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Abstract

The fully frustrated planar rotator and fully frustrated XY models in two dimensions have two phase transitions: one
of the Berezinskii—Kosterlitz-Thouless type and other in the Ising universality class. We use Monte Carlo simulation to
study both models. We fix our attention in the Ising-like transition, which we show can be understood as a percolation
transition. We obtain the critical temperature as well as the critical exponents of the mean cluster size, y, and Fisher’s
exponent t. The critical temperature agree very well with other calculations. We found that the critical exponents are
smaller than in the pure two-dimensional percolation case. We interpret this as due to the long-range interaction

between vortex and antivortex.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Phase transitions are classified by symmetries of
order parameters and spatial dimensionality to
universality classes, each of which having a
particular set of critical exponents [1]. Of parti-
cular interest are continuous magnetic models in
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two dimensions realized as the XY and planar
rotator (PR) models [2-10]. Those are special
models in magnetism. They undergo an unusual
phase transition to a state with bound, topological
excitations: vortex—antivortex pairs. A vortex
(antivortex) is a topological excitation in which
spins on a closed path around the excitation core
process by fn (—fm) with f =1,2, in the same
direction. The models do not exhibit any true long-
range order. This lack of long-range order follows
from the Mermin—Wagner theorem [11], which
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asserts that a broken continuous symmetry pre-
vents long-range order for continuous spin models
in two dimensions. The models, however, do
undergo a phase transition at a finite temperature
TpkT, from a high-temperature phase where the
correlation function exhibits an exponential decay
to a low-temperature phase with quasi-long-range
order where the correlation function has a power-
law decay. This phase transition is believed to be
driven by a vortex—antivortex unbinding mechan-
ism. The mechanism of the phase transition was
first illustrated by Berezinskii and Kosterlitz and
Thouless [12,13] (BKT): at low-temperature spin
waves are the only significant excitations, and
vortices are bound in pairs, not affecting the spin
wave description quantitatively. However, as
temperature grows the binding of vortices de-
creases and free vortices can be found in the
system. Isolated vortices are global excitations, so
that, they affect the entire system increasing its
entropy. At Tkt it undergoes a BKT phase
transition. Because the free energy of the system is
an analytical function this phase transition is said
to be in an infinite order phase transition class. Of
particular interest are the fully frustrated versions
of the PR (FFPR) and XY (FFXY) models in two
dimensions [2-4,6,7,10,14-16]. On the contrary of
the unfrustrated models which cannot present any
true long-range order at any finite temperature,
frustrated models are expected to display a richer
critical behavior due to two different symmetries
present. Beside the continuous spin symmetry
which leads to a BKT transition it posses a Z;
symmetrycorresponding to a vortex—antivortex
condensate in the ground state. The appearing of
this symmetry leads to the possibility of long-range
order. In this report we investigate the FFPR and
the FFXY models in two dimensions by using
numerical techniques. The FFPR model is
defined as

Hpr =Y _J;jcos(0; — 0)), (D
(i)

where i and j enumerate lattice sites, 6; is the angle

at the lattice point i and J;; is an exchange

coupling which is ferromagnetic in all lines in the x

direction and is alternately ferromagnetic and

antiferromagnetic in the y direction. For the

FFXY we define
Hxy = Z Ji,/'§i§j + Z A;S;S;, ()
(i) (i)

where S;=S¥%+S/p+S72 is a Heisenberg
spin vector at site i and A4;;>0, with J;; defined
as in the FFPR model. Due to the easy plane
anisotropy A, the Heisenberg symmetry is broken
leading the system to have the same symmetry as
the FFPR model. The coupling distribution
imposes to the ground state a checkerboard
pattern of plaquetes with positive (vortex) or
negative (antivortex) chirality, f, given by (see
Fig. 1)

1
== D i—¢)==%L 3)

plaquete

Here, ¢ is the angle between the XY spin
vector component and some fixed direction
in the plane. Both models, FFPR and FFXY,
are in the same universality class. The ground
state of the models have a continuous degeneracy
due to the spin symmetry and a Z;, degeneracy due
to the f degrees of freedom. These symmetries
may led the system to have two phase transitions,
one at T?;’XY and other at Thgy". In the first
Monte Carlo (MC) simulation of the FFPR
model Teitel and Jayaprakash [4] found a
steep drop in the helicity modulus, signaling a
BKT transition, accompanied by an increase
in the specific heat with lattice size, consistent
with an Z, transition. However, the authors being
not able to determine the precise critical behavior
of the model, suggested the following possible
scenarios:

