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We study the magnetic excitations of a square lattice spin ice recently produced in an artificial form
as an array of nanoscale magnets. Our analysis, based on the dipolar interaction between the
nanomagnetic islands, correctly reproduces the ground state observed experimentally. In addition,
we find magnetic monopolelike excitations effectively interacting by means of the usual Coulombic
plus a linear confining potential, the latter being related to a stringlike excitation binding the
monopoles pairs, which indicates that the fractionalization of magnetic dipoles may not be so easy
in two dimensions. These findings contrast this material with the three-dimensional analog, where
such monopoles experience only the Coulombic interaction. We discuss, however, two entropic
effects that affect the monopole interactions. First, the string configurational entropy may lose the
string tension and then free magnetic monopoles should also be found in lower dimensional spin
ices; second, in contrast to the string configurational entropy, an entropically driven Coulomb force,
which increases with temperature, has the opposite effect of confining the magnetic defects. © 2009
American Institute of Physics. �doi:10.1063/1.3224870�

I. INTRODUCTION

Geometrical frustration among spins in magnetic mate-
rials can lead to a variety of cooperative phases such as spin
glass, spin liquid, and spin ice behaving like glass, liquid,
and ice in nature. The description and understanding of such
states are becoming increasingly important not only in con-
densed matter but also in other branches such as field theo-
ries. In a crystal at low temperature excitations above the
ground state often behave like elementary particles carrying
a quantized amount of energy, momentum, electric charge,
and spin. Several of these objects arise as a result of the
collective behavior of many particles in a material, which is
most effectively described in terms of the fractions of the
original particles. The emergence of these excitations is an
example of the phenomenon known as “fractionalization.”
This occurrence is often tied to topological defects1 and is
common in one-dimensional systems �polyacetylene, nano-
tubes, etc�. Higher dimensional fractionalization is more dif-
ficult to be found. In two spatial dimensions the only con-
firmed case is the involvement of quasiparticles with one
third of an electron’s charge in the fractional quantum Hall
effect in strong magnetic fields. Among several suggestions,2

there is also the proposal that the merons forming a skyrmion
in two-dimensional �2D� Heisenberg antiferromagnets are
spinons and therefore, they are neutral spin-half
excitations.3,4 More recently, examples of fractionalization in
three-dimensional �3D� systems were provided in spin ice
materials.2,5 Particularly, Castelnovo et al.5 have shown how
the famous magnetic monopole may emerge in these materi-
als. Despite some exciting suggestions for its existence from

the realms of quantum mechanics, a single magnetic pole
remains elusive after decades of searching in particle accel-
erators and cosmic rays. Now, Castelnovo et al.5 indicated an
unexpected but, perhaps, better place to look. Under certain
conditions, spin ice magnets behave like a gas of free mag-
netic poles. There is even a phase transition at which a thin
vapor of these poles condenses into a dense liquid. An ex-
perimentally measurable signature of monopole dynamics on
a diamond lattice in the grand canonical ensemble was pre-
sented in Ref. 6. The existence of these excitations in a con-
densed matter system is exciting in itself. Our aim in this
paper is to study spin ice materials, but in two spatial dimen-
sions. Such structures have been artificially produced in a
geometrically frustrated lattice of nanoscale ferromagnetic
islands.7–9 Here, we examine the excitations �“magnetic
monopoles”� and how they interact in this 2D system.

