k)~ F2(4, k)—251(d, k)+S2(d, k). 31)

Since A(a =0, w) = Gj(w), we find that 6" (w) is given by
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Fig. 1. ¢"8(w) of the 2D diluted XXZ model as obtained by using the self consistent

harmonic approximation. Beyond the critical x3* = 0.5 the conductivity decreases
to zero.

2% my% (1-2x)

7w = ) TR BId@-w; -0~ )
—5(w+wq-+a)k>+wk-+a)], (32)
where
L 12
F](a,k)=—%sin2(qx+kx){%a(—,f)} 7 33)
a(q+k)
Fa(@, k)= 51ak]" sin (@ sin @ +Ko. 34)

S1(d. k)=~ 3laCk + )1~/ sin @ +koI2 Sin 6, sin @ +kol,
35)

~2
L I . . . .
$2(4, k) ="gla(g)atk)ack +q)] /2 sin gu[sin gy sin ke— sin (g+ky)],

(36)

where a(k)=p(1—y-). In Fig. 1, we show ar‘fg(co)/(gus)2 as a
function of the frequency. The peak of the regular spin conductiv-
ity decreases with the dilution, x, until a concentration of impu-
rities of x* ~ 0.5, when the peak disappears. This value should be
compared with x3% =0.28 and xJ =0.41. From Egs. (4), (5),
(9) and (23) we obtain

Dy(T) ~J3 (1 - 2x)p/(T), 37)

where

2\?
pT) = < {1 - <§> } cos (¢, —¢n+(s)> (38)

which takes into account anharmonic terms (in the one-loop
approximation) in the expansion of cos(¢,—@, s) to all orders
[41]. In the SCHA used here, the stiffness p contains a term
proportional to (cos (¢, — ¢,,)) which is evaluated as exp([—(1/2)
{(¢hy— ™). This is equivalent to sum over an infinite numbers of
diagrams. In some way, the SCHA takes into account, at least
partially, the effect of vortices, since it gives correctly the BKT
transition.

In Fig. 2, we show the behavior of Dg(T) for different values of x.
The behavior of the Drude weight is a consequence of the behavior
of p’ with T and as is well known, it drops discontinuously to zero
at the Berezinskii-Kosterlitz-Thouless temperature. The Drude
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Fig. 2. Drude weight, Ds(T), as a function of T obtained using the Self Consistent
Harmonic Approximation for several values of the dilution x.

weight is finite at zero temperature (implying ballistic transport)
and decreases with temperature. We obtain that at a concentration
of vacancies x3# ~ 0.5, Ds becomes zero for any value of T. Since
6"8(w) becomes also zero in that limit we have a change in the
conductivity at this concentration. It means that the system
changes abruptly from an ideal spin conductor state to a spin
insulator. Inside the interval 0 <x <] the behavior of the system
does not change qualitatively as seen in Figs. 1 and 2. So that, we
do not expect any change in the character of the transition upon
dilution.

4. Conclusions

We have studied the spin transport in the site diluted XXZ
model in two dimensions using the self consistent harmonic
approximation. The SCHA consider quantum as well as vortex
fluctuations in the system. Qualitatively, the results do not depend
on the value of the spin; however it is known [29,50] that,
quantitatively, the SCHA works better for S=1 than for S=1/2.
Our calculations show that the spin conductivity drops abruptly to
zero at X3 ~ 0.5 indicating that the system changes from an
ideal spin conductor state to an insulator. We should expect that
the transition will persist only up to the percolation threshold,
x5t — 0.41. Clearly the SCHA approach fails for large dilution since,
no spin current is possible beyond the percolation threshold.
Although the SCHA fails in determining precisely the percolation
threshold, both the spin conductivity and the Drude weight show
a quite regular behavior inside 0 <x <x3? indicating that the
transition stays in the same universality class all along the interval.
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