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We examine the phase diagram of the spin-1 − −J J J1 2 3 ferromagnetic Heisenberg model with an easy-
plane crystal field on the cubic lattice, in which J1 is the ferromagnetic exchange interaction between
nearest neighbors, J2 is the antiferromagnetic exchange interaction between next-nearest neighbors and
J3 is the antiferromagnetic exchange interaction between next-next-nearest neighbors. Using the bond-
operator formalism, we investigate the phase transitions between the disordered paramagnetic phase
and the ordered ones. We show that the nature of the quantum phase transitions changes as the frus-
tration parameters ( J

J
2

1
, J

J
3

1
) are varied. The zero-temperature phase diagram exhibits second- and first-

order transitions, depending on the energy gap behavior. Remarkably, we find a disordered nonmagnetic
phase, even in the absence of a crystal field, which is suggested to be a quantum spin liquid candidate.
We also depict the phase diagram at finite temperature for some values of crystal field and frustration
parameters.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

The investigation of frustrated quantum spin models has at-
tracted a lot of attention since Anderson proposed theoretically
the existence of a non-magnetic ground state in a triangular lattice
[1]. Such a disordered state is known as a quantum spin liquid.
From a theoretical point of view, the association between frus-
tration and quantum fluctuations is believed to give rise to this
novel quantum phase [2]. While quantum fluctuations are in-
troduced by the non-commutativity of quantum mechanics spin
operators, frustration arises either from competition between
different interactions, e.g. ferromagnetic and antiferromagnetic
couplings [3,4], or from geometry of the lattice, e.g. spins that
interact via antiferromagnetic coupling on several lattices [5,6].

As a result, spin models that have both strong quantum fluc-
tuations and frustration are candidates to exhibit quantum spin
liquid phase. In fact, most of theoretical researches have been
concentrated on spin-1/2 models in one- and two-dimensional
lattices, since, in these cases, quantum fluctuations are enhanced
(see, for example, Refs. [7–9]). However, three-dimensional com-
pounds have recently been suggested to present a quantum spin
liquid phase [10–12], which turns our attention to the theoretical
investigation of three-dimensional models.
rte de Minas Gerais, Fazenda
60-000, Salinas, MG, Brazil.
On the other hand, the discovery of spin-1 compounds has led
to a lot of experimental and theoretical studies of the effect of
single-ion anisotropy. In fact, there has been recently an interest in
the study of quantum phase transitions in spin-1 magnets with
strong single-ion anisotropy (see, for example, Ref. [13] and re-
ferences there in). These systems become quantum paramagnets
for sufficiently high values of the easy-plane single-ion anisotropy,
which is purely a quantum effect without a counterpart in the
classical models.

In addition, a quantum spin liquid phase has recently been
discovered in the compound Ba NiSb O3 2 9 [14,15], which behaves
effectively as a spin-1 system. This also motivates the theoretical
investigation of spin-liquid behavior in spin-1 models.

In this paper, we study the phase diagram of spin-1 − −J J J1 2 3
ferromagnetic Heisenberg model with an easy-plane crystal field
on the cubic lattice, which is defined by the following Hamilto-
nian:
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where ∑ δ→ →
r , i

sums over the first neighbors for i¼1, over the second

neighbors for i¼2, and over the third neighbors for i¼3. J1 is the
ferromagnetic exchange interaction between nearest neighbors, J2
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is the antiferromagnetic exchange interaction between next-
nearest neighbors and J3 is the antiferromagnetic exchange inter-
action between next-next-nearest neighbors. The last sum is over
the total number of sites on the cubic lattice, N, and >D 0 is the
easy-plane crystal field that gives rise to a single-ion anisotropy.
→

→S r is the spin operator at site →r with →S
r
z taking the eigenvalues

−1, 0, 1.
To the best of our knowledge, the above Hamiltonian has not

been examined yet. Only its counterpart model with all anti-
ferromagnetic couplings (J1, J2, J3) has been treated in Ref. [16],
which is less interesting because in this case, J1 and J3 does not
compete with each other. Thus the present Hamiltonian (1) is
much more suitable to seek quantum spin liquid candidates. In
addition, compounds with both ferromagnetic and anti-
ferromagnetic exchange interactions have been reported in the
literature (see Ref. [3] and references therein), which indicates that
the present model with competitive interactions may be inter-
esting not only from a theoretical perspective.