3D spin ice materials have the pyrochlore structure in
which magnetic rare-earth ions form a lattice of corner-
sharing tetrahedra. To minimize the spin-spin interaction en-
ergy, the ice rules are manifested: two spins point inward and
two spins point outward on each tetrahedron. A similar sys-
tem was built in two dimensions with elongated permalloy
nanoparticles. This artificial material consists of elongated
magnetic nanoislands distributed in a 2D square lattice. The
longest axis of the islands alternate its orientation pointing in
the direction of the two principal axes of the lattice.7 The
magnetocrystalline anisotropy of permalloy is effectively
zero, so that the shape anisotropy of each island forces its
magnetic moment to align along the largest axis thus, making
the islands effectively Ising-like. The intrinsic frustration on
this lattice is similar to that in the spin ice model and can be
best seen by considering a vertex at which four islands meet.
A pair of moments on a vertex can be aligned either to maxi-
mize or to minimize the dipole interaction energy of the pair.
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As shown in Ref. 7, it is energetically favorable when the
moments of a pair of islands are aligned so that one is point-
ing into the center of the vertex and the other is pointing out
�the two arrangements on the right, Fig. 1�, while it is ener-
getically unfavorable when both moments are pointing in-
ward or both are pointing outward �the pair of arrangements
on the left, Fig. 1�. This artificial system exhibits short-range
order and icelike correlations on the lattice, which is pre-
cisely analogous to the behavior of the spin ice materials.
However, it should be stressed that the fundamental interac-
tion among the islands is the long-range dipole-dipole force,
once the short-ranged exchange is negligible in this case,
where the islands are spaced by around 320 nm, much
greater than the permalloy exchange length, around 5–7 nm.
Here, we consider an arrangement like that experimentally
investigated in Ref. 7. In our scheme the magnetic moment
�“spin”� of the island is replaced by a point dipole at its
center. To do this, in each site �xi ,yi� of a square lattice two
spin variables are defined: S�h�i� with components Sx= �1,

Sy =0 located at r�h= �xi+1 /2,yi�, and S�v�i� with components
Sx=0, Sy = �1 at r�v= �xi ,yi+1 /2�. Therefore, in a lattice of
volume L2= l2a2 �a is the lattice spacing� one gets 2� l2

spins �see Fig. 2�. Representing the spins of the islands by S� i,
which can assume either S�h�i� or S�v�i�, then the 2D spin ice is
described by the following equation:

HSI = Da3�
i�j
�S� i · S� j

rij
3 −

3�S� i · r�ij��S� j · r�ij�
rij

5 � , �1�

where D=�0�2 /4�a3 is the coupling constant of the dipolar
interaction. The sum is either over all l2�2l2−1� pairs of

spins in the lattice for the case with open boundary condi-
tions �OBC� or over all spins and their images for the case
with periodic boundary conditions �PBC�. We study these
two possibilities; OBC is more related to the artificial spin
ice fabricated in Ref. 7, while using PBC we minimize the
border effects. In the system with PBC the Ewald
summation11,12 is used.

II. THE MODEL AND RESULTS

To start, we consider the ground states obtained from Eq.
�1� describing the 2D spin ice. To do this we use a simulated
annealing process,13 which is a Monte Carlo calculation
where the temperature is slightly reduced in each step of the
process in order to drive the system to the global minimum.
Our Monte Carlo scheme consist of a simple Metropolis
algorithm.13 In each Monte Carlo step �MCS� we attempt to
flip all spins in the lattice sequentially or randomly which
gives the same results. Several tests for systems with differ-
ent sizes L�6a�L�80a� were studied. In each simulation
10� l2 MCSs were done at each temperature starting at T
=3.0 and decreasing the temperature in steps �T=0.2 until
T=0.2 �the temperature is measured in units of D /kB�. We
observed that for T�0.4 the system freezes, in the sense that
all trial moves are rejected. The final configuration �ground
state� was found to be twofold degenerate �see Fig. 2�a� for a
lattice with L=6a�. If we consider the vorticity in each
plaquette, assigning a variable 	=+1 and 
1 to clockwise
and anticlockwise vorticities, respectively, the ground state
looks like a checkerboard, with an antiferromagnetic ar-
rangement of the 	 variable. Note that the ground state
clearly obeys the ice rule. We remark that it is impossible to
minimize all dipole-dipole interactions. Actually, on each
vertex there are six pairs of dipoles and only four of them
can simultaneously minimize the energy. It is important to
mention that although there are other possible configurations
that also obey ice rules, these are not the ground state. In-
deed, the state shown on the right side of Fig. 2 has energy
about four times larger than that of the ground state. The
difference between these two states is related to the distinct
topologies for the configurations of the four moments �see
Fig. 3�. It was experimentally shown in Ref. 7 that while the
topologies of types �a� and �b� obey the ice rule, case �a� has
smaller energy than case �b�. Our theoretical calculations
confirm this fact. The same ground state was also reported in
Refs. 8 and 9. We would like to remark that although this is
the ground state, its thermal equilibration in experiments
seems to be very difficult.8–10

FIG. 1. �Color online� The 2D square lattice studied in this work. Only a
few islands are shown. The arrows inside the islands represent the local
dipole moments �S�h�i� or S�v�i��.

