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Abstract

Using Monte Carlo and spin dynamics techniques we investigate the critical behavior of the classical three
component anisotropic Heisenberg model in two dimensions in square lattices of size up to 2562: We have found that
the model has two transitions, as in the two-component planar rotator model, a Kosterliz–Thouless transition at
TKT ¼ 0:3655ð5Þ and an Ising transition at TI ¼ 0:3690ð3Þ: Also, we performed preliminary calculations in small lattices
in order to obtain the neutron scattering correlation function Sð~qq;oÞ:
r 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Frustrated spin models were the subjects of
several works since the concept was introduced in
connection with spin glasses and fully frustrated
models [1,2]. The latter has been studied exten-
sively as a model for 2D coupled arrays of
Josephson junction and superconducting wires in
a transverse magnetic field [3–5]. Of particular
interest is the fully frustrated planar rotor (FFPR)
in two-dimensions. To the contrary of the unfru-
strated model which cannot present long-range

order at any finite temperature [6], the FFPR is
expected to display a richer critical behavior due to
two different symmetries. Beside the spin Uð1Þ
symmetry it has a Z2 discrete symmetry which
leads to the possibility of long-range order. The
FFPR model is defined as

H ¼
X

/i;jS

Ji;j~SSi $ ~SSj ð1Þ

or

H ¼
X

/i;jS

Ji;jcosðyi % yjÞ; ð2Þ

where i and j enumerate lattice sites, ~SSi ¼
j~SS jfcosyi; sinyig is a two-dimensional vector, yi is
the angle at the lattice point i and Ji;j is an
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exchange coupling which is ferromagnetic in all
lines in the x direction and is alternately ferro-
magnetic and anti-ferromagnetic in the y direction
as shown in Fig. 1. The coupling distribution leads
the FFPR model to have a checkerboard pattern
of plaquetes with positive or negative chirality in
the ground state

f ¼
1

p

X

plaquete

ðyi % yjÞ ¼ 71: ð3Þ

In a series of papers Olsson [7] has shown that this
model undergoes two phase transitions, one of the
Berezinskii–Kosterlitz–Thouless (BTK) [11,12]
type, associated to the Uð1Þ symmetry and an
Ising transition associated to the discrete Z2

symmetry due to the f degrees of freedom. He
found TBKT ¼ 0:446J and TI ¼ 0:452J; respec-
tively and the correlation length exponent was
found to be consistent with the two-dimensional
Ising value n ¼ 1: In this report we investigate the
fully frustrated anisotropic three-component XY
(FFXY) model which has the same symmetry as
the FFPR, using numerical techniques. The model
is defined as

H ¼
X

/i;jS

Ji;j~SSi $ ~SSj þ A
X

/i;jS

Sz
i S

z
j ; ð4Þ

where ~SSi ¼ j~SS jfsinyicosfi; sinyisinfi; cosyig is a
spin vector at site i and A > 0 (in this work we
use A ¼ jJi;j jn). Observe that in this model the spin
vector has three degrees of freedom in contrast
with the one defined by Eq. (1) where the spin
vector has two degrees of freedom. Due to the easy

plane anisotropy, A; the Heisenberg symmetry is
broken leading the system to have the same
symmetry as the FFPR model, however, in the
FFXY we expect the transition temperatures TBKT

and TI to approach each other due to the new
degree of freedom introduced. Having this in mind
we have performed a very careful Monte Carlo
simulation of the FFXY model. To test our
program we have used the FFPR model as a test
since we can compare them to Olsson’s results. We
have also performed some preliminary calculation
of the spin dynamics for the model obtaining the
neutron scattering function Sð~qq;oÞ for tempera-
tures above, below and in between TBKT and TI:

2. Background

It is well known that the BKT phase transition is
driven by the presence of vortices in two-dimen-
sional models with continuous symmetry. In short
the BKT picture of the phase transition is as
follows. At low temperature spin waves are the
relevant excitations of the system. Spin–spin
correlation functions fall off slowly with distance,
free vortices do not exist but pairs are strongly
bound. Vortices pairs cannot disorder the system
significantly since they affect only close spins. As
the temperature is raised, the distance between
vortex–antivortex pairs grows up to TBKT: Then,
free vortices exist, the system is disordered and the
spin–spin correlation function falls exponentially.
In the fully frustrated models the vortex density at
T ¼ 0 is rv ¼ 1: Vortex-antivortex pairs are
distributed over the lattice as in a checkerboard
(see Fig. 1). Once the temperature is raised they
begin to annihilate each other until rv reaches
some critical value rv ¼ rTKT when pairs start to
unbind and we have a BKT transition. At this
temperature the vortex density is high enough, so
that, an infinite cluster of vortices still exists in the
system and the Ising symmetry is preserved. As the
temperature increases the density goes below a
second critical value rv ¼ rI where the Ising order
is lost. The precise determination of the tempera-
ture for a BKT transition is a difficult task due to
absence of sharp peaks in the thermodynamic
quantities. One way to extract TBKT was suggested
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Fig. 1. Diagram of the square lattice showing the ferromagnetic
(thin lines) and antiferromagnetic (double lines) couplings Ji;j :
The symbols þ and % represent vortices and antivortices. The
figure at the left and right hand sides are for T ¼ 0 and T > 0;
respectively.
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by Weber and Minnhagen [8] by calculating the
helicity modulus defined as

