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The fully frustrated planar rotator and fully frustrated XY models in two dimensions have two phase transition

of the Berezinskii–Kosterlitz–Thouless type and other in the Ising universality class. We use Monte Carlo simulati

study both models. We fix our attention in the Ising-like transition, which we show can be understood as a perco

transition. We obtain the critical temperature as well as the critical exponents of the mean cluster size, g, and Fi

exponent t. The critical temperature agree very well with other calculations. We found that the critical exponen

smaller than in the pure two-dimensional percolation case. We interpret this as due to the long-range intera

between vortex and antivortex.

r 2005 Elsevier B.V. All rights reserved.
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Phase transitions are classified by symmetri
order parameters and spatial dimensionalit
universality classes, each of which havin
particular set of critical exponents [1]. Of p
cular interest are continuous magnetic mode
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rotator (PR) models [2–10]. Those are sp
models in magnetism. They undergo an unu
phase transition to a state with bound, topolo
excitations: vortex–antivortex pairs. A v
(antivortex) is a topological excitation in w
spins on a closed path around the excitation
process by f p (�f p) with f ¼ 1; 2, in the
direction. The models do not exhibit any true
range order. This lack of long-range order fo
from the Mermin–Wagner theorem [11], w
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vents long-range order for continuous spin m
in two dimensions. The models, however
undergo a phase transition at a finite temper
TBKT, from a high-temperature phase wher
correlation function exhibits an exponential d
to a low-temperature phase with quasi-long-r
order where the correlation function has a po
law decay. This phase transition is believed t
driven by a vortex–antivortex unbinding mec
ism. The mechanism of the phase transition
first illustrated by Berezinskii and Kosterlitz
Thouless [12,13] (BKT): at low-temperature
waves are the only significant excitations,
vortices are bound in pairs, not affecting the
wave description quantitatively. However
temperature grows the binding of vortices
creases and free vortices can be found in
system. Isolated vortices are global excitation
that, they affect the entire system increasin
entropy. At TBKT it undergoes a BKT p
transition. Because the free energy of the syst
an analytical function this phase transition is
to be in an infinite order phase transition clas
particular interest are the fully frustrated ver
of the PR (FFPR) and XY (FFXY) models in
dimensions [2–4,6,7,10,14–16]. On the contra
the unfrustrated models which cannot presen
true long-range order at any finite tempera
frustrated models are expected to display a r
critical behavior due to two different symme
present. Beside the continuous spin symm
which leads to a BKT transition it posses
symmetrycorresponding to a vortex–antiv
condensate in the ground state. The appearin
this symmetry leads to the possibility of long-r
order. In this report we investigate the FFPR
the FFXY models in two dimensions by u
numerical techniques. The FFPR mode
defined as

HPR ¼
X

hi;ji

Ji;j cosðyi � yjÞ,

where i and j enumerate lattice sites, yi is the a
at the lattice point i and Ji;j is an exch
coupling which is ferromagnetic in all lines in
direction and is alternately ferromagnetic
antiferromagnetic in the y direction. For
s
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HXY ¼

hi;ji

Ji;j
~Si
~Sj þ

hi;ji

Ai;jS
z
i Sz

j ,

where ~Si ¼ Sx
i x̂þ S

y
i ŷþ Sz

i ẑ is a Heisen
spin vector at site i and Ai;j40, with Ji;j de
as in the FFPR model. Due to the easy p
anisotropy A, the Heisenberg symmetry is br
leading the system to have the same symmet
the FFPR model. The coupling distribu
imposes to the ground state a checkerb
pattern of plaquetes with positive (vortex
negative (antivortex) chirality, f, given by
Fig. 1)

f ¼
1

p

X

plaquete

ðfi � fjÞ ¼ �1.

