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Abstract
The random sequential adsorption (RSA) model has served as a paradigm for
diverse phenomena in physical chemistry, as well as in other areas such as
biology, ecology, and sociology. In the present work, we survey aspects of
the RSA model with emphasis on the approach to and properties of jammed
states obtained for large times in continuum deposition versus that on lattice
substrates, and on pre-patterned surfaces. The latter model has been of recent
interest in the context of efforts to use pre-patterning as a tool to improve self-
assembly in micro- and nanoscale surface structure engineering.

1. Introduction

Several recent experimental efforts [1–16] have focused on approaches of pre-treating two-
dimensional (2D) surfaces, or one-dimensional (1D) structures, e.g., polymers, by imprinting
microscale, and, ultimately, nanoscale, patterns, for producing new functional substrates
for self-assembly and other applications. Micron and submicron colloidal particles have
traditionally proven to be quite versatile building blocks for the construction of advanced
materials. Thin films of adsorbed colloidal particles are of great technological interest for
a wide range of devices, such as photonic crystals [17–19], quantum dots [20, 21], and
heterogeneous catalysts [22, 23]. Kinetics of the deposition of colloidal and nanoparticles
at surfaces also poses interesting problems from the theoretical point of view [24–28],
as most of the above-mentioned applications require control of positioning and distances
between neighbouring particles. Here we survey the model of random sequential adsorption
(RSA), reviewed in [29, 30, 28], and outline some new results for deposition on pre-treated
substrates. In the present work, we emphasize the use of the RSA model for irreversible
monolayer surface deposition of well defined particles. However, the model has also been
extended and applied in other contexts, in biology, ecology, sociology, and condensed matter
physics [24, 26, 31, 27, 28, 32].
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Figure 1. Possible configurations for particle deposition on a surface (that need not be planar). (1)
Particles deposited onto the collector at low densities. (2) ‘Multilayer’ deposition on top of earlier
deposited particles. (3) Jamming: deposition attempts of particles that do not fit in available gaps
(voids) are rejected. The inset shows a 2D configuration. (4) Screening of part of the collector
surface by earlier deposited particles: the position marked by an open circle is not reachable.

As already pointed out, surface deposition of submicron particles is of immense practical
importance; see, e.g., [29, 30, 28, 33]. Particles of this size, colloid, protein, or even smaller
nanoparticles and molecules, are suspended in solution, without appreciable sedimentation
due to gravity. In order to maintain the suspension stable, one has to prevent aggregation
(coagulation), that results in larger flocks for which the gravity pull is more profound.
Stabilization by particle–particle electrostatic repulsion or by steric effects, etc, is usually
effective for a sufficiently dilute suspension. Particles can then be deposited from solution,
by diffusion, or by convective diffusion [34] from a flowing suspension, on collector surfaces.
The suspension itself need not be dense even though the on-surface deposit might be quite
dense, depending on the particle–particle and particle–surface interactions.

Figure 1 illustrates possible configurations of particles at a surface. From left to right,
we show particles deposited on the surface of a collector, then particles deposited on top of
other particles. The latter is possible only in the absence of particle–particle repulsion. The
two situations are termed monolayer and multilayer deposition, even though the notion of
a layer beyond that exactly at the surface is only approximate. We next show two effects
that play an important role in surface growth. The first is jamming: a particle marked by an
open circle cannot fit in the lowest layer at the surface. A more realistic two-dimensional
(2D) configuration is shown in the inset. The second effect is screening: the surface position
marked by the open circle is not reachable. Typically, in colloid deposition monolayer or few-
layer deposits are formed and the dominant effect is jamming. Screening plays a dominant
role in deposition of multiple layers and, together with the transport mechanism, determines
the morphology of the growing surface. In addition, the particle configuration at the surface
depends on the transport mechanism of the particles to it and on the particle motion on the
surface, as well as possible detachment. Particle motion is typically negligible for colloidal
particles but may be significant for proteins.

