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The existence of nonlinear objects of the vortex type in two-dimensional magnetic systems presents
itself as one of the most promising candidates for the construction of nanodevices, useful for storing
data, and for the construction of reading and writing magnetic heads. The vortex appears as the
ground state of a magnetic nanodisk whose magnetic moments interact via the dipole-dipole
potential �D��S� i ·S� j −3�S� i · r̂ij�� �S� j · r̂ij�� /rij

3 � and the exchange interaction �−J�S� i ·S� j�. In this work
it is investigated the conditions for the formation of vortices in nanodisks in triangular, square, and
hexagonal lattices as a function of the size of the lattice and of the strength of the dipole interaction
D. Our results show that there is a “transition” line separating the vortex state from a capacitorlike
state. This line has a finite size scaling form depending on the size, L, of the system as Dc=D0

+1 /A�1+BL2�. This behavior is obeyed by the three types of lattices. Inside the vortex phase it is
possible to identify two types of vortices separated by a constant, D=Dc, line: An in-plane and an
out-of-plane vortex. We observed that the out-of-plane phase does not appear for the triangular
lattice. In a two layer system the extra layer of dipoles works as an effective out-of-plane anisotropy
inducing a large Sz component at the center of the vortex. Also, we analyzed the mechanism for
switching the out-of-plane vortex component. Contrary to some reported results, we found
evidences that the mechanism is not a creation-annihilation vortex anti-vortex process. © 2010
American Institute of Physics. �doi:10.1063/1.3318605�

I. INTRODUCTION

The miniaturization of electronic devices has a natural
limit imposed by the thermal fluctuations which determines
how long the magnetization of a ferromagnetic structure sur-
vives, or in other words: The long-range ferromagnetic order
vanishes when the energy due to the anisotropy becomes
comparable to the thermal fluctuation energy in the system.
That is the well known superparamagnetic limit1 that impose
physical limits in the miniaturization of magnetic devices.
Recent developments in nanomagnetic materials has shown
that the development of a vortex in quasi-two-dimensional
�2D� nanomagnets can help to overcome the superparamag-
netic limit. Their expected applications include magnetic ran-
dom access memory, high density magnetic recording media,
magnetic sensors, and magnetic reading and writing
heads.2–4

By a vortex we mean a special configuration of magnetic
moments similar to the stream lines of a circulating flow in a
fluid. The magnetic moments precess by �2� on a closed
path around the vortex. In the Fig. 1 we show schematically
the types of vortices and antivortices that can appear in mag-
netic systems. The importance of vortices in magnetic sys-
tems is known since the early seventies in connection with
the Berezinskii–Kosterlitz–Thouless �BKT� phase “transi-
tion.” In a seminal work Berezinskii5 and later Kosterlitz and
Thouless6 showed that the easy plane Heisenberg model
�EPHM� in two dimensions undergoes an infinite order phase

transition. The EPHM is described by the Hamiltonian H
=��i,j�−JS� i ·S� j +AS� i