1. The loss of Z; and XY order take place at the
same temperature Tgkt = 1z,.

2. The Z, transition occurs at a higher tempera-
ture than the BKT transition.

Since then, several studies have been made on the
model to decide between these two possibilities
(see Ref. [10] and references therein). Some of the
earliest MC investigations suggested that the Z,
critical exponents could be different from the pure
Ising ones, opening the possibility to the model to
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Fig. 1. Sequence of snapshots representing the vortex—antivor-
tex equilibrium configurations for three different temperatures,
T<Tgkr, T =~ Tkt and T>Tpgr for the fully frustrated
model. The thin and thick lines represent ferromagnetic and
antiferromagnetic coupling, respectively.

be in a new universality class. Peter Olson [10], in a
very extensive MC calculation, reported the
critical temperatures of the FFPR model as
Thgr ~0446) and T8 ~0452). He found
genuine Ising exponents to the Z, transition and
argued that the non-Ising exponents found by
others is due to a failure of the used finite size
scaling. In recent papers Korshunov [7] argued
that the BKT transition should occur at lower
temperature than the Z, transition. More recently,
Lima and Costa [17] calculated the critical
temperatures for the FFPR and FFXY models
finding Thgr = 0.4410(5)7, T5% =0.4511(10)]
and Ty = 0.3655(5)J, T3Y =0.3690(3)J, re-
spectively, confirming the results of Olson and
Korshunov. The FF models can be seen as diluted
models since at 7'= 0 each plaquete supports a
vortex or antivortex. As temperature grows, the
vortex (antivortex) acquire enough energy to jump
to another plaquete occupied by an antivortex
(vortex) such that they annihilate each other.
This has the effect to diminish the vortex
density. Considering that vortices can move
changing their positions with vortex free plaquetes
in order to minimize the free energy of the system,
we have an annealed like site diluted Ising model
to deal with [18]. The difference from a conven-
tional Ising model is due to the possibility of
fluctuations in the vortex density for fixed tem-
perature: a pair vortex—antivortex can be created
or annihilated. Rigorous inequalities were proved
by Coniglio et al. [19], which relate percolation
probability to critical points in quenched Ising
models. In two dimensions the critical point was
shown to be a percolation point. As the FF models
have a Z, transition, we expect that critical
thermodynamic quantities are related to the
percolation ones.

In this paper we present MC results for the Z,
transition in the FFPR and FFXY models. Our
analysis is based on the properties of the vortex
percolation probability at the critical Z, tempera-
ture. This work is organized as follows. In Section
2 we discuss in detail the critical properties of both
models: FFPR and FFXY. In Section 3 we present
some details of the numerical simulation. In
Sections 4 and 5 we show our results and
conclusions, respectively.
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2. Background

Due to the coupling distribution between sites in
the FFPR and FFXY models, their ground state
present a checkerboard distribution of vortices,
being the center of the vortices located at the
center of each plaquete. The associated parameter
f, which characterize the vorticity, has a Z,
symmetry playing the role of an Ising variable.
We can associate the f variable to each site of the
dual lattice in such way that the ground state is the
same as in an Ising antiferromagnetic model. At
zero temperature (7 = 0), the vortex density in the
system is pXY-PR = 1. Once the temperature grows,
pairs vortex—antivortex start to annihilate each
other, so that, its density diminish as shown in
Figs. 1 and 2.

We observe that close to the transitions there is
a sharp drop in the vortex density. In Fig. 3 we
show the derivative, dp/dT, obtained by MC
simulations for several lattice sizes as discussed in
Ref. [17]. At some value T'; each curve presents a
maximum. An extrapolation for L — oco gives
TPR =0453(5)] and T3FY__ =0.369(4)], as
seen in Fig. 4, which matches T?; and Té},
respectively, inside the error bars, as discussed in
Ref. [17]. This behavior is not observed in the non
frustrated models. At the Z, transition we expect
pXYPR(T 7)) = pXYPR where pXYPR is to be
identified with the percolation threshold. We will
turn back to this point later.