An important new development in surface deposition has been formation of controlled
structures: the process of self-assembly. Here we will focus only on monolayer deposition.
Obviously, the simplest way to have a structured deposit is to pre-pattern the surface in such a
way that (the centre of) each arriving depositing object, particle or molecule, will fit at a single
‘cell’ or attachment site. These attachment sites can form a regular pattern and impose the same
ordering on the depositing layer. However, with nano-sizes involved, such a precise patterning
is not always feasible. More realistically, the substrate can be at best prepared in a state
somewhere in between the uniform surface, the fully patterned one, and the disordered one: The
imprinted (for instance, lithographically) features may be larger than the depositing objects,
especially if the latter are molecules, and there may be some randomness in the surface ‘cell’
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pattern. The features can also be smaller than the depositing particles, especially for colloid
deposition. In the latter case, deposition of objects exactly fitting several lattice sites of a regular
lattice structure has been extensively studied in the RSA literature [29, 30, 28, 33]. Recently,
we have initiated studies that aim at exploring the effects of jamming and understanding the
attachment kinetics of particles on pre-patterned substrates [35, 36].

In section 2, we introduce the continuum RSA model. Lattice RSA is then addressed in
section 3. Section 4 introduces new features of deposition on a pre-patterned substrate with
focus on the case on an exactly solvable Bethe-lattice model. Finally, section 5 is devoted
to numerical results for correlations in and the nature of the jammed state for 2D patterned
substrates, and to concluding remarks.

2. Continuum RSA, the role of the dimensionality and particle shape

The random sequential adsorption (RSA) model, see, e.g., [37, 24], assumes that particle
transport (incoming flux) to the surface results in a uniform deposition attempt rate per unit
time and area, R. In the simplest formulation, one assumes that only monolayer deposition
is allowed. Within this monolayer deposit, each new arriving particle must either fit in an
empty area allowed by the hard-core exclusion interaction with the particles deposited earlier,
or its deposition attempt is rejected. The simplest case is that of continuum (off-lattice)
deposition of spherical particles. However, other RSA models have also received attention.
In 2D, noncircular cross-section shapes as well as various lattice-deposition models were
considered [37, 24]. Several experiments on polymers and attachment of fluorescent units
on DNA molecules [38] suggest consideration of the lattice–substrate RSA processes in 1D.
RSA processes have also found applications in traffic problems and certain other fields. Our
presentation in this section aims at off-lattice RSA models and outlines characteristic features
of their dynamics.

Thus, we consider the fully irreversible RSA without detachment or diffusion. The
substrate is usually assumed to be initially empty, at t = 0. For later times, t > 0, the coverage,
θ(t), defined, e.g., by the fraction of the area covered by particles, increases and builds up to a
fraction of unity on timescales of order (R A)−1, where A is the particle D-dimensional cross-
sectional area. For deposition of spheres of radius r on a planar (2D) surface, A is actually the
cross-sectional area πr 2, whereas the density of the deposited particles per unit surface area is
given by θ(t)/A.

At large times, the coverage approaches the jammed-state value, where only gaps too
small to fit new particles were left in the monolayer. The resulting state with θ(∞) < 1 is
less dense than the fully ordered close-packed coverage. The time-dependence of the RSA
coverage is illustrated schematically in figure 2. At early times the monolayer deposit is not
dense and the deposition events are largely uncorrelated. In this regime, mean-field low-density
approximation schemes are useful [39–41].

The most interesting properties of the RSA process are the time dependence of the
approach to the jammed state at large times, and the density correlations in the random,
‘jammed-state’ deposit that results. Deposition of k-mer particles on the linear lattice in 1D was
in fact solved exactly for all times [42], and this solution yields the continuum 1D deposition
as k → ∞. In 2D, extensive numerical studies were reported [41, 43–54] of the variation of
coverage with time and large-time asymptotic behaviour for both lattice and off-lattice models.
Some exact results [42] for correlation properties are available in 1D. Numerical results for
correlation properties, see, e.g., [45], have been obtained in 2D.

