
Magnetic anisotropy of elongated thin ferromagnetic nano-islands for artificial spin ice arrays

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2012 J. Phys.: Condens. Matter 24 296001

(http://iopscience.iop.org/0953-8984/24/29/296001)

Download details:

IP Address: 200.235.132.29

The article was downloaded on 22/06/2012 at 18:32

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/24/29
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 24 (2012) 296001 (8pp) doi:10.1088/0953-8984/24/29/296001

Magnetic anisotropy of elongated thin
ferromagnetic nano-islands for artificial
spin ice arrays

G M Wysin1, W A Moura-Melo2, L A S Mól2 and A R Pereira2

1 Department of Physics, Kansas State University, Manhattan, KS 66506-2601, USA
2 Departamento de Fı́sica, Universidade Federal de Viçosa, Viçosa 36570-000, Minas Gerais, Brazil
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Abstract
The energetics of thin elongated ferromagnetic nano-islands is considered for some different
shapes, aspect ratios and applied magnetic field directions. These nano-island particles are
important for artificial spin ice materials. For low temperature, the magnetic internal energy of
an individual particle is evaluated numerically as a function of the direction of a particle’s net
magnetization. This leads to estimations of effective anisotropy constants for (1) the easy axis
along the particle’s long direction, and (2) the hard axis along the particle’s thin direction. A
spin relaxation algorithm together with fast Fourier transform for the demagnetization field is
used to solve the micromagnetics problem for a thin system. The magnetic hysteresis is also
found. The results indicate some possibilities for controlling the equilibrium and dynamics in
spin ice materials by using different island geometries.

(Some figures may appear in colour only in the online journal)

1. Introduction: elongated thin ferromagnetic
nano-islands

Disordered and frustrated magnetic states such as those
present in artificial spin ices [1, 2] continue to attract
interest, due to their competing ground states, magnetic
monopole excitations [3], string excitations [4–7] and the
difficulty to achieve thermal equilibrium. These systems are
composed from elongated magnetic islands or particles of
some length Lx (several hundred nanometers) and width
Ly < Lx grown or etched lithographically to a small height
Lz on a substrate, whose geometric demagnetization effects
(effectively, internal dipolar interactions) lead to a strong
magnetic anisotropy. The typical islands have Lz much less
than Lx or Ly. Obviously any very thin magnet acquires an
effective easy-plane anisotropy [8]; if the particle is narrow
as well, the long direction (along x) becomes an easy axis.
The demagnetization field within an individual particle is
responsible for this, making the plane of the island (xy-plane)
an easy plane, and the x-axis an easy axis. Then net magnetic
moment Eµ acts somewhat like an Ising variable with a defined

easy axis x̂. These islands are arranged into ordered arrays
to produce, for example, square lattice or kagome lattice
artificial spin ices. The analysis of spin ice models assumes
that such particles have only the two states with Eµ either
aligned or anti-aligned to the particle’s easy axis. The dipolar
interaction between different particles on one of the spin ice
lattices leads to the ice rules, such as the ‘two in/two out’
rule for the square lattice and pyrochlore spin ices [3]. Such
ice rules are only energetic preferences, however, and only
indicate the preferred states of the magnetic moments. They
are not absolute rigid statements about the allowed states.
Thus, the intention here is to investigate the energetics of
the fluctuations away from this Ising aligned state, in the
individual elliptical islands that are used to compose a spin
ice system.

At some level, there must be transitions between these
Ising-like states. An individual particle may contain thousands
of atomic spins, leading to a substantial energy barrier that
must be surpassed to flip the Ising state of a particle. Hence,
the dynamics is greatly constrained by such energy barriers.
It is our interest here to discuss how this barrier depends
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on the particular geometry of the islands, and make some
evaluations of the dependence of the effective potential on the
island shape and height. The types of shapes we consider are
ellipses. Thin single-domain ellipses were studied by Wei et al
[9], who found that the reversal process involves close to a
uniform Stoner–Wohlfarth rotation, but with reduced energy
barriers due to some non-uniformity of the magnetization.
However, we find here that, for high aspect ratio ellipses, this
non-uniformity is minimal and a uniform rotation model could
be very useful.