In order to study the phase diagram of this frustrated Heisen-
berg model, we use an analytical approach that has been suc-
cessfully employed to describe transitions from a gapped to a
gapless phase, namely bond-operator formalism [17–20]. In a few
words, within the framework of the bond-operator theory, the
spin Hamiltonian is mapped into a Hamiltonian of non-interacting
bosons, and phase transitions are located when the energy gap
vanishes.

It should be pointed out that, in general, analytical approaches
are more adequate to treat three-dimensional frustrated quantum
spin systems than numerical methods, by reason of the limited
amount of computational power. In particular, it is well known
that quantum Monte Carlo suffers from the minus-sign problem
which restricts its applicability: only non-frustrated quantum spin
systems [21].

The present paper is organized as follows. In the next section
we describe the bond-operator formalism and how phase transi-
tions are characterized within this framework. In Section 3, we
show the results for the phase diagrams at finite temperature and
at absolute zero as well. We also discuss the physical meaning of
the obtained results. We close with some concluding remarks.
2. Bond-operator formalism

We employ the bond-operator formalism in order to in-
vestigate the phase diagram of the present model. This procedure
was originally devised by Sachdev and Bhatt [22], for spin-1/2, and
generalized by Wang et al. [17,23], for spin-1, some years later. To
begin we describe the method briefly below.

For spin-1, by introducing three boson operators, it is possible
to represent the three eigenstates of Sz as follows:
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where |v is the vacuum state from which bosons are created.
These boson operators must also obey the local constraint
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in order to keep the dimension of the local Hilbert space invariant.
Now, we can write the spin operators Sx, Sy and Sz in terms of

these bosons operators:
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Substituting the above relations into Eq. (1), the Hamiltonian can
be rewritten as a sum of four components
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where a temperature-dependent chemical potential, μ→r , has been
introduced to guarantee the single-site occupancy, and H.c. means
Hermitian conjugate.

In order to treat the above Hamiltonian, it is necessary to make
some approximations at mean-field level:

� Firstly, the condensation of tz bosons is required, i.e.
= =†t t tz z . This approach, as shown by Zhang et al. [13], is

very accurate to treat phases where =S 0z .
� Secondly, the four-operator terms of the Hamiltonian compo-

nents ( 1, 2 and 3) are decoupled into product of two op-
erators, as done in Ref. [17]. For the component 1, for example,
one obtains
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for components 2 and 3, respectively.
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� Lastly, the local constraint in Eq. (3) is replaced by a global
constraint, that is, we assume that μ is site-independent,
ignoring its fluctuations. A discussion about this approximation
is presented in [24].

As a result, we arrive at a quadratic Hamiltonian involving
boson operators. The next step in diagonalizing it is to take ad-
vantage of translational invariance by using Fourier transformed
operators
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However, this is not sufficient to diagonalize completely the Ha-
miltonian. Hence, we make use of a linear combination of Fourier
transformed operators
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provided that χ ρ− = 1k k
2 2 . This is known as Bogoliubov

transformation.
Finally, we write the diagonal form of the Hamiltonian
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Two frustration parameters have been defined, namely η = J

J
2

1
and

α = J

J
3

1
, and we have fixed =J 11 .

We can derive the energy of the ground state from the Ha-
miltonian of non-interacting bosons (13) by setting
α α β β= =→

† → →
† → 0

k k k k
, since these operators count the number of bo-

sons (excitations). Thus,
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It is also straightforward to obtain the Gibbs free energy
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is the Boltzmann factor.

By minimizing the Gibbs free energy, we obtain a set of coupled
equations from which the phase diagram of the model can be
examined:
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with =i 1, 2, 3.