U ¼
q2F
qD2

; ð5Þ

where D is a small twist across the system in one
direction. The finite size scaling for the helicity
modulus is given by the Weber and Minnhagen’s
relation

ULp
2TBKT

¼ 1þ
1

2ðln Lþ l0Þ
; ð6Þ

where l0 is a parameter to be determined. Some
care must be taken in using this relation, since the
scaling relation is obeyed only for large lattices. To
study the Z2 transition it is customary to define the
staggered magnetization

MI ¼
1

L2

X

~rr

mð~rrÞð%1Þxþy

!

!

!

!

!

!

!

!

!

!

: ð7Þ

According to the scaling hypothesis

MIEL%b=nf tL1=n
" #

: ð8Þ

The magnetic susceptibility wI has the following
scaling law:

wI ¼
L2

kBT
/M2S%/MS2Eg0L

%g=n: ð9Þ

In the above equations t ¼ ðT % TIÞ=TI: We can
use the hyperscaling relation in two-dimensions,
2n ¼ gþ 2b; to calculate TI; b=n and g=n: The
critical exponent n is calculated through the
specific heat behavior

CmaxEL%a=n; ð10Þ

and the hyperscaling relation a ¼ 2% 2n: We have
also calculated the Binder cumulant

U ¼ 1%
/M4S
3/M2S2

; ð11Þ

which is independent of the lattice size L at the
critical point, UL ¼ Un for sufficiently large
lattices. For a more complete discussion see Ref.
[7] and references therein.

3. Simulation Details

Our simulations were carried out using the
standard Metropolis algorithm combined with
overrelaxation updates [9]. We have used lattices
of size L' L and periodic boundary conditions
with L ¼ 8; 16; 32; 64; 128 and 256 for the FFPR
and L ¼ 20; 40; 60; 80 and 160 for the FFXY
models, respectively. As discussed before, we have
used the FFPR as a test for our program. Since we
knew in advance the region to search in the FFPR
model we focused there our attention, performing
the simulation inside the temperature region
0:400pTp0:500 with step sizes of DT ¼ 0:01: In
order to reach thermodynamical equilibrium we
performed long runs of size 100' L' L which
seemed to be enough to equilibrate the system.
After this procedure we started to store the energy
and magnetization values separated by 5MC steps
to break correlation between successive configura-
tions. For L ¼ 8; 16; 32 and L ¼ 64 we stored 4'
106 values and 106 values for L ¼ 128 and L ¼
256: Then, we have used the single histogram
technique [10] to study the interesting regions of
temperature. In our simulations, when not indi-
cated, the error bars are smaller than the symbols.
For the FFXY model, large fluctuations are
present due to the extra degree of freedom, so
that, we had to perform 4' 106 for all lattice sizes
in order to get reasonable error bars.

4. Results

In this section we present and analyze our
results for both, the FFPR and FFXY models.

4.1. FFPR model

4.1.1. Z2 transition
First we analyze the staggered magnetization as

a function of the system size L: We plot several
values of lnM as a function of ln L for fixed
temperatures Tn adjusting a straight line to each
set point as given by the finite size scaling
relations. Using the best adjust and Eq. (8) we
extract TM