Although the theory for spin ice has been developed
for Ising-like magnetic moments, their dynamics requires a
different model. In reality, the underlying magnetic moment
must evolve from much more complex dynamics. The
reversal of an individual island, in the dipolar fields of
its surrounding islands, must be a complex process, and
could involve the motion of domain walls and vortices
within the individual particles, or an impeded rotation
of the local magnetization mostly in unison. But in the
assumption of strong ferromagnetic exchange inside a
particular particle, and a uniform externally applied field, one
can investigate the reversal process using different approaches
to the micromagnetics [10], and see whether vortices or
domain walls play any significant role. Especially, one can
investigate whether there are intermediate metastable vortex
or domain-wall states as steps of the reversal. To a great
extent, for the thin elliptical particles considered here, the
reversal proceeds mostly as a nearly uniform but impeded
rotation of the magnetization of the particle [9], although the
switching fields are reduced compared to a perfectly uniform
rotation. Hence, the idea of an Ising spin for a particle can be
replaced by a three-dimensional magnetic moment Eµ, moving
in some anisotropy potential, but free to point in any direction,
if enough energy becomes available to it.

Obviously, by changing the aspect ratios g1 ≡ Lx/Ly and
g3 ≡ Lx/Lz of the particle, its effective anisotropy changes.
The deviation of the ratio Lx/Ly from 1 determines the
strength of an easy-axis anisotropy constant, call it K1, for
the net magnetic moment to rotate within the xy-plane. The
other aspect ratio of length to thickness, Lx/Lz, determines
the difficulty for the magnetic moment Eµ to tilt out of
the xy-plane. Thus it determines the strength of a hard-axis
anisotropy constant, call it K3. The goal here is to make some
accurate estimates for these constants and, in the process, to
justify a more generalized description of the magnetization
dynamics, not based on an Ising variable, but, rather, on
an effective three-dimensional magnetic moment, which is
allowed to make deviations from the Ising axis. For a particle
whose hard axis is along ẑ and whose easy axis is along x̂, an
effective potential that approximately represents their energies
is shown to be

E = E0 + K1[1− (µ̂ · x̂)2] + K3(µ̂ · ẑ)
2 (1)

where µ̂ is the unit vector pointing in the direction of the
particle’s net magnetic moment. E0 is the energy when the
magnetic moment µ̂ is along the easy axis. This type of
potential is continuous, in contrast to the two-state Ising
particle, having a well-defined energy barrier, along with

more realistic dynamics. Further, it will give the possibility
of controlling the thermodynamics of spin ices via changes or
variations in the nano-island structure, which can modify the
energy barrier.

The calculational approach is a modification of usual
micromagnetics [11, 12], as follows. A particle is partitioned
into cells of size a × a × Lz, under the assumption that the
local magnetization EM(Er) is independent of the z-coordinate
(along the thin dimension). Thus, there is only a single layer of
cells in the xy-plane, with the desired shape, say, an ellipse of
major diameter Lx and minor diameter Ly < Lx. The saturated
magnetization in each cell interacts with the neighboring cells
by ferromagnetic exchange, an externally applied magnetic
field, and interacts with all cells via the demagnetization field.
The demagnetization field is calculated using an effective
Green’s function that applies for thin systems [13], see below,
with the calculation accelerated by using a 2D fast Fourier
transform (FFT). To evolve towards the nearest (possibly
meta-) stable magnetic state, we do not use integration of
the Landau–Gilbert spin dynamics equations with damping.
Instead, a faster procedure is to use a local spin-alignment
algorithm that involves no damping parameter. In one step
of this algorithm, each cell’s magnetic moment is pointed
towards the local total magnetic field that instantaneously
produces a torque on that cell. The same procedure is applied
to all cells, the demagnetization fields are recalculated, and
the process is repeated iteratively until a desired tolerance
is reached. A microscopic uniaxial anisotropy energy is also
included, although using a strength that would be typical
for Permalloy, it is almost irrelevant when compared to the
exchange and demagnetization effects. We have checked that
this procedure gives the same final states as integration of the
Landau–Gilbert equations with damping.