We can expect that at the critical concentration
pXY-PR “the percolation threshold is attained, so
that, below this concentration the system cannot
support any transition at all. In principle, if the Z,
transitions were genuine Ising transitions, we
should expect the critical concentration to be
pXYPR ~0.593 for both models with the well-

known classical percolation exponents: o = —%,
=+ v=1% tv=17 and so on. However, since

the vortex—(anti)vortex interaction is logarithmic
we cannot expect any exact match. Beside that,
due to the logarithmic range of interaction, we
have to face the problem of defining the concept of
neighborhood which is central to the calculation of
any quantity in percolation theory. This question
was discussed by Costa et al. in Ref. [20], in the
context of the nonfrustrated XY model. In short,

0.8

0.6

04 O L=100
O L=80 |
O 1L=60
A 1=40
0.2 < L=20 ]
0 l | l | l
0.2 0.3 0.4 0.5 0.6

0 l | l
0.2 0.3

XY,PR

Fig. 2. Figures are for the vortex density, p , as a function
of temperature for several lattice sizes as indicated in the
legends. We observe that pXY'PR suddenly drops at some
temperature T)L(Y’PR. The arrows represent the critical tempera-
tures T5% = 0.4511 and T§Z =0.3690. The top and bottom
figures are for the PR and XY models, respectively.

they have calculated the position of all vortices
and antivortices in the system for several tempera-
tures. By measuring the distance between every
vortex—antivortex pair they considered as nearest
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Fig. 3. The figures represent the derivatives of the vortex
density as a function of temperature. The sequence of the
figures are the same as in Fig. 2.

neighbor pairs those at the smallest distance, d,_4,.
By analyzing d,_,, as a function of temperature
they found that the pair size has no discontinuous
behavior upon passing through the transition, but
it grows continuously with temperature. In the
low-temperature phase (low vortex density in the
non frustrated case), the maximum distance
between vortex—antivortex in the pair was found
to be about three lattice spacings. We remind
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Fig. 4. The figures represent the maxima of the derivatives of
the vortex density as a function of L~!. The dotted lines are
extrapolation for L — oo, which gives TPR =0.453(5) and
T = 0.369(4). Those values are shown as arrows.

ourselves that in the low-temperature phase
vortices are supposed to be bounded, following
the Kosterlitz-Thouless transition picture. With
this in mind, it is reasonable to suppose that two
spins are neighbors if they are up to three lattice
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spaces apart. If we can obtain pX¥-PR we immedi-

ately obtain T §Z’PR through Fig. 2, since it gives
the density as a function of temperature.

Two important quantities in percolation theory
are the mean cluster size, Sy, and the percolation
probability P [18]. The mean cluster size is defined
as

Xy sn(s)
2Zisn(s)”

where s is the number of clusters of size n(s). Close
to the percolation threshold it behaves as

S av — (4)

Sav™~(pe —p)7 (p = po)- Q)
By measuring S,, we can estimate the critical
concentration p, and the critical exponent 7.

Another important quantity is the percolation
probability P which measures the probability of a
cluster to percolate. It must be a step function: for
p<p., P=0and P=1for p>p,, so that a plot of
P as a function of p, immediately gives an estimate
of p.. The asymptotic behavior of the cluster
numbers, n4(p..), defines Fisher’s exponent 7. For
large s it behaves as

ns(pe) o< 5" (6)

In the next section we will use MC simulation to
calculate the quantities we discussed above.

3. Numerical details

We have studied the two-dimensional classical
fully frustrated XY and PR models with Hamilto-
nian given in Eq. on L x L lattices with periodic
boundary conditions for 20< L <100 for several
temperatures below and above the T;}PR transi-
tion.

Equilibrium configurations were created at each
temperature using a MC vectorized Metropolis
method. Although, cluster algorithms are much
faster than Metropolis for nonfrustrated versions
of the model [21], it does not work quite well in
frustrated situations, such that, we found more
convenient to use the Metropolis algorithm here.
We discarded the first 100 x L x L sweeps for
equilibration, since that, averages of basic quan-
tities as energy, specific heat and susceptibilities

variate less than 0.2%, using the specified criter-
ium.