I ¼ 0:4505 Jð5Þ and b=n ¼ 0:123ð7Þ as
shown in Fig. 2. In Fig. 3 we show the Binder
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cumulant as a function of temperature and lattice
size. There is no unique crossing point independent
of the systems size if we consider the smaller
lattices. However, for sufficiently large LX64 we
observe that all lines cross at the same point Un:
The exponent relation g=n is obtained from the
plot of the logarithm of the maxim of the
susceptibility wI as a function of ln L as shown in
Fig. 4. The best fit to the points, excluding L ¼
8; 16 gives g=n ¼ 1:746ð30Þ: In order to get the
critical exponent a we plot the maxima of the
specific heat as a function of L in Fig. 5 in a semi-
log scale. The specific heat is dominated by the
leading singularity and has a Ising behavior, a ¼ 0:
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Fig. 2. Magnetization MI for lattice sizes L ¼
8; 16; 32; 64; 128; 256 for three temperatures. The doted line is
a w2 fit.
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Fig. 3. The Binder cumulant as a function of temperature for
several lattice sizes.
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Fig. 4. Maxima of the susceptibility as a function of L: The
straight line is the best w2 fit which gives g=n ¼ 1:746ð30Þ:
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Fig. 5. Maxima of the specific heat as a function of L: The
straight line is the best w2 fit, showing the Ising behavior a ¼ 0:
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Fig. 6. Binder cumulant intersections (squares), temperature at
the maxima of the specific heat (diamonds) and the temperature
at the Z2 susceptibilities (circles). The straight lines are the best
fittings for L > 32:
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Using the hyperscaling relation for a we obtain
n ¼ 1: The critical temperature TI is obtained by
plotting the temperature where the susceptibility is
maximum and the crossing temperatures of the
binder cumulants in a same plot as a function of
1=Ln as shown in Fig. 6. In the same figure is also
shown the maximum of the specific heat. It
converges to the same point as the susceptibility
and cumulant inside the error bars. From this plot
we get TI ¼ 0:4511Jð10Þ:

4.1.2. Uð1Þ transition
In order to determine the BKT transition

temperature we measured the helicity modulus
and the susceptibility wBKT: In Fig. 7 we plot the
intersection temperatures between the universal
jump line ð2=pÞT and the helicity modulus U which
gives an upper bound, Tupper

BKT ; for TBKT: On the
basis of this analysis we conclude that Tupper

BKT ¼
0:4463Jð3Þ: To obtain TBKT we solve Eq. (6) for
ln L and plot the resulting quantities as a function
of ln L: At TBKT we expect a straight line. In Fig. 8
we show some results using this procedure, which
gives TBKT ¼ 0:4410Jð5Þ; even considering the
error bars it is far below Tupper

BKT obtained using
the universal jump criterion.

Our results are essentially the same as those
obtained by Olsson confirming that our code is
correct. We are now ready to proceed to the XY
model.

4.2. XY model

Now, once we have checked our code we can
study the FFXY doing a close analysis as the one
for the FFPR model above.

4.2.1. Z2 transition
In Fig. 9 we show the maxima of the suscept-

ibility, Binder’s cumulant and maxima of the
specific heat for L ¼ 20; 40; 60; 80 and 160: Extra-
polation of L-N using these three quantities
gives TI ¼ 0:3690Jð3Þ: The critical exponent g is
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Fig. 7. Spin helicity modulus as a function of T : Each
intersection with the line ð2=pÞT gives an upper bound of the
BKT transition temperature.
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Fig. 8. Helicity modulus plotted as a function of lnL: At the
BKT transition and large L limit the points must define a
straight line.
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Fig. 9. Binder cumulant intersections (diamonds), temperature
at the specific heat maxima (circles) and the temperature at the
Z2 susceptibilities maxima (squares). The straight lines are best
fittings for L > 32:
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obtained as g ¼ 1:67ð0:9Þ with the specific heat
having an Ising behavior as in the FFPR, as shown
in Figs. 10 and 11, respectively.

4.2.2. Uð1Þ transition
As before we estimate an upper bound for the

BKT transition Tupper
BKT by collecting the intersec-

tion temperatures between the universal jump line
ð2=pÞT and the helicity modulus U which gives
Tupper
BKT ¼ 0:3665Jð5Þ (Figs. 12 and 13). Following

the analysis for the FFPR model we obtain
TBKT ¼ 0:3655Jð5Þ; which matches Tupper

BKT if we
use the largest error bars. Following Minnhagen’s
work, it may indicate the presence of a universal
jump for this model. However, due to the large
error bars, more work has to be done in this
subject in order to make this point clear.