z ·S� j
z, where J is an exchange term and A

an easy plane anisotropy. The EPHM has a BKT transition at
a temperature TBKT coming from a high-temperature phase
where the same time space-space correlation function exhib-
its an exponential decay to a low-temperature phase with
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FIG. 1. �Color online� Show schematically in a square lattice: �a� type I
vortex, �b� type I antivortex, �c� type II vortex, and �d� type II antivortex.
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quasi-long-range order where the correlation function has a
power-law decay. This phase transition is believed to be
driven by a vortex-antivortex unbinding mechanism. The en-
ergy associated with the pair vortex–antivortex is propor-
tional to ln rv−av, where rv−av is the distance between the
vortex and antivortex centers. The logarithmic behavior of
the energy prohibits the existence of an odd number of vor-
tices or antivortices in the EPHM with free or periodic
boundary conditions. That is because an isolated vortex �or
antivortex� has energy ln R, where R is the vortex size. In a
magnetic nanodot a magnetic dipole-dipole energy term has
to be considered beside the exchange and the anisotropy
terms.7 The dipole energy competes with the exchange term
so that for large enough dipole interaction the continuity of
the magnetic field in the boundary of the system imposes the
magnetic moments to be tangent to the border of the
nanodot.8–10 This kind of boundary condition favors the ap-
pearing of an isolated vortex at the center of the system �See
Fig. 1�. Although, the vortices and antivortices shown in Fig.
1 have the same bulk energy, competition with the border
energy clearly favors the appearing of the vortex of type I in
the system. Due to the singularity at the vortex core the
system can lower its energy by developing an out-of-plane
magnetization, perpendicular to the plane of the disk �the z
direction�.11–14 Experimental observations in circular dots of
Permalloy suggest that states “up” and “down” ��z� are de-
generated not depending on the vortex orientation �clockwise
or counterclockwise�.15 The existence of this degeneracy
suggests that it is possible to store one bit of information in
this degree of freedom.16–18 Experimental results also show
that the effective anisotropy is very small and can be
neglected15 in theoretical modeling. Because the vortex for-
mation energy is proportional to ln R the superparamagnetic
limit is pushed down opening the possibility of building
smaller magnetic devices for storing data than those allowed
by the nowadays technology.7

In this work we report a study of quasi-2D magnetic dots
by using Monte Carlo �MC� and spin dynamics
simulations.19 The system is modeled by distributing mag-
netic particles over a lattice. The particles interact through
exchange and dipolar potentials. We study the vortex forma-
tion in three different types of lattices: hexagonal, square,
and triangular. Also, we discuss the stability of the vortex as
a function of the strength of the dipole interaction and the
system size. The paper is organized as follows. In Sec. II we
present the model we will deal with and some considerations
about the simulations. In Sec. III we present our results and
discussions. In Sec. IV our conclusions are presented.

II. MODEL

Theoretically we can write a model Hamiltonian for a
magnetic nanodot in a pseudospin language as7

H = − J �
�i,j�

S� i · S� j + D�
i�j
�S� i · S� j

rij
3

−
3�S� i · r�ij� � �S� j · r�ij�

rij
5 	 . �1�

Here J is an exchange coupling constant, S� i and S� j are spin

variables defined on sites i and j, ri,j is the distance between
spins at i and j, and D is the dipole strength. The sum in the
first term is over first neighbors and the sum in the second
term considers a cut-off in the dipolar interaction up to a
neighbor rij �rcut. As will be discussed in the following our
results showed that the cut-off in the dipolar interaction has
to be taken very carefully. We can understand the physical
model described by Hamiltonian Eq. �1� as follows: the first
term �the exchange interaction� tends to align the spins of
neighboring sites. The second term �the dipole interaction� is
divided in two parts: the first one tends to align the spins
antiferromagnetically. The second part tends to align the
spins along the direction of the unity vector that connects the
sites i and j. At the border of the system the magnetic mo-
ments are aligned tangent to the border satisfying both, the
condition that minimizes the exchange interaction and the
second part of the dipole energy term. In a vortex configu-
ration the first part of the dipole interaction is only mini-
mized for spins at sites in opposing positions in relation to
the center of the vortex.

The dipole interaction is in general very difficult to treat
in any analytical or computational calculation due to its long
range character. Several works8–10 that deal with magnetic
nanodots use a variation in the Hamiltonian Eq. �1� by con-
sidering an anisotropic interaction ��S� i ·n� i�2 to replace the
dipole term. Here, n� i represents a unit vector perpendicular to
the surface and to the borderline of the system. This term
contributes positively to the total energy, therefore, it forces
the spins to be perpendicular to n� i, competing with the ex-
change term. The effect produced by this anisotropic interac-
tion is similar to that one of the dipole term. It favors the
magnetic moment into a configuration tangent to the border
of the system and parallel to the disk plane. The energy due
to this term is minimized when the magnetic moments ar-
range themselves in a curling vortex structure. The low tem-
perature properties of the Hamiltonian with the anisotropic
term is similar to the one obtained by using the long range
dipole interaction. However, the high temperature and the
dynamical behaviors are quite different. As we want to ex-
plore the model beyond its low temperature properties, we
treat the system by using Eq. �1�. So far, much of the theo-
retical and computational work done to understand the be-
havior of vortices in magnetic nanosystems consider a 2D
model. Although, the results obtained by using this simplifi-
cation are in quite good agreement with experimental find-
ings, part of the present work is dedicated to discuss the
influence of an additional layer in the 2D model. The nan-
odot is defined as follows. An number of magnetic particles
is distributed over the lattice points of a 2D array. A circle of
size L centered in a previously chosen cell is drawn over the
array. Here L is measured in units of the lattice parameter a.
The sites outside the circle are erased. The sites left inside
form the nanodot, that is the object of our interest. If we are
interested in a two layer nanodot the building process is
similar. In this case the nanodot will be a small cylinder of
diameter L and height a. As a matter of simplification from
now on distances are measured in units of a, defined as the
distance between first neighbors sites in the lattice.