FIG. 2. �a� Configuration of the ground state obtained for L=6a, in exact
agreement with that experimentally observed. Note that the ice rules are
manifested at each vertex. This is the case in which the topology demands
the minimum energy see Fig. 3�. �b� Another configuration also respecting
ice rules, but displaying a topology which costs more energy.

FIG. 3. The four distinct topologies and the 16 possible magnetic moment
configurations on a vertex of four islands. Although configurations �a� and
�b� obey the ice rule, the topology of �a� is more energetically favorable than
that of �b�. Equation �1� correctly yields to the true ground state based on
topology �a�, without further assumptions. Topologies �c� and �d� do not
obey the ice rule. Particularly, �c� implies in a monopole with charge QM.
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Once the system is naturally frustrated, in the two-in/
two-out configuration, the effective magnetic charge QM

i,j

�number of spins pointing inward minus the number of spins
pointing outward on each vertex �i , j�� is zero everywhere.
The most elementary excited state involves inverting a single
spin to generate localized “dipole magnetic charges,” which
implies in a “vortex-pair annihilation.” Such an inversion
corresponds to two adjacent sites with net magnetic charge
QM

i,j = �1, which is like a nearest-neighbor monopole-
antimonopole pair. In principle, such “monopoles” can be
separated from one another without violations of local neu-
trality by flipping a chain of adjacent spins. One can easily
see that in this process, a “string” of spins pointing from the
positive to the negative charge is created �see Fig. 4�. The
presence of a stringlike excitation joining these poles is evi-
denced by an extra energy cost behaving as bX, where X is
the length of the string and b�0 is the effective string ten-
sion, as below. In order to establish a link between the
monopole-antimonopole distance R and the string length X
we choose two basic string shapes to move the charges as
shown in Fig. 4. Of course, the shortest strings will be
formed around the straight line joining the monopoles and,
therefore, we choose two different ways in which they may
be created as the charges are separated �see Fig. 4�. First,
using the string shape 1 and starting in the ground state we
choose an arbitrary site and then the gray spins in Fig. 4 are
flipped, thus creating a monopole-antimonopole separated by
R=2a. In sequence, the spins marked in blue are flipped and
the separation distance becomes R=4a and so on. In this
case X=4R /2. Note that the string surges in the system be-
cause in the separation process, the topology is locally modi-
fied, although still keeping the ice rule; in the region between
the two poles, the topology of type �b�, which has larger
energy than that of type �a�, prevails. Being essentially local-
ized along the line joining the monopoles this additional
amount of energy increases as the distance between the mag-
netic charges increases, justifying the bX term.

The potential V�r� �the energy of the excited configura-
tion minus the energy of the ground state� as a function of
r=R /a can be obtained by simple evaluation of the energy of
each configuration. It is shown in the inset of Fig. 5 for the
string shape presented in Fig. 4�a�. The behavior is appar-
ently linear but the function fq�R�=q /R+b�R+c, with q�

−0.00122Da ,b=b� /2�0.00305D /a ,c�0.00734D, fits bet-
ter the data than the purely linear possibility g�R�=�R+
,
with ��0.00611D /a ,
�0.00702D. This difference be-
comes clearer when we analyze the �2 /Dof , which is equal
to 1.04�10−8 for the linear fitting and 4.5�10−13 for fq�R�.
Also, in Fig. 5 we draw a baseline of the potential using the
linear fit. One can clearly see that fq�R� describes the data
better and, therefore, V�r�� fq�R�. The same method was
repeated using the string shape 2. In this case, the charges are
separated diagonally and X=2R /	2. The results are qualita-
tively the same and the values of the constants are: q�
−0.00125Da ,b=b� /	2�0.00317D /a ,c�0.00724D. Note
that the quantitative changes are small. The results are also
qualitatively the same if PBC are used instead of OBC. Fur-
thermore, quantitative differences between PBC and OBC
calculations are smaller than 1% for constants b and c, while
it is smaller than 9% for q. The larger difference for constant
q can be understood if one remembers that the use of PBC
will imply that the charges interact also with their images.