Taking the continuum limit, the summation over
→
k can be

replaced by a triple integral, then these integrals are solved nu-
merically by using the Gauss–Legendre method. We also apply the
Newton–Raphson technique for solving these coupled equations.

2.1. Phase transitions

The classical version of the Hamiltonian (1) with D¼0 has two
ordered phases at absolute zero:

(i) A ferromagnetic phase (F) characterized by
→

= ( )k 0, 0, 0F ;
(ii) A collinear antiferromagnetic phase (CAF) characterized by

π
→

= ( )k 0, 0,CAF or π
→

= ( )k 0, , 0CAF or π
→

= ( )k , 0, 0CAF .

It should be mentioned that in contrast to the classical − −J J J1 2 3
antiferromagnetic Heisenberg model, the collinear anti-
ferromagnetic phase with π π

→
= ( )k 0, , is never stable in its fer-

romagnetic counterpart.
In order to verify the presence of these ordered phases in the
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quantum Hamiltonian (1), we must analyze the energy gap for
both phases F and CAF. According to the bond-operator formalism,
phase transitions are obtained from the gapped phase (disordered)
to the gapless phase (ordered) when the gap closes at the critical
point.

For the F order, the boson modes become gapless at
→
kF and

therefore ω =→ 0
kF

, which characterizes a phase transition between

the disordered paramagnetic phase and the ferromagnetic phase.

For the CAF order, the energy gap goes to zero at
→
kCAF , then

ω =→ 0
kCAF

, which characterizes a phase transition between the

disordered paramagnetic phase and the collinear antiferro-
magnetic phase.
1.4 1.45 1.5 1.55 1.6 1.65 1.7

D
0.33

Fig. 2. The energy gap of the ferromagnetic phase, ω→
kF
, as a function of the crystal

field, D, at zero temperature, for α = 0 and η = 0.227.
3. Results and discussion

In this section, we show numerical results obtained by solving
the coupled equations ((26)–(28)) in the continuum limit. Phase
diagrams at zero temperature as well as at finite temperature are
analyzed as a function of the parameters of the Hamiltonian (1).
Before starting the discussion, we remind the reader about the

notation used herein: η = J

J
2

1
and α = J

J
3

1
.

3.1. Quantum phase diagram (T¼0)

Fig. 1 shows the quantum phase diagram for α = 0. One notes
the presence of two ordered phases below the critical lines,
namely F and CAF. For η≤ <0 0.227, the ferromagnetic phase is
stable, while for η< ≤0.239 1, the collinear antiferromagnetic
phase is stable. A remarkable finding is a narrow nonmagnetic
phase between F and CAF phases along η-axis, for

η≤ ≤0.227 0.239, which is clearly depicted in the inset. Such a
gapped phase, which is absent in the corresponding classical
model, is a quantum spin liquid candidate.

It should be pointed out that the classical ground state of the
present model with D¼0 exhibits a transition between F and CAF
phases for η = 0.25classical at α = 0. Hence, one notes from Fig. 1 that
when the quantum nature of the frustrated Heisenberg model is
taken into account, the CAF phase is slightly enhanced while the F
phase is weakened, and besides, a quantum nonmagnetic phase
emerges between these phases.

Thus, our results indicate that even a three-dimensional model
is able to host a quantum spin liquid phase, despite the fact that
0 0.2 0.4 0.6 0.8 1
η

0

5

10

15

20

Dc

Disordered

F CAF

F CAF

0.22 0.23 0.24 0.25
0

1

2

3
α = 0

Fig. 1. Critical crystal field, Dc, as a function of the frustration parameter, η, at zero
temperature, for α = 0. The continuous lines refer to second-order quantum phase
transitions, and the dotted lines refer to first-order ones. The inset shows the low
crystal field region on a finer scale.
quantum fluctuations decrease with the increase of lattice di-
mensionality. Recently, a quantum spin liquid phase candidate has
also been suggested on the cubic lattice for the spin-1/2 − −J J J1 2 3
antiferromagnetic Heisenberg model by using the variational
cluster approach [25], which corroborates our finding.