A numerical approach to study this model is always very
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time consuming since we must consider the interactions of
each spin on a site i with all others in the system. It makes
the computer time prohibitive for large values of L. In order
to reduce the computational time much of the work done so
far considers a cut-off in the dipolar interaction up to a
neighbor rcut. However, the introduction of a cut-off creates
distortions in the ground state of the system as will be dis-
cussed below. In order to understand the effect of the cut-off
we work the model defined by Hamiltonian Eq. �1� with and
without a cut-off in the three different lattices: triangular,
hexagonal, and square. For each of them we varied the di-
pole strength, D /J, in the range �0,0.50�, for several sizes, L,
with 10�L�90. Without loss of generality we studied the
triangular and the square lattices using only one layer, �z
=1�. Some exploratory results showed that the results for the
two layer �z=2� system are similar to those of the hexagonal
lattice.

To obtain the magnetic nanodot ground state of the
model we used a numerical Metropolis MC method20 com-
bined with simulated annealing.21 The simulated annealing
approach is a generalization of the MC method to search for
the ground state of a given system. We start with the system
at a high temperature configuration. Then, a process of cool-
ing is done slowly until a very low temperature is reached.
As temperature decreases the magnetic moments in the sys-
tem organizes themselves in a uniform structure with mini-
mal energy. If the system is well behaved enough it is ex-
pected that the low temperature configuration approaches the
ground state as close as we want. In our calculations we take
the initial configuration at random, which corresponds to in-
finite temperature. The lower temperature is taken as T
=10−2J /kB. From now on we consider J=1 and the Boltzman
constant kB=1 so that the energy and temperature are mea-
sured in units of J and J /KB, respectively. As a matter of
comparison we choose in some cases the initial configuration
as a vortex like structure. We found that the results for the
ground state were quantitatively the same when compared
with those obtained by using the disordered initial state. In
our plots the error bars are smaller than the symbols when
not shown. The results discussed in this work were obtained
for the hexagonal lattice when not explicitly written.

III. RESULTS AND DISCUSSION

In order to understand the influence of the cut-off and of
the disk size in the ground state we simulated disks of sev-
eral diameters �10�L�90� for different cutoffs. We ob-
served that the most stable configuration can be a vortex or a
capacitorlike structure �see Fig. 2�, depending on the value of
the dipole interaction, D. Our results are shown in Fig. 3 in a
plot of Dc as a function of the disk diameter for several
values of rcut. Here, Dc represents the value of the dipole
interaction at the crossing over value, when the ground state
changes from the vortex to the capacitor configuration, la-
beled as III and I, respectively, in the figure. It is also shown
a third state, labeled II, where the most stable vortex has an
out-of-plane component. As a matter of clarity the region
where the out-of-plane vortex appears is shown only for the
simulation with no cut-off �rcut=L�. As can be seen in the

Fig. 3 the choice of the cut-off is important in the determi-
nation of the border between the vortex and capacitor re-
gions. Because of that, we decided to use no cut-offs in our
calculations even that implying in a longer CPU time for
performing our calculations.