Our calculations yield the total energy cost of a
monopole-antimonopole pair, separated by R, as the sum of
the usual Coulombic-type term, q /R �q�0 is a constant�,
and an extra contribution behaving like bX, brought about
from the stringlike excitations that bind the monopoles, so
that V�R�=q /R+bX�R�+c �X�R� is the string length, while c
is a constant associated to the monopole pair creation�. Until
now we have only considered the shortest strings connecting
two poles. However, many dipole strings of arbitrary shape
and size can be identified that connect a given pair of mono-
poles. The associated energy cost increases with X and di-
verges with the length of the string. So, the monopoles
should be confined in the artificial material. As we will argue
later, it is possible that the string tension vanishes at a critical
temperature proportional to b and hence, free magnetic
monopoles may also be found in the 2D system.

For concreteness, the magnetic charge may be easily es-
timated if we take into account experimental values of some
parameters. Considering the usual expression for the Cou-
lombic interaction �in mks units� −�0QM

2 /4�R, we get, 
q

=�0QM

2 /4�, or QM � �	4�
q
 /�0� �0.035� /a. Now, us-

FIG. 4. �Color online� The two basic shortest strings used in the separation
process of the magnetic charges: pictures �1� and �2� exhibit strings 1 and 2,
respectively. The left circle is the positive charge �north pole� while the right
circle is the negative �south pole�.
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FIG. 5. �Color online� Inset: the interaction potential between two magnetic
charges �with opposite signs� as a function of r=R /a. The baseline of V�r�
is also plotted: the curves are obtained by fitting the data to �R+
 and
q /R+b�X+c minus �R+
.
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ing data from Ref. 7 �such as a�320 nm and ��2.79
�10−16 JT−1�, the fundamental magnetic charge of an exci-
tation in the array of ferromagnetic nanoislands reads QM

�3�10−11 cm /s, which is about 6�103 times smaller than
the fundamental charge of the Dirac monopole �QD

=2�� /�0e�. Such a charge can even be tuned continuously
by changing the lattice spacing.

III. DISCUSSION

Before concluding, it is important to analyze the behav-
ior of the string tension as some parameters are varied in the
system. The string tension for the artificial system built in
Ref. 7 is approximately given by b�2.26�10−15 J /s�4.5
�10−3 eV /a. Therefore, it is necessary a relatively large
amount of energy �about 10−3 eV� to separate the “2D
monopoles” by one lattice spacing, regardless of how far
apart they are. Consequently, at low temperature, there is
insufficient thermal energy to create long strings, and so the
monopoles would be bound together tightly in pairs. The
string tension can be artificially reduced by increasing the
parameter a�b�1 /a�. However, it has also the effect of de-
creasing the magnetic charge since QM is proportional to
1 /a. A way to reduce b without affecting QM is increasing
the temperature. By using the random walk argument, one
can see that the many possible ways of connecting a pair of
monopoles with a string give rise to a string configurational
entropy proportional to R. Then, as the temperature in-
creases, the string tension should decrease like b−�kBT, with
�=O�a−1�. It means that the string may lose its tension by
entropic effect and, therefore, it should vanish at some criti-
cal temperature kBTc, of the order of ba�4.5�10−3 eV. An-
other important point in this discussion is that as the tem-
perature increases the monopoles density also increases.
Indeed, if the pair creation energy is of the order of Ec