The internal magnetic energy Eint of the particle is
calculated. This is the total magnetic energy minus the
interaction energy with the applied magnetic field, −Eµ · EHext.
An applied magnetic field is used in the calculations to move
the net magnetic moment around, while it also maps out the
hysteresis loop. In one set of simulations, the hysteresis loop
was calculated with the applied field axis within the xy-plane
at some angle φH to the x-axis. There, the magnetization
makes an angle φm to the x-axis. Then the internal energy
could be found as a function Eint(φm), from which the
anisotropy constant K1 is determined, by fitting to (1), in the
form

Eint(φm) = E0 + K1sin2φm. (2)

In another set of simulations, the applied field was set in the
xz-plane, at some angle θH to the x-axis. This tilts the net
magnetic moment towards the z-axis by an angle θm from
the x-axis. Thus it gives Eint(θm), which depends on both
constants K1 and K3, according to

Eint(θm) = E0 + (K1 + K3)sin2θm. (3)

This allows the anisotropy constant K3 to be determined from
the net stiffness, K13 ≡ K1+K3. It is important to note that the
potential functions Eint(φm) and Eint(θm) found this way do
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not depend on the particular angle chosen between the applied
field and the x-axis.

In the following sections the Hamiltonian and algorithm
is further specified. Some details about the demagnetization
field calculation are given, especially concerning the Green’s
function. Finally the results for elliptic particles are discussed.

2. The particle model and its energetics

We consider thin elliptical particles with dimensions Lx×Ly×

Lz, where Lx and Ly refer to the major and minor diameters
for the elliptical particles. The approach for a thin system
has been presented in [14]; some of the main points towards
finding the spatial structure of magnetization EM(Er) and the
particle’s internal energy are summarized here.

The system is partitioned into cells of size a × a ×
Lz on a square lattice grid, where there is a saturation
magnetization Ms within each cell. Thus a selected cell i
has a magnetic moment, mi = Msa2Lzm̂i, that points in the
direction of the unit vector m̂i and has magnitude µcell =

Msa2Lz. There is only a single layer of cells used, under
the assumption that the perpendicular demagnetization effect
leads to magnetization nearly independent of z, for the thin
systems under consideration.

The exchange interaction in continuum theory is taken in
terms of the exchange stiffness A (about 13 pJ m−1 for Py) as
a volume integral,

Hex = A
∫

dV ∇m̂ · ∇m̂. (4)

where m̂ = EM/Ms is the local reduced magnetization. When
expanded on the square lattice of cells, this is equivalent to a
nearest neighbor exchange term for the cells,

Hex = −J
∑
(i,j)

m̂i · m̂j, J = 2ALz. (5)

A uniaxial anisotropy energy K (about 100 J m−3 for Py) is
included as another volume integral

Huni = −K
∫

dV (m̂ · û)2 →−Ka2Lz

∑
i

(m̂i · û)
2, (6)

where the anisotropy axis here is taken as û = x̂. The
externally applied magnetic field involves an energy of−EB · Eµ
for any dipole, so

HB = −

∫
dV µ0 EHext · EM→−µ0Msa

2Lz

∑
i

EHext · m̂i. (7)

Finally, the most important part of the interactions is the
demagnetization field or dipolar interaction. Once the cells
are defined on the grid with lattice spacing a, their dipole
interaction could be described by a Hamiltonian,

Hdd = −
µ0

4π
µ2

cell

∑
i>j

[3(m̂i · r̂ij)(m̂j · r̂ij)− m̂i · m̂j]

|Eri − Erj|
3 . (8)

However, this does not take into account the fact that
the system is very thin. The demagnetization field can be

found very accurately for thin systems using a Green’s
function approach [13]. To do this, instead, we start from the
continuum dipolar energy,

Hdd = −
1
2µ0

∫
dV EHM · EM, (9)

where EHM = −E∇8M is the demagnetization field at some
point, and 8M is its corresponding scalar magnetic potential.
That field is produced by all the dipoles, according to a
Poisson equation for magneto-statics:

−∇
28M = ρM, where ρM = −E∇ · EM. (10)

Further, the discontinuity at the surfaces of the particle can be
modeled as a magnetic surface charge density, σM = EM · n̂,
where n̂ is the outward normal. In particular, this gives charge
densities of opposite signs, σM = ±Mz on the upper and
lower faces at z = 0,Lz, respectively, under the assumption
of uniform magnetization not depending on z within the cells.
The field of those surface charges is responsible for keeping
the magnetization close to the xy-plane. There are also surface
magnetic charges at the edges of the island, but these can be
included into a localized volume charge for the cells there.
But whether the magnetic charges are surface charges or
volume charges makes no physical difference, however, and
the solution of the Poisson equation is formally

8(Er) =
∫

d3r′
ρ(Er′)

4π |Er − Er′|
. (11)

This can be used to find the demagnetization field at the
point Er = (x, y, z), and then averaging that result over z from
z = 0 to Lz. The resulting demagnetization field at a cell
centered at (x, y) has a vertical component HM,z and some
in-plane component EHM,xy. These are given by convolutions
with appropriate 2D Green’s functions, involving only the
in-plane position, denoted here as r̃ = (x, y). For the vertical
demagnetization component, one gets

HM,z(r̃) =
∫

d2r̃′ Gz(r̃ − r̃′)Mz(r̃
′), r̃ ≡ (x, y) (12)

Gz(r̃) =
1

2πLz

 1√
r̃2 + L2

z

−
1
|r̃|

 , r̃2
≡ x2
+ y2.

(13)

For the in-plane components, there is

EHM,xy(r̃) =
∫

d2r̃′ EGxy(r̃ − r̃′)ρ(r̃′). (14)

EGxy(r̃) =
êr̃

2πLz


√√√√1+

(
Lz

|r̃|

)2

− 1

 . (15)

When applied, the unit vector êr̃−r̃′ points from source point
r̃′ towards observation point r̃. There is a singularity in Gz(r̃)
as r̃ → 0, which is handled by averaging Gz over a region
with the same area as the cells being used, see [14] for further
details on this averaging of the Green’s functions.
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Together with appropriate finite-difference approxima-
tions for the magnetic charge density, these expressions are
used to get the demagnetization field. The actual evaluation of
these convolution integrals was performed as multiplication
in reciprocal space using a 2D fast Fourier transform
approach [15]. To simulate a free particle without the
periodicity effects of the FFT (i.e., to avoid the wrap-around
problem), the grid of the FFT is padded to a net size of Nx×Ny,
where Nx and Ny are the smallest powers of two satisfying
Nx ≥ 2Lx/a and Ny ≥ 2Lx/a. Because we consider elongated
particles, the calculations can be very fast due to Ny being
rather small compared to Nx, for high aspect ratio particles.
The FFT approach ends up giving the demagnetization field
at the cell center positions (as well as at other points outside
the particle, due to the padding).

It is convenient to measure magnetic fields EHext and EHM
in units of the saturation magnetization Ms, just as done for
the magnetization, m̂ = EM/Ms, and define the dimensionless
fields,

Ehext ≡
EHext

Ms
, EhM ≡

EHM

Ms
. (16)

The basic (and largest) unit of energy is the exchange
J between neighboring cells. Then the total effective
Hamiltonian can be written in units of J as

H = −J

{∑
(i,j)

m̂i · m̂j +

(
a

λex

)2

×

∑
i

[
κ(m̂i · û)

2
+

(
1
2
EhM,i + Ehext

)
· m̂i

]}
. (17)

This is written in terms of the ferromagnetic exchange length
λex and the scaled dimensionless uniaxial anisotropy κ ,
defined as

λex =

√
2A

µ0M2
s
, κ =

K

µ0 M2
s
. (18)

The magnetic internal energy Eint is of most interest. That is
this Hamiltonian, but with the interaction with the external
magnetic field (the last term) removed.