For continuum off-lattice deposition, the approach to the jamming coverage is power-
law. This interesting behaviour [55, 56] is due to the fact that for large times the remaining
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Figure 2. Schematic illustration of the time-dependence of RSA coverage.

gaps (voids) accessible to particle deposition can be of sizes arbitrarily close to those of the
depositing particles. These gaps are then reached with very low probability by the depositing
particles. The resulting power-law behaviour depends on the dimensionality and particle shape.
For instance, for D-dimensional cubes of volume (area in 2D) A,

θ(∞) − θ(t) ∼ [ln(R At)]D−1

R At
, (1)

whereas for spherical particles,

θ(∞) − θ(t) ∼ (R At)−1/D, (2)

where, as mentioned earlier, A = πr 2 in 2D.
The 1D asymptotic (R At)−1 law for deposition of segments of length A (the car-parking

problem) is confirmed by the exact solution [42]. For D > 1, such asymptotic laws were
derived [54–57] based on the late-stage gap-distribution considerations. We do not review
the details, but only point out that these empirical asymptotic relations obviously depend on the
particle shape, rotational freedom upon deposition, and dimensionality of the substrate [54–57].
They have been verified, mostly in 2D, by extensive numerical simulations [28, 43–54].

The most studied 2D geometries are circles (corresponding to the deposition of spheres on
a planar substrate) and squares. The jamming coverages are

θcircles(∞) � 0.544–0.550, (3)

and

θsquares(∞) � 0.5620, (4)

which are much lower that the respective close-packing values, π/(2
√

3) � 0.907 and 1.
The correlations in the large-time jammed state are different from those of the equilibrium

random gas of particles with density near θ(∞). In fact, the two-particle correlations in
continuum deposition develop a weak singularity at contact, and correlations generally reflect
the full irreversibility of the RSA process [42, 45, 56].

3. Lattice RSA

Continuum deposition can be viewed as a limit of lattice RSA. For example, consider deposition
of hypercubes on a hypercubic lattice with unit cell of size L D . Let us assume that A1/D/L = k,
i.e., the deposited objects are k × k × · · · = k D lattice cells in size. In the limit k → ∞,
L → 0 with the product kL fixed (thus, A fixed), off-lattice deposition of cubic objects is
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recovered [42, 54]. This crossover has been investigated in some detail analytically, for the
large-time asymptotic behaviour for any D, as well as numerically in 2D [54].

The new features of the lattice models are as follows. The gaps (voids) for single particles
to land, which dominate the large-time asymptotics, are restricted by the lattice and can no
longer be only slightly larger than the particles: the gap size increases by lattice increments
from the exact fit on. As a result [54], the asymptotic convergence to the jamming coverage is
exponential. Furthermore, it has been argued [54] that the relation replacing equation (1) takes
the form

θ(∞; k) − θ(t; k) ∼ �L De−RL D t , (5)

where the coefficient � has units of density.
It is important to define some conventions used in writing relations like equation (5). We

note that, in order to keep the particle flux to the surface constant for varying k, we have
to assume that particle deposition attempt events are ‘registered’ with the lattice, i.e. that the
arriving particles ‘wiggle in’ to attempt deposition exactly at the discrete lattice locations with
the (k-dependent) rate (per unit time) RL D = R A/k D . Furthermore, as already mentioned,
L D = A/k D is also a k-dependent quantity. The exponent in (5) is therefore given by
(R At)/k D , and this exponential behaviour sets in for times of order k D(R A)−1. However,
the coefficient � has no significant k dependence [54].

Except for solvable 1D cases, these expectations have only been tested numerically (in
2D) for the case of RSA of lattice squares, and a semi-quantitative level of verification can be
claimed [54]. However, these considerations do suggest that when the lattice mesh is of size
L D , much smaller than the sizes of the deposited objects, A, continuum-like behaviour will be
approximately observed initially and up to rather large times on the scale of 1/(R A), for which
the off-lattice power law will be manifest. However, ultimately, for times of order k D/(R A)

and larger, exponential convergence of the type (5) will develop.
It is important to emphasize that the jamming coverage itself, θ(∞; k), is dependent on the

lattice and particle geometry and sizes, here collectively denoted by the added k-dependence.
Relation (5) is for fixed geometry (fixed k) and increasing times. However, one can also explore
the k-dependence of θ(∞; k). Obviously, when the lattice cells and particles exactly match,
there will be no jamming effect and we will have θ(∞; 1) = 1. A natural expectation is
that the jamming coverage will then decrease monotonically with the increasing ratio of the
linear particle to lattice-cell dimensions, k in our example. Indeed, exact 1D results [42] and
numerical estimates in 2D [54] confirm these expectations and suggest that