In Fig. 4 we plot the border lines defining the regions
where the planar vortex, the out-of-plane vortex and capaci-
tor configurations are more stable for all three types of lat-
tices and rcut=L. The figure can be understood as follows.
Based in the model described by the Hamiltonian Eq. �1� it is
possible to find a set of values of D that minimizes the en-
ergy of the vortex configuration. To minimize the exchange
interaction, at the center of the vortex, the magnetic moments
tend to align in a direction perpendicular to the plane of the
disk, which in turn maximizes the dipolar interaction. The
vortex configurations of minimum energy can be in-plane or
out-of-plane at the center of the vortex. This behavior de-
pends on the size of the system L. The value of D for vortex
configurations with out-of-plane components decreases with
increasing the value of L because the contribution of the
dipolar interaction �long-range� becomes greater than the ex-
change interaction.

In a two layer system, the additional layer acts as an

FIG. 2. �Color online� Schematic view of the vortex and capacitorlike con-
figurations are shown in the left and right hand sides, respectively.

FIG. 3. �Color online� Diagram for the vortex formation in the case of the
one layer hexagonal lattices. It is shown the critical values of the dipole
interaction strength Dc, in units of J, as a function of the lattice size, L, for
several values of the cut-off in the dipole interaction, rcut. The circles cor-
respond to the infinite range interaction. The lines separate two regions with
different ground states. Regions I and III have a capacitor and a vortex
�without out-of-plane component� in the ground state, respectively. As rcut

increases the lines separating the phases approach the asymptotic line r�.
The shaded area represents a region �II� where the most stable configuration
has an out-of-plane component at the center of the vortex.
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anisotropy so that the net effect is similar to the introduction
of an exchange anisotropy in the system.15 It is well known
that in an infinite system described by the anisotropic
Heisenberg model in two dimensions, an out-of-plane ex-
change anisotropy can cause the effect of lowering the en-
ergy necessary to the vortex develop the z component.11,12 In
a system with exchange anisotropy A�si

zsj
z, there is a charac-

teristic value of the exchange anisotropy, Ac
0.7, at which
the most stable vortex develops an out-of-plane
component.13,14 Because of that, we can expect that the out-
of-plane phase appears at lower values of L and higher D /J
when compared with the one layer case. In Fig. 5 we show
the diagram for a z=2 system. The results confirm the ex-
pected picture. The diagram is similar to the one obtained for
z=1 but with the out-of-plane phase starting at lower values
of L and higher D /J.

We observed that in both cases, z=1 and 2, the capacitor
and the vortex states regions are separated by a transition line
that asymptotically tends to a constant, �D0�. In any case this
line can be very well adjusted by a function

Dc = D0 +
1

A�1 + BL2�
. �2�

The values of the parameters are given in the Table I. Al-
though, this is an ad hoc expression, a finite size scaling
behavior of the boundary between the capacitor and vortex
phases is clearly indicated. The constant D=Dc line separates
the in-plane and the out-of-plane vortex phases. We can de-
scribe this result as follows. Due to the competition between
the dipolar interaction responsible for the formation of the
vortex and the exchange ferromagnetic interaction, the sys-
tem may develop a component in the z direction, perpendicu-
lar to the plane of the vortex. The z component is restrict to
a region around the center of the vortex. For a small disk of
diameter L, the influence of the edge is large dominating the
behavior of the system. The energy due to a misalignment
between the spins in the edge and in the center of the system
is large enough to compete with the exchange energy. In such
a case the vortex is expected to be planar. However, for even
moderate disk sizes, the border plays no role. The out-of-
plane core extends for only a few lattice constants allowing
the spins to develop a z component in the central region.

An important question is the thermodynamic behavior of
the nanodot. As temperature increases, vortices, and antivor-
tices are created in the system. They appear always as pairs.
The energy associated with the pair excitation is given ap-
proximately by ln rv−av, where rv−av is the distance between
the vortex and antivortex centers. In Fig. 6 we show two spin
configurations in a hexagonal lattice of size L=30 for D /J
=0.1 and T /J=0.7. Figure 7 shows the vortex density as a
function of temperature. We observe that there is a threshold
below which there are no pairs present in the system.