Here, f is the angle between the XY
vector component and some fixed dire
in the plane. Both models, FFPR and FF
are in the same universality class. The gr
state of the models have a continuous degene
due to the spin symmetry and a Z2 degeneracy
to the f degrees of freedom. These symme
may led the system to have two phase transit
one at TPR;XY

Z2
and other at TPR;XY

BKT . In the
Monte Carlo (MC) simulation of the F
model Teitel and Jayaprakash [4] foun
steep drop in the helicity modulus, signali
BKT transition, accompanied by an inc
in the specific heat with lattice size, consi
with an Z2 transition. However, the authors b
not able to determine the precise critical beh
of the model, suggested the following pos
scenarios:

1. The loss of Z2 and XY order take place a
s
 same temperature TBKT ¼ TZ2
.

2. The Z2 transition occurs at a higher tem
ture than the BKT transition.
)

Since then, several studies have been made o
model to decide between these two possibi
(see Ref. [10] and references therein). Some o
earliest MC investigations suggested that th
critical exponents could be different from the
Ising ones, opening the possibility to the mod
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Fig. 1. Sequence of snapshots representing the vortex–antivor

tex equilibrium configurations for three different temperatures

ToTBKT;T � TBKT and T4TBKT for the fully frustrated

model. The thin and thick lines represent ferromagnetic and

antiferromagnetic coupling, respectively.
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very extensive MC calculation, reported
critical temperatures of the FFPR mode
TPR

BKT � 0:446 J and TPR
Z2
� 0:452 J. He f

genuine Ising exponents to the Z2 transition
argued that the non-Ising exponents foun
others is due to a failure of the used finite
scaling. In recent papers Korshunov [7] ar
that the BKT transition should occur at l
temperature than the Z2 transition. More rece
Lima and Costa [17] calculated the cr
temperatures for the FFPR and FFXY m
finding TPR

BKT ¼ 0:4410ð5Þ J, TPR
Z2
¼ 0:4511ð

and TXY
BKT ¼ 0:3655ð5Þ J, TXY

Z2
¼ 0:3690ð3Þ J

spectively, confirming the results of Olson
Korshunov. The FF models can be seen as di
models since at T ¼ 0 each plaquete suppo
vortex or antivortex. As temperature grows
vortex (antivortex) acquire enough energy to
to another plaquete occupied by an antiv
(vortex) such that they annihilate each o
This has the effect to diminish the v
density. Considering that vortices can m
changing their positions with vortex free plaq
in order to minimize the free energy of the sys
we have an annealed like site diluted Ising m
to deal with [18]. The difference from a con
tional Ising model is due to the possibilit
fluctuations in the vortex density for fixed
perature: a pair vortex–antivortex can be cre
or annihilated. Rigorous inequalities were pr
by Coniglio et al. [19], which relate percol
probability to critical points in quenched
models. In two dimensions the critical point
shown to be a percolation point. As the FF m
have a Z2 transition, we expect that cr
thermodynamic quantities are related to
percolation ones.
In this paper we present MC results for th

transition in the FFPR and FFXY models.
analysis is based on the properties of the v
percolation probability at the critical Z2 tem
ture. This work is organized as follows. In Se
2 we discuss in detail the critical properties of
models: FFPR and FFXY. In Section 3 we pr
some details of the numerical simulation
Sections 4 and 5 we show our results
conclusions, respectively.
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Fig. 2. Figures are for the vortex density, rXY;PR, as a function

of temperature for several lattice sizes as indicated in the

legends. We observe that rXY;PR suddenly drops at some

temperature TXY;PR
L . The arrows represent the critical tempera-

tures TPR
Z2
¼ 0:4511 and TXY

Z2
¼ 0:3690. The top and bottom

figures are for the PR and XY models, respectively.
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Due to the coupling distribution between sit
the FFPR and FFXY models, their ground
present a checkerboard distribution of vor
being the center of the vortices located at
center of each plaquete. The associated param
f, which characterize the vorticity, has a
symmetry playing the role of an Ising vari
We can associate the f variable to each site o
dual lattice in such way that the ground state i
same as in an Ising antiferromagnetic mode
zero temperature (T ¼ 0), the vortex density i
system is rXY;PR ¼ 1. Once the temperature gr
pairs vortex–antivortex start to annihilate
other, so that, its density diminish as show
Figs. 1 and 2.