For the calculations we used the values for Permalloy,
Ms ≈ 860 kA m−1, A ≈ 13 pJ m−1, K ≈ 100 J m−3, then
these give λex ≈ 5.3 nm and κ ≈ 1.1×10−4. Due to this small
value of κ , in most of the calculations the intrinsic uniaxial
anisotropy energy is negligible compared to the other energies
of the system. In most of the simulations the cell size was
a = 2.0 nm, except for the smallest high aspect ratio particles,
where values as low as a = 0.5 nm were used, to produce
a smoother edge to the particle. These are sufficiently less
than the exchange length to give a reliable description of the
internal magnetic structure.

3. Calculation procedures

The iteration procedure that moves the system towards
the nearest local equilibrium is a local spin relaxation
algorithm [16] that points each cell’s magnetic moment Emi (or

its unit vector m̂i) along its local magnetic field EBi. That local
field enters the undamped dynamic equation of motion,

d Emi

dt
= γ Emi × EBi, (19)

and it is given by the variation of the Hamiltonian,

EBi = −
δH
δ Emi
= −

1
µcell

δH
δm̂i

=
J

µcell

{∑
nbrs

m̂j +

(
a

λex

)2

× [2κ(m̂i · û)û+ 1
2
EhM,i + Ehext]

}
. (20)

Alternatively, this is the same as

EBi = µ0Ms

{(
λex

a

)2∑
nbrs

m̂j

+ [2κ(m̂i · û)û+ 1
2
EhM,i + Ehext]

}
. (21)

This defines a unit vector along which to point the magnetic
moment of cell i, m̂i → m̂′i, where

m̂′i = b̂i =
EBi

|EBi|
. (22)

The alignment of m̂i parallel to b̂i is performed for
every site of the grid, after which the demagnetization
field must be recalculated. The process moves the system
towards lower energy. Each cell would stop moving if
all became simultaneously aligned self-consistently with
their local magnetic fields. This does not insure a global
energy minimum, however, and the procedure does have the
capability to generate the hysteresis loops. The iteration is
started from a partially aligned state of the cell dipoles, which
are given some small random fluctuations away from perfect
alignment. For the hysteresis calculation, though, the last
relaxed state at one applied field is the initial state for the next
value of applied field.

As the iteration proceeds, periodically (every 200
iterations of the system) the total magnetic moment Eµ of the
particle is calculated, by summing over the cell dipoles,

Eµ = (µx, µy, µz) = µcell

∑
i

m̂i. (23)

The iteration is stopped when the changes in any component
of Eµ are less than 1 part in 5 × 107 for two states separated
by 200 iterations. This is actually a more stringent stopping
requirement than waiting for the energy to converge to the
same precision.

In one set of simulations, the applied magnetic field
was directed within the xy-plane at an angle φH to the
+x-axis, EHext = Hext(cosφH, sinφH, 0). The field amplitude
Hext was scanned from positive to negative values and back
to positive values to trace out the hysteresis loop. This
results in the net magnetic moment Eµ lying within the

4
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Figure 1. The in-plane potential of an elliptical particle with a 5:1
aspect ratio, mapped out while determining the hysteresis loops
shown in the inset. Lines in the hysteresis loops are guides to the
eye. The angle φm is the direction of the net particle moment Eµ in
the easy plane, measured from the long (+x)-axis of the particle.
The symbols come from calculations at different angles φH. The
solid black curve is a fit to equation (2). A different range of the
potential is mapped out at negative φm because that region
corresponds to metastable states ( Eµ has a component opposite to
EHext for φm < 0). The fit gives a reliable estimate of anisotropy
constant K1 ≈ 31.5J, together with E0 ≈ 4.32J.

xy-plane at angles φm < φH to the +x-axis. To distinguish
the metastable states from the stable states (before and after
a reversal of µx), this angle was calculated from φm =

sgn(Hext,x)tan−1(|µy|/µx). Positive (negative) values of φm
correspond to the stable (metastable) states in the first and
third (second and fourth) quadrants of the hysteresis loop. A
reversal of the magnetic moment shows up as a discontinuous
jump from a negative to a positive value of φm, together with
the jump in magnetization. Thus, the in-plane potential energy
function Eint(φm) was found while calculating the hysteresis
loops. Then K1 was found by fitting Eint(φm) to the form
in (2).