FIG. 4. �Color online� Diagram for the vortex formation in the three differ-
ent types of the one layer lattices studied. Squares and diamonds correspond
to the square and the hexagonal lattices, respectively. The inset shows the
results for the triangular lattice. Region I and III have a capacitor and a
vortex in the ground state, respectively. The shaded area �Region II� repre-
sents a region where the most stable configuration has an out-of-plane com-
ponent at the center of the vortex. The lines separating the capacitor and the
vortex states regions were adjusted using the equation Dc=D0+1 /A�1
+BL2� with appropriate values of the constants D0, A, and B, for each type
of lattice.

FIG. 5. �Color online� Diagram for the vortex formation in a two layer
hexagonal lattice �open symbols� compared with the one layer hexagonal
lattice �filled symbols� with rcut=L. The regions I, II, and III are defined as
in Figs. 3 and 4.

TABLE I. Parameters used in the Eq. �2�.

D0 A B

Triangular 0.098 3.798 0.002
Squared 0.011 4.417 0.002
Hexagonal �z=1� 0.007 4.522 0.002
Hexagonal �z=2� 0.003 6.375 0.004

FIG. 6. �Color online� Typical configuration of the vortex-antivortex distri-
bution in a hexagonal lattice at T=0.7 for D=0.1 and L=30. Figure 6�a�
shows the spin configuration and the location of the vortices and antivorti-
ces. It is possible to see one unpaired vortex and five pairs of vortex-
antivortex �plus and minus signs indicate vortex and antivortex, respec-
tively�. Figure 6�b� shows only the vortex and antivortex positions inside the
corresponding skeleton of the hexagonal lattice of Fig. 6�a�.
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The same behavior is observed for the square and trian-
gular lattices. At low temperature only one vortex survives in
the system. By using spin dynamics we have obtained some
preliminary results showing that if the vortex has an out-of-
plane component, it can flip at random as temperature in-
creases. It happens in a regime far before the first vortex-
antivortex pair appears. The vortex density, �v−a, is zero up
to T /J=0.45, however, the vortex can flip as early as at
T /J=0.10. This observation is in contrast with the reported
mechanism of creation-annihilation for switching the vortex
core discussed in Refs. 3 and 18. A possible explanation of
this result is as follows. The measurements performed in
Refs. 3 and 18 were taken at very low temperature, in a
regime that even the presence of spin wave excitations are
not enough to turn the out-of-plane vortex polarization.
When a magnetic pulse is applied, it excites adiabatically the
system elevating its temperature beyond the pair creation
threshold. At the same time, spin waves are excited. The spin
waves excitations can switch the vortex core. We believe that
the observed phenomenon can be a fortuitous effect. We also
believe that a much more careful simulation has to be done
in order to decide about the correct mechanism responsible
for the switching of the out-of-plane vortex component. In
particular, a rigorous statistical study is of paramount impor-
tance.

IV. CONCLUSION

In this work we investigated, via MC simulation, the
conditions for vortex formation in quasi-2D magnetic dots.
We used a model Hamiltonian with exchange and dipolar
interactions for square, triangular, and hexagonal lattices.
Our results showed that a cut-off in the dipolar interaction
can give a good approximation only for large dot size and
large cut-off radius. Besides that, a finite size scaling, as
Dc=D0+1 /A�1+BL2�, is proposed to describe the cross over
between a capacitor-like state to a vortex state. This behavior
is obeyed by the three types of lattices. Inside the vortex

phase region it is possible to identify two types of vortices
separated by a constant D=Dc line: An in-plane and an out-
of-plane vortex. We observed that the out-of-plane phase
does not appear for the triangular lattice. In the case of a two
layer system we observed that the extra layer of dipoles
works as an effective out-of-plane anisotropy, inducing a
large z component at the center of the vortex in agreement
with the experimental results reported in Ref. 15. We suggest
that in a real system, where a multilayer dot is considered,
the range where the out-of-plane vortex exists can be consid-
erably large. Also, we analyzed the mechanism responsible
for the switching of the out-of-plane vortex component. In
contrast to some reported results, we found that the switch-
ing mechanism is different from the creation-annihilation
vortex antivortex process.
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