We observe that close to the transitions the
a sharp drop in the vortex density. In Fig.
show the derivative, dr=dT , obtained by
simulations for several lattice sizes as discuss
Ref. [17]. At some value TL each curve prese
maximum. An extrapolation for L!1

TPR
L!1 ¼ 0:453ð5Þ J and TXY

L!1 ¼ 0:369ð4Þ J
seen in Fig. 4, which matches TPR

Z2
and

respectively, inside the error bars, as discuss
Ref. [17]. This behavior is not observed in the
frustrated models. At the Z2 transition we ex
rXY;PRðTZ2

Þ ¼ rXY;PR
c , where rXY;PR

c is to
identified with the percolation threshold. We
turn back to this point later.

We can expect that at the critical concentr
rXY;PR
c , the percolation threshold is attained

that, below this concentration the system ca
support any transition at all. In principle, if th
transitions were genuine Ising transitions
should expect the critical concentration t
rXY;PR � 0:593 for both models with the
known classical percolation exponents: a ¼
b ¼ 5

36
, g ¼ 43

18
, t ¼ 187

91
and so on. However,

the vortex–(anti)vortex interaction is logarit
we cannot expect any exact match. Beside
due to the logarithmic range of interaction
have to face the problem of defining the conce
neighborhood which is central to the calculatio
any quantity in percolation theory. This que
was discussed by Costa et al. in Ref. [20], in
context of the nonfrustrated XY model. In s
 ,

and antivortices in the system for several tem
tures. By measuring the distance between e
vortex–antivortex pair they considered as ne



neighbor pairs those at the smallest distance, dv�av.
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Fig. 3. The figures represent the derivatives of the vortex

density as a function of temperature. The sequence of the

figures are the same as in Fig. 2.
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Fig. 4. The figures represent the maxima of the derivatives of

the vortex density as a function of L�1. The dotted lines are

extrapolation for L!1, which gives TPR
L ¼ 0:453ð5Þ and

TXY
L ¼ 0:369ð4Þ. Those values are shown as arrows.
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By analyzing dv�av as a function of temper
they found that the pair size has no discontin
behavior upon passing through the transition
it grows continuously with temperature. In
low-temperature phase (low vortex density in
non frustrated case), the maximum dist
between vortex–antivortex in the pair was f
to be about three lattice spacings. We re
vortices are supposed to be bounded, follo
the Kosterlitz–Thouless transition picture.
this in mind, it is reasonable to suppose that
spins are neighbors if they are up to three la
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ately obtain TZ2
through Fig. 2, since it

the density as a function of temperature.
Two important quantities in percolation th

are the mean cluster size, Sav, and the percol
probability P [18]. The mean cluster size is de
as

Sav ¼

P1
s¼1 s2nðsÞP1
s¼1 snðsÞ

,

where s is the number of clusters of size nðsÞ. C
to the percolation threshold it behaves as

Sav�ðrc � rÞ�g ðr! rcÞ.

By measuring Sav we can estimate the cr
concentration rc and the critical exponent g.

Another important quantity is the percol
probability P which measures the probability
cluster to percolate. It must be a step function
rorc, P ¼ 0 and P ¼ 1 for r4rc, so that a pl
P as a function of r, immediately gives an esti
of rc. The asymptotic behavior of the cl
numbers, nsðrcÞ, defines Fisher’s exponent t.
large s it behaves as

nsðrcÞ / s�t.