In the other set of simulations, the magnetic field was
applied tilting out of the xy-plane, making an angle θH to
the x-axis, that is, EHext = Hext(cos θH, 0, sin θH). This pulls
Eµ up an angle θm < θH from the easy (xy)-plane, where
θm = sgn(Hext,x)tan−1(|µz|/µx), and gives the opportunity
to measure the potential Eint(θm). Similar to the in-plane
potential, stable (metastable) states have positive (negative)
values of θm. The internal energy was fitted to the out-of-plane
potential (3), whose stiffness is due to the combination, K13 =

K1 + K3.
The potentials obtained do not depend on the choice of φH

or θH. This is seen by combining the internal energy curves for
applied field at different angles.

For the hysteresis curves, the total magnetic moment Eµ
was calculated and normalized by the particle volume V to
get the averaged magnetization inside the particle, 〈 EM〉 = EµV .
Then the component of 〈 EM〉 along the applied field axis is
found,

〈Mh〉 ≡ 〈 EM〉 · ĥext. (24)

Figure 2. The out-of-plane potential of the same elliptical particle
with a 5:1 aspect ratio as in figure 1, mapped out while determining
the hysteresis loops, shown in the inset. Lines in the hysteresis loops
are guides to the eye. The angle θm is the tilting of the net particle
moment Eµ out of the easy plane. The symbols show calculations at
different angles θH of the applied field from the long axis (+x) of
the particle. The fit (solid black curve) to equation (3) gives a
reliable estimate of the combined anisotropy constant
K13 = K1 + K3 ≈ 111.4J, together with E0 ≈ 4.25J .

After scaling by the saturation magnetization, this is plotted
versus the applied field magnitude, also scaled by saturation
magnetization (hext = Hext/Ms).

4. Results for elliptical particles

We considered thin elliptical particles with thicknesses all
1/20th of the length, i.e., g3 = Lx/Lz = 20, and aspect ratios
g1 = Lx/Ly = 2, 3, 5, and 8. The lengths ranged from 120 to
480 nm. Some typical results for the internal energy curves
are shown in figure 1 for the in-plane potential and figure 2 for
the out-of-plane potential of an elliptical particle with g1 = 5,
with major axis 240 nm, minor axis 48 nm and thickness
12 nm. The potentials Eint(φm) for in-plane motion of Eµ fit
very well to the functional form in equation (2). The constant
E0 is an irrelevant ground state energy when the particle is
magnetized along its long axis. This same form applies very
well to the potential Eint(θm), but with a coefficient K13 =

K1 + K3. The potentials found have a larger range in positive
angle than in negative angle; the negative angle states are
metastable and undergo reversal at a somewhat higher field
strength. The negative φm or θm states are those where µx and
Hext,x have opposite signs (in the second and fourth quadrants
of the hysteresis loops). The limited range for negative angle
gives a sense of the limited stability of those metastable
states.

The fits are best for smaller particles, where the cells
stay strongly aligned with each other, and the reversal can be
considered close to a uniform rotation process, for the most
part. For the larger particles (length > 400 nm) this global
alignment is lesser and the fits are good but with considerably
greater χ2. Even so, the internal magnetization structure of
the relaxed states tends to be close to uniform.

Fitting results are summarized in table 1, with the
constants presented in units of J = 2ALz. The constant K3

5
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Table 1. Values of the in-plane anisotropy constant K1 and
out-of-plane anisotropy constant K3 in units of J = 2ALz for
different particle sizes and aspect ratios g1 = Lx/Ly. All of the
particles calculated have g3 = Lx/Lz = 20.

Lx

g1

120 nm 240 nm 480 nm

K1 K3 K1 K3 K1 K3

2 6.35J 72.7J 27.3J 287J 111J 1140J
3 7.32J 43.4J 31.9J 169J 134J 670J
5 6.96J 21.1J 31.5J 79.9J 133J 311J
8 7.39J 8.30J 29.5J 33.1J 118J 132J

is consistently stronger than the easy-axis constant K1, as to
be expected from the greater surface area of the lower and
upper faces at z = 0,Lz, compared to the very limited surface
area of the edge of the ellipse. The energy unit J itself varies
according to the thickness. Thus it makes sense to also look at
results for the constants in joules.