One can also see that the nature of the phase transitions varies
with η. For η = 0.227 and η = 0.239, the energy gap does not vanish
continuously, as one would expect at a critical point, by contrast, it
passes through a finite minimal value. This is shown in Fig. 2 for
η = 0.227. From D¼1.7, we see clearly that the energy gap, ω→

kF
,

decreases with decreasing D, passes through a minimum, and then
increases. Hence, we believe that the model undergoes first-order
transitions for those values of η.

It is also worth analyzing the effect of the crystal field on the
stability of the ordered phases. Note that the critical crystal field,
Dc, for the F phase, decreases with increasing η, while for the CAF
phase Dc increases. This can be understood as a result of the
frustration that destroys the ferromagnetic order and favors the
collinear antiferromagnetic one.

A similar phase diagram is obtained by letting α = 0.1. As
shown in Fig. 3, when we include the third-neighbor coupling, J3,
the ordered phases, F and CAF, are still present as well as the
magnetically disordered one. However, the J3 interaction reduces
the F phase and increases the CAF order. Considering <D Dc, the F
phase is stable for η≤ <0 0.127, while CAF phase is stable for

η< ≤0.137 1.
0 0.2 0.4 0.6 0.8 1
η

0

5

10

15

20

Dc

F CAF

F CAF

Disordered
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4 α = 0.1

Fig. 3. The same as Fig. 1 for α = 0.1.
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Fig. 4. Critical crystal field, Dc, as a function of the frustration parameter, η > 0, at
zero temperature, for α = 0.25.
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α

CAF

F

D = 0

Disordered

Fig. 6. α as a function of η, at zero temperature, for D¼0. The dotted lines denote
the first-order transitions between the ordered phase (F or CAF) and disordered
one.
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For α≤ <0 0.23, the phase diagram is similar to the ones
shown in Figs. 3 and 5. By contrast, for α ≥ 0.23, the phase diagram
is modified, namely only the CAF phase is stabilized along the
positive η-axis. A phase diagram in this range of frustration
parameter is depicted in Fig. 4. Therefore the competition between
J1 and J3 is responsible to suppress the ferromagnetic order for
α ≥ 0.23, since J3 frustrates the J1 coupling. We remark that this
feature is not observed in the corresponding model with both J1
and J3 antiferromagnetic, by reason of J3 does not frustrate J1, then,
in this case, the Néel order is enhanced in contrast to the collinear
one [16].

So far, we have only considered positive values of parameter η.
However, if one allows negative values for J2 coupling, which
means that both J1 and J2 are ferromagnetic, the F phase will be
stabilized along the negative η-axis even if α ≥ 0.23, as shown in
Fig. 5. This happens because for η < 0, J1 and J2 does not compete
with each other anymore, in contrast to the case depicted in Fig. 4,
so that the F order increases as the parameter η becomes greater
and negative. On the other hand, the CAF region becomes very
thin, since, in this case, both J1 and J2 frustrates the anti-
ferromagnetic coupling J3 (see inset in Fig. 5).

For the sake of completeness, the phase diagram for D¼0 is
depicted in Fig. 6. We show the first-order phase transitions be-
tween the non-magnetic phase (disordered) and the ordered
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Fig. 5. Critical crystal field, Dc, as a function of the frustration parameter, η < 0, at
zero temperature, for α = 0.25. The continuous lines refer to second-order quantum
phase transitions, and the dotted lines refer to first-order ones. The inset shows the
low crystal field region on a finer scale.
phase (F or CAF). As one can see, the disordered phase is very
narrow and its width remains approximately constant as the
frustration parameters are varied. In addition, we observe that
both frustration parameters, α and η, have the same effect on the
phase diagram: upon increasing α or η the phase transitions al-
ways occur from the ferromagnetic phase to the disordered phase,
and then to the collinear phase.

3.2. Phase diagram at finite temperature

Up to now, we have set T¼0. In this section, we turn our at-
tention to the effect of temperature on the phase diagram of the
present model. Thus, in contrast to the quantum phase transitions,
the phase transitions analyzed here is driven by thermal
fluctuations.