In the next section we will use MC simulatio
calculate the quantities we discussed above.
3. Numerical details
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t are
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We have studied the two-dimensional clas
fully frustrated XY and PR models with Ham
nian given in Eq. on L� L lattices with per
boundary conditions for 20pLp100 for se
temperatures below and above the TXY;PR

Z2
tr

tion.
Equilibrium configurations were created at

temperature using a MC vectorized Metro
method. Although, cluster algorithms are m
faster than Metropolis for nonfrustrated ver
of the model [21], it does not work quite w
frustrated situations, such that, we found
convenient to use the Metropolis algorithm
We discarded the first 100� L� L sweeps
equilibration, since that, averages of basic q
tities as energy, specific heat and susceptibi
s

)

)

l

ium.
Between 103 and 104 equilibrium configura

were generated for each lattice size and tem
ture. We found this many configurations t
necessary in order to sufficiently reduce stati
errors in the resulting counting of percol
clusters close to TXY;PR

Z2
. The error bars in

figures represent the statistical errors for ave
over the equilibrium configurations, drawn
the canonical ensemble.
To get both, the number and the cluster

we have used the Hoshen and Kopelman
rithm [18].
r
f

r
r

)

l
-

l
-

s

s

.
r
-
s

We now present our results for the cr
temperatures TPR

Z2
and TXY

Z2
, the mean cluster

Sav, and the critical exponent g, the percol
probability P and Fisher’s exponent t.
Fig. 3 shows the negative of the derivative o

vortex density as a function of temperatur
several lattice sizes. Each curve exhibits a s
maximum at some temperature TPR;XY

L . By
ting TPR;XY

L as a function of the lattice size L

can adjust a straight line to our data (see Fi
An extrapolation to L!1 gives TPR

1 ¼ 0:4
and TXY

1 ¼ 0:369ð4Þ, which are to be compar
TPR

Z2
¼ 0:4511ð10Þ and TXY

Z2
¼ 0:3690ð3Þ, obta

by Lima and Costa [17] using a thermodyn
approach. The same numbers are found by u
the percolation probability as a function
temperature as shown in Fig. 5. An estima
the critical temperature gives TPR

P ¼ 0:451ð5Þ
TXY

P ¼ 0:369ð5Þ.
Fig. 6 shows a log–log plot of the average cl

size distribution as a function of density for r
and r4rc. Following Ref. [18] we obtain fo
critical exponent gPR ¼ 2:07ð5Þ and gXY ¼ 2:0
Those values agree between themselves bu
below the quenched two-dimensional site di
percolation model g ¼ 43

18
� 2:39.

Fisher’s exponent, t, can be obtained by plo
the cluster number ns as a function of the cl
size s. From Fig. 7 we obtain tPR ¼ 1:89ð5Þ
tXY ¼ 1:77ð5Þ. Again, the values agree bet



themselves but are below t ¼ 187
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� 2:05, which is

is incidental or not. Although we cannot rigor-
is as
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Fig. 5. Percolation probability as a function of temperature.
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the exact value for the two-dimensional case.
5. Conclusions
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The spin waves shield the vortex interac
however, they cannot be considered as free,
its interaction is still logarithmic. Just afte
BKT transition temperature the thermal ener
high enough, so that, it equals the pinning en
due to the lattice discreteness, inducing a cas
of annihilations and giving origin to the su
severe diminishing of the vortex number,
vortex density goes below the percolation th
old which on the other hand leads to th
transition.
Our calculations of the mean cluster size an

percolation threshold allows us to calculate
critical temperatures TXY;PR

Z2
and two cr

exponents: g and t. The values for the cr
temperatures we have obtained are in exce
agreement with other calculations. For the cr
exponents, the values are different from the
two-dimensional cases. There are several rea
for that. The models we have found in
literature refer to quenched situations, while
is an annealed model. In general, interaction
short ranged in those models, justifying a
neighbor approach. Here, due to the logarit
potential we have to consider interactions u
the third neighbor.
The Fisher’s exponent, t, is obtained by

Cluster number ns.
The other critical exponents can be obta

from the universal relations, 2� a ¼ ðt� 1Þ
2bþ g and t ¼ ð2þ bÞ=ðbþ gÞ: Unfortunately
have not been able to calculate independent
least one more exponent which could allow
confirm (or not) the universal relations bet
the critical exponents.
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