Generally, K3/J increases proportional to the area of the
ellipse, 1

4πLxLy, multiplied by the thickness Lz, so that in fact
K3 (in joules) is linearly proportional to the volume of the
particles. Also, one sees that K3 decreases with increasing
aspect ratio for particles of the same length; this is because
the particle volume is decreasing. On the other hand, K1/J
depends very weakly on the aspect ratio for the particle
sizes tested. In addition, the calculations suggest that K1
increases somewhat faster than the particle volume. The weak
dependence of K1 on the shape of the ellipse (at these larger
values of g1) is surprising.

To clarify the results we also show the constants
converted to energy densities, both K1/V and K3/V in J nm−3,
in figure 3. The actual units are the exchange stiffness A (units
of joules/nanometer) divided by square nanometers. One
finds very little dependence of either energy density constant,
K/V , on the particle size, however, again it is clear that K3 is
always larger than K1. Furthermore, the easy-axis anisotropy
constant K1/V does increase rapidly with the in-plane aspect
ratio g1, and the relation could be close to a linear relationship.
Although the values of K3/V are always greater than the
corresponding K1/V , these hard-axis energy densities K3/V
decrease slightly with increasing aspect ratio g1. At large
aspect ratio, the two constants become nearly the same, which
would have to be the case for a needle-shaped magnet.

4.1. The magnetization structure

In the high aspect ratio particles, the magnetization states are
very close to uniform, even when undergoing reversal. The
elongated particle has such a strong anisotropic effect that the
magnetization cells move almost in a synchronized motion.
For particles with smaller aspect ratio, one starts to see some
weak variations in the magnetization inside the particle.

To get an idea of the size of this effect, some
configurations are presented for ellipses with g1 = 2, which
has the strongest effect of all the particle shapes presented
earlier. In figure 4 some configurations are shown for a
120 nm × 60 nm × 6 nm particle, at different applied field

Figure 3. The anisotropy constants K1 (solid curves) and K3
(dashed curves) scaled by elliptical particle volume, versus particle
lengths, for the indicated g1 aspect ratios. All data has g3 = 20. The
values of K/V are given in units of A nm−2, where A is the
exchange stiffness. K1/V increases with aspect ratio while K3/V
decreases, and they become equal at high aspect ratio.

strengths 45◦ to the particle’s long (+x)-axis. The points
shown are at (a) close to saturation, (b) zero applied field,
(c) a negative field close to reversal, and (d) a negative field
just after reversal. For the most part, the magnetization stays
nearly uniform for this relatively small particle.

Another example is presented in figure 5, like the first
example, but 2× larger in all three dimensions. The four
configurations shown correspond to the same four types
of states as presented for the smaller particle. The main
difference here is that a non-uniform magnetic structure
develops. At zero field, the structure points inward/outward
towards the poles on the long axis. For the configurations
just before and after reversal, a wave-like structure is present.
These spatial variations are due to the dipolar interactions; in
even lower aspect ratio particles (g1 < 2), they lead to C-states
and even vortices entering the particle.

4.2. Particles with lower aspect ratio g1 < 2

When g1 → 1, the ellipse becomes circular and the easy-axis
anisotropy must vanish. Using smaller g1 is a way to produce
particles with weaker easy-axis anisotropy constant. However,
as the system becomes closer to circular, the lowest energy
configuration, especially near zero applied magnetic field,
tends to be non-uniform. The ground state can tend towards
a C-state or a vortex state if the particle is of sufficient size.
The above results do not apply to that situation, especially
because the non-uniform magnetization cannot be mapped
into the model of an individual magnetic moment moving in
an effective potential.