Between 10° and 10* equilibrium configurations
were generated for each lattice size and tempera-
ture. We found this many configurations to be
necessary in order to sufficiently reduce statistical
errors in the resulting counting of percolating
clusters close to T éZY’P R The error bars in our
figures represent the statistical errors for averages
over the equilibrium configurations, drawn from
the canonical ensemble.

To get both, the number and the cluster size
we have used the Hoshen and Kopelman algo-
rithm [18].

4. Results

We now present our results for the critical
temperatures T?j and Tﬁ:, the mean cluster size
Sav, and the critical exponent 7y, the percolation
probability P and Fisher’s exponent .

Fig. 3 shows the negative of the derivative of the
vortex density as a function of temperature for
several lattice sizes. Each curve exhibits a sharp
maximum at some temperature TER’XY. By plot-
ting T5°*Y as a function of the lattice size L, we
can adjust a straight line to our data (see Fig. 4).
An extrapolation to L — oo gives T‘;‘} = 0.453(5)
and TZ(OY = 0.369(4), which are to be compared to
T5% =0.4511(10) and T7%) = 0.3690(3), obtained
by Lima and Costa [17] using a thermodynamic
approach. The same numbers are found by using
the percolation probability as a function of
temperature as shown in Fig. 5. An estimate of
the critical temperature gives TgR = 0.451(5) and
T3Y = 0.369(5).

Fig. 6 shows a log—log plot of the average cluster
size distribution as a function of density for p<p,
and p>p,.. Following Ref. [18] we obtain for the
critical exponent yPR = 2.07(5) and XY = 2.08(5).
Those values agree between themselves but are
below the quenched two-dimensional site diluted
percolation model y = £ &~ 2.39.

Fisher’s exponent, 7, can be obtained by plotting
the cluster number ng as a function of the cluster
size s. From Fig. 7 we obtain "R = 1.89(5) and
XY = 1.77(5). Again, the values agree between
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Fig. 5. Percolation probability as a function of temperature.

themselves but are below 7 = % ~ 2.05, which is
the exact value for the two-dimensional case.

5. Conclusions
We observed that the inflection point in the

vortex density gives a very good estimate of the
T g’PR. The question is to know if this coincidence
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In(Sav)

19 b

18 b

1 I 1 I 1 I 1
175 4 3 2 -1
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Fig. 6. Log-log plot of the average cluster size distribution as a
function of density. The straight lines are linear adjusts. The
upper curve is for p<p, and the other for p>p.. The top and
bottom graphics is for PR and XY models, respectively.

is incidental or not. Although we cannot rigor-
ously prove, a reasonable explanation for that is as
follows. At T = 0 there are L x L/2 vortex pairs
in the lattice. Once the temperature grows, they are
activated, so that, some pairs can acquire enough
energy to be annihilated. The vortex density
diminish as temperature grows. When the BKT
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Fig. 7. Cluster number 7, as a function of the cluster size 5. The
solid straight lines are the result of the best adjust to the data.

temperature is reached, pairs are weakly bounded.
The spin waves shield the vortex interaction,
however, they cannot be considered as free, since
its interaction is still logarithmic. Just after the
BKT transition temperature the thermal energy is
high enough, so that, it equals the pinning energy
due to the lattice discreteness, inducing a cascade
of annihilations and giving origin to the sudden

drop in the vortex density. As a consequence of the
severe diminishing of the vortex number, the
vortex density goes below the percolation thresh-
old which on the other hand leads to the Z,
transition.

Our calculations of the mean cluster size and the
percolation threshold allows us to calculate the
critical temperatures T3 "R and two critical
exponents: y and 7. The values for the critical
temperatures we have obtained are in excellent
agreement with other calculations. For the critical
exponents, the values are different from the pure
two-dimensional cases. There are several reasons
for that. The models we have found in the
literature refer to quenched situations, while ours
is an annealed model. In general, interactions are
short ranged in those models, justifying a first
neighbor approach. Here, due to the logarithmic
potential we have to consider interactions up to
the third neighbor.

The Fisher’s exponent, 7, is obtained by the
Cluster number ny.

The other critical exponents can be obtained
from the universal relations, 2 —a = (t — 1)/o =
2f 4y and T = (2 + f)/(f + y). Unfortunately, we
have not been able to calculate independently at
least one more exponent which could allow us to
confirm (or not) the universal relations between
the critical exponents.
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