The behavior of the critical temperature, ( )Tc
F CAF , as a function of

the crystal field, for some values of η, is shown in Fig. 7. Phase
transitions between the F phase and the disordered phase is de-
picted in Fig. 7(a) and (b) while the transitions between CAF phase
and the disordered one is depicted in Fig. 7(c) and (d). A common
feature is shared by all lines in Fig. 7: the critical temperature
passes through a maximum upon increasing crystal field, and then
decreases toward the quantum critical point. It should be men-
tioned that this is not a consequence of frustration, since unfru-
strated Heisenberg model also exhibits it [17,26]. We believe that
the quantum nature of the model, which is introduced by the non-
commutativity of quantum mechanics spin operators, is re-
sponsible for this effect because in the classical Heisenberg model
such characteristic is not observed: the critical temperature in-
creases as the crystal field increases, and asymptotically ap-
proaches a constant value [27]. Consequently, in contrast to its
quantum counterpart, the spins order down to absolute zero, even
if the easy-plane anisotropy is very strong.

In Fig. 7(a) and (b), one notices that Tc
F decreases with in-

creasing η, since the frustration weakens the ferromagnetic order,
then less thermal fluctuations are required to drive the phase
transition. By contrast, in Fig. 7(c) and (d), one can see that Tc

CAF

increases as η increases because the collinear order is strength-
ened by the presence of J2 coupling. We also conclude, by setting
η = 0.1, that Tc

F is greater for α = 0 (red full line in Fig. 7(a)) than for
α = 0.1 (blue dashed-dotted line in Fig. 7(b)). On the other hand,
for η = 0.4 and η = 1, we observe that Tc

CAF is greater for α = 0.1
(red full and black dashed lines in Fig. 7(d)) than for α = 0 (red full
and black dashed lines in Fig. 7(c)).

It seems worthwhile to analyze the behavior of the critical
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temperature as a function of η for some values of αwith ≠D 0. The
results that are shown in Fig. 8(a) for D¼6 indicate that the
magnetically disordered region between F and CAF becomes
smaller with increasing α. For α ≥ 0.2, as depicted in Fig. 8(b), the F
phase is completely destroyed and the CAF region becomes larger.
We would like to draw the attention of the reader to the dis-
appearance of the F phase. This is a consequence of the range of
parameter η: only positive values. As discussed in Section 3.1, by
considering η < 0, J1 and J2 does not compete with each other, and
then the ferromagnetic order will not disappear.
4. Concluding remarks

We have studied the spin-1 − −J J J1 2 3 ferromagnetic Heisen-
berg model with an easy-plane crystal field on the cubic lattice by
using the bond-operator formalism. Phase diagrams have been
examined at finite and at zero temperatures. The zero-tempera-
ture phase diagrams exhibit a narrow magnetically disordered
phase between the ferromagnetic and collinear antiferromagnetic
phases for D¼0 and α≤ <0 0.23. We suggest that such a dis-
ordered phase is a quantum spin liquid candidate. Second- and
first-order phase transitions have been located according to the
energy gap behavior. The effect of the crystal field, frustration and
temperature on the stability of the ordered phases has also been
analyzed in some cases.

One should mention that applications of numerical procedures
to the present model would be very welcome in order to be
compared with our analytical results, mainly to confirm the first-
order transitions between the ordered and the disordered phases.
Although, in general, numerical methods are not suitable to treat
quantum systems in three dimensions, the variational cluster ap-
proach has been recently extended to study such systems [25], and
then it can be used to verify the nature of these transitions.

As a final remark, the possibility of defining a nematic order
induced by the crystal field ( ≠D 0) at absolute zero in the present
model will be subject of future investigation, since a nematic order
has been found in its two-dimensional counterpart [4]. Further-
more, the extension of the present calculations to three-dimen-
sional lattices with more complex geometries, such as hyperho-
neycomb and stripyhoneycomb [10,12], deserves serious
consideration.
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