To verify this, some particles were also calculated at
small ellipticity, where K1 ≈ 0, using g1 = 1.25 and 1.11.
Generally, at these ratios, if there was a stable single-domain
ground state (for smaller particles only), the tendency is for
the moments to try to follow the border, and point inwards or
outwards from the poles at the long ends. At larger particle
size this tilting eventually moves the system irreversibly to
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Figure 4. Magnetic configurations for a 120 nm× 60 nm× 6 nm particle with magnetic field applied at +45◦ above a horizontal axis
pointing to the right. The arrows are the coarse-grained averages of 3× 3 groups of cells. In (a), the external field is h = 0.20; in
(b) h = 0.0; (c) h = −0.030, just before reversal; (d) h = −0.032, just after reversal.

Figure 5. Magnetic configurations for a 480 nm× 240 nm× 24 nm particle with magnetic field applied at +45◦ above a horizontal axis
pointing to the right. The arrows are the coarse-grained averages of 9× 9 groups of cells. In (a), the external field is h = 0.20; in
(b) h = 0.0; (c) h = −0.025, just before reversal; (d) h = −0.027, just after reversal. Note the enhanced curvature of the field compared to
that in the smaller particle in figure 4.

a vortex ground state. Until the vortex state is reached,
an effective potential can be estimated; however, from the
practical point of view it may be of limited use.

4.3. Thicker particles

The particles with g3 = 20 can be too thin to hold a magnetic
moment stable against room-temperature thermal fluctuations.
Thus it is important to consider the changes when thicker
particles are used. Further calculations were carried out for

240 nm long particles to get results for g3 = 20, 15, 10, and
8, corresponding to thicknesses of 12, 16, 24 and 30 nm,
respectively. The results for K1/V and K3/V are shown in
figure 6. As could be expected, the thicker particles have
weaker out-of-plane anisotropy K3/V , while K1/V increases
due to the thicker lateral edges, but at a rate less than linear
in the thickness. We expect that these per-volume energy
constants have only very weak dependence on the particle
length, as was already seen in the results presented above for
12.0 nm thickness.

7
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Figure 6. The anisotropy constants K1 (solid curves) and K3
(dashed curves) scaled by elliptical particle volume, versus particle
thicknesses, for the indicated g1 aspect ratios. All the data is for
particles of length Lx = 240 nm. The K3/V constant crosses below
zero for the thickest high aspect ratio particles, which have become
needle-like and no longer satisfy the assumption of a thin particle.
That is the case of a particle with only uniaxial anisotropy.

5. Conclusions and discussion

The anisotropy properties of thin elliptical ferromagnetic
particles have been estimated, based on a 2D micromagnetics
model that employs Green’s functions for the calculation
of the demagnetization fields. For the high aspect ratio
particles being considered, the magnetization was found to
be close to uniform inside the particles. Then it was possible
to map out the changes in the internal energy versus the
direction of the net magnetic moment Eµ, which itself acts
as a collective coordinate. The typical particles tend to
have stronger anisotropy in the hard-axis direction (K3/V)
than in the easy-axis direction (K1/V), however, these two
energy scales approach each other for needle-like particles,
as expected. The results could be of practical application
in the design and analysis of artificial spin ice with desired
dynamics, beyond the usual Ising energetics.

In the theoretical study of artificial spin ice materials,
it is usual to replace the islands by point-like dipoles with
an Ising-like behavior. Indeed, all theoretical calculations
for the properties of these systems were obtained with this
approach. However, a more realistic description of these
artificial spin ices should require models beyond the Ising
approximation, such as continuous magnetic moments with
anisotropy considered in this work. In such a case, although
the main properties of a spin ice system may not undergo
strong alterations, several quantities would change their
values. For instance, a recent work about the thermodynamics
of the square lattice [17, 18] has suggested a possible phase
transition in this system, occurring at a temperature of 7.2D,

where D is the coupling constant of the dipolar interaction
among the islands. Of course, the transition temperature or
similar quantities should be dependent on the island sizes
and anisotropies, but this dependence cannot be perceived
with the Ising approach. It is very probable that the correct
critical temperature must be much smaller than 7.2D since
the total magnetic moment of an island has more degrees
of freedom, and effectively moves in a softer potential. In
addition, the properties must also be dependent on the islands’
shapes, etc. So, the results obtained here are of fundamental
importance for developing this field not only theoretically
but also experimentally, suggesting protocols for improving
experiments, and including studies about their dynamics.
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