=V�a��1.3�10−2 eV, one expects that, for temperatures
above this value, the description in terms of monopoles itself
could break down �in fact, the Boltzmann factor exp�−
Ec�
would increase considerably for kBT�Ec�. Then, a possible
deconfined phase would live between the melting tempera-
ture of the ordered and the dense monopole phases. A com-
parison between ba and Ec suggests that a temperature win-
dow between the confined and deconfined phases could be
perfectly plausible in the range 4.5�10−3 eV�kBT�1.3
�10−2 eV. Our expectation is that the window is still
greater �starting at a much lower temperature�, since the ar-
gument based on the balance of energy versus entropy may
overestimate the critical temperature �for instance, the
Berezinskii–Kosterlitz–Thouless critical temperature esti-
mated by this argument for the planar rotator model is much
higher than the correct value obtained by Monte Carlo simu-
lations, which is TBKT�0.89J,14 where J is the coupling con-
stant of the model�. Once the deconfinement realizes, the
question of technological applications of this system is rel-
evant. For instance, learning how to move the magnetic
monopoles around would be of importance toward technolo-
gies involving magnetic analogous of electric circuits.

However, there is another entropic effect, discussed in
previous works of purely ice rule problem and related short-

range problems15–18 for strictly 2D systems, which may
change the scenario of free monopoles. That is, the entropic
interactions between monopoles due to the underlying spin
configuration. Really, two monopoles should be attracted be-
cause there are more ways to arrange the surrounding dipoles
in the lattice when they are close together. These entropic
interactions, in a strictly 2D system, results in a 2D effective
Coulomb attraction like ln R, between oppositely charged
monopoles, whose strength vanishes proportionally to T, at
low temperatures �of course, in 3D materials, such entropic
effect should result in a 1 /R attraction�. In our case, this
logarithmic interaction could be present in addition to the 3D
Coulombic, q /R, and linear bR interactions discussed in this
work. Thus, at a temperature high enough to destroy the
string tension, this entropically driven 2D Coulomb force
would become crucial for keeping the monopole-
antimonopole pairs bounded, in such a way that no free
monopole phase would occur at any temperature. Neverthe-
less, how these monopoles precisely experience such an ef-
fect in their local dynamics should be investigated in more
details. �We should recall that our calculations to obtain the
interaction potential between monopoles have been per-
formed at zero temperature and, consequently, this entropic
contribution could not be directly �or even indirectly� present
in V�R��. The precise effect of the temperature on V�R� is
under investigation and will be communicated elsewhere.
Here, it should be remarked that the present monopoles are
not actually 2D objects: their physical interaction is given by
the usual 3D Coulomb force, which means that they should
affect magnetic test particles placed at relatively large dis-
tances along the direction perpendicular to the plane of is-
lands �we remember that in a strictly 2D space, the magnetic
field should be a pseudoscalar field. In addition, a genuine
2D monopole, as a counterpart of the Dirac pole, appears to
be not magnetic charge; it rather looks like an exotic electric
charge, giving rise to a rotational electric field, instead of
radial-like, as usual charges do. For details, see Refs. 19–21�.
The dipoles forming the 2D lattice are genuinely 3D objects
and their long-range dipolar interaction propagates in the 3D
space �see Eq. �1��. It is an important difference of this sys-
tem when compared to the strictly 2D models such as vertex
models and others. Now, it is also important to say that, such
entropic interaction will not be accompanied by a magnetic
field, it will not renormalize the monopole charge and it will
not be felt by a stationary magnetic test particle.5 Therefore,
all calculations concerning the energy scales involved in the
physical interactions between the defects will not be altered.
In addition, it seems that this force has not been measured
directly, yet. The peculiarities between strictly 2D models
and the system studied here have not been considered previ-
ously. Thus, it is not completely clear if and how the entropi-
cally driven 2D Coulomb force acts in the spin ice with an
inherent 3D spatial behavior.

Finally, we should remark that the above scenario in-
volving the monopole physical interactions may be drasti-
cally changed if one considers these excitations in Fig. 2�b�.
As experimentally shown in Ref. 8, this metastable state is a
very real possibility when magnetic fields are applied. In this
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case only the topology of Fig. 3�b� is present in the separa-
tion process. Further investigation is demanded for shedding
extra light on this subject.
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