5. Dynamics

In this section we present a preliminary calcula-
tion of the dynamical neutron scattering function
Sð~qq;oÞ for the FFXY model which is an experi-
mental observable and is fundamental for the
study of the spin dynamics. It is defined for
momentum transfer ~qq and frequency transfer o as
the space–time Fourier transform

Saað~qq;oÞ ¼
X

~rr ;~rr 0

Z þN

%N
eiotCaað~rr %~rr0; tÞ

dt

2p
; ð12Þ

of the space-displaced, time-displaced spin–spin
correlation function

Caa ~rr %~rr0; t
$ %

¼ Sa
~rr ðtÞS

a
~rr 0ðt

0Þ
& '

; ð13Þ

where a ¼ x; y; z is the spin component, the
displacement ~rr is measured in units of the lattice
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Fig. 10. Maxima of the Z2 susceptibilities. The straight lines
are best fittings for L > 32 which gives g=n ¼ 1:67ð9Þ:
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Fig. 11. Maxima of the specific heat as a function of the lattice
size. For the XY model the straight line is the best fitting.
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Fig. 12. Helicity as a function of temperature for the XY
model. The straight line is ð2=pÞT :
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Fig. 13. Helicity modulus as a function of ln L:
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spacing, and the brackets /?S denote the
thermal ensemble average. As far as we know
there are no previous analytical or numerical
results for the dynamics of this model. The
equations of motion for each spin is

d~SSi

dt
¼ ~SSi 'Heff ; ð14Þ

Heff ¼
X

a
Ji;jðSa

i%1;j þ Sa
i;j%1 þ Sa

iþ1;j þ Sa
i;jþ1Þ#ea;

ð15Þ

where a stands for x; y; z: Eq. (14) represents a set
of coupled equation to be integrated numerically.
To integrate the equations of motion we have used
a fourth-order Runge–Kutta scheme with size step
of dt ¼ 0:02J%1 We performed the simulation for
four temperatures, T ¼ 0:2J; 0:3655J; 0:369J and
0:4J using lattices of sizes L ¼ 40 and 60:
Equilibrium configurations were created at each
temperature using the Metropolis Monte Carlo
method. Between 500 and 1000 equilibrium con-
figurations were generated for each size and
temperature. We found that this many configura-
tions were necessary to sufficiently reduce the
statistical errors in the resulting scattering func-
tion.

Starting with each equilibrium configuration,
the time dependence of the spins were determined.
The maximum integration time was tmax ¼ 20J%1:
The results for different values of L were very close
and we used L ¼ 40 considering that this is a
preliminary calculation. Also, in order to reduce

memory and CPU time, we restricted ourselves to
moment ~qq ¼ ðq; 0Þ and ð0; qÞ; with q determined by
periodic boundary conditions

q ¼ nq
2p
L
; nq ¼ 1; 2;y;L: ð16Þ

The frequency resolution Do is determined by the
maximum time of integration which introduce
oscillations of period 2p=tmax into Saað~qq;oÞ: To
smoothen the oscillations, we use a frequency
resolution function, replacing

Caað~rr %~rr0; tÞ by Caað~rr %~rr0; tÞexp %1
2 ðtdoÞ

2
$ %

:

ð17Þ

In Figs. 14 and 15 we show Sxxð~qq;oÞ and Szzð~qq;oÞ
for four different temperatures, below, above and
at the critical temperatures. For the in plane
correlation is almost impossible to identify the
small oscillation peaks probably due to the
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Fig. 14. Temperature dependence of the xx component of the
neutron scattering function Sðq;oÞ as a function of frequency
o: Lattice size L ¼ 40 and momentum q ¼ 2p=40 in all cases.
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Fig. 15. The same is in Fig. 14 for the zz component of the
neutron scattering function.

0 0.5 1 1.5 2 2.5 3
q

0

0.5

1

1.5

2

ω

Fig. 16. Dispersion relation for Szz: There is an optical and an
acoustic mode. Lattice size is L ¼ 40 and the temperature is
T ¼ 0:2000J:
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revolution function which smoothes the Sð~qq;oÞ
waves. For the out of plane correlation, we
observe well-defined small oscillation peaks as
shown in Fig. 16. There are two magnon branches
since the model has a cell with ferro and anti-
ferromagnetic couplings. Although this is a pre-
liminary calculation it seems that the model has a
very rich dynamical structure which will be the
subject of a future work.

6. Conclusion

We performed careful simulation for the fully
frustrated planar rotator and XY models in two-
dimensions. For the planar rotator our results
confirm those from Olsson: The planar rotator
model has two transitions, coming from low
temperature it has an Ising transition then it
undergoes a BKT transition. The distance between
the transition temperature is about 2%. The
specific heat has an Ising behavior and there is
no universal jump in the helicity modulus. For the
XY model, the question is a bit more difficult to
respond than in the FFPR since the extra degree of
freedom introduced by the z component of the
spins. Considering that both models are in the
same universality class we found that the two
critical temperatures, TBKT and TI; are less than
1% apart. We have also done some preliminary
calculation on the dynamics of the model. Our

preliminary calculation shows a rich dynamical
structure that will be explored in a future work.
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