θ(∞; k) − θ(∞; ∞) ∼ k−1. (6)

There are currently no detailed studies of particle–particle correlations in the jammed
state for varying k, to explore quantitatively to what extent a deposit with a coarser lattice
mesh (smaller k) can be viewed as more ‘ordered’ than one with large k. However, if
the main goal is to improve the resulting deposit density, then use of k values of order
unity is required. For example, for 2D squares we have the jamming coverage differences
θ(∞; k) − θ(∞; k + 1) ∼ 0.252, 0.068, 0.032, for k = 1, 2, 3, respectively, which illustrates
the dramatic effect of lattice confinement when the surface mesh limits the geometry of possible
particle landing slots to ‘cells’ closely matching particle dimensions.

4. RSA on a pre-patterned Bethe lattice

A lattice can be pre-treated with patterns less regular than a lattice structure. One approach
is to randomly block lattice sites or groups of sites. Correlations in such blockings can be
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(a)

(b)

O

Figure 3. The first three ‘generations’ of infinite Bethe lattices originating at the central site O for
(a) z = 2 and (b) z = 3.

defined, e.g., by considering pre-deposition of objects of different sizes, an extreme case of
RSA of mixtures, with one of the components depositing much faster than another. Deposition
processes of mixtures, as well as deposition on finite-size lattices and on randomly covered
lattices, have been considered in the literature, e.g. [37, 24, 57–67]. In this section we outline
an exact solution [35] for certain deposition processes on the Bethe lattice with the substrate
pre-treated by either random blocking of a fraction of sites or by a more specific preparation
that allows only for monomer and dimer landing slots.

The Bethe lattice of coordination number z = 2, 3, . . ., has each site connected by bonds
to z nearest neighbour sites, and there are no closed loops formed by these bonds. This no-loop
(no-return) property usually makes z > 2 Bethe-lattice results descriptive of high-dimensional
behaviour. The cases z = 2, 3 (the former is equivalent to the 1D lattice) are illustrated in
figure 3. With no loops present, one can show that each s-site cluster is connected by exactly
s − 1 internal bonds and that the number of bonds shared by the s cluster sites and the nearest
neighbour sites immediately outside this cluster is sz − 2(s − 1).

We consider RSA of dimers, arriving at the rate � (per unit time) and per each nearest-
neighbour pair of sites, and depositing provided both of these sites are empty. We also
allow deposition of monomers, arriving at the rate ϒ per unit time and per lattice site, and
depositing only at those sites that are empty. Arriving particles that cannot be deposited are
discarded. A standard approach to solving RSA problems [42] involves the consideration of the
probabilities, Ps(t), that a randomly chosen s-site connected cluster is empty. The occupancy
of the neighbour sites of the cluster is not accounted for in defining this probability: some of
the clusters that are empty can be parts of larger empty clusters. Note that

θ(t) = 1 − P1(t). (7)

The Bethe-lattice property that the number, s − 1, of dimer landing options inside the s-
cluster and the number, sz − 2s + 2, of options for landing partly inside (one site of the dimer
landing at an external neighbour site) are only dependent on s, and not on the specific cluster
configuration, allows us to write rate equations for the empty-cluster probabilities, Ps(t), which
in some cases are solvable:

−dPs

dt
= ϒs Ps + �[(s − 1)Ps + (sz − 2s + 2)Ps+1]. (8)

One way to pre-treat the substrate is by randomly blocking some sites for deposition, with
the initial fraction of the remaining empty sites given by 0 � ρ � 1. In a sense, this is
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equivalent to rapid initial deposition of monomers, followed by mixture deposition. The initial
conditions for (8) in this case are Ps(0) = (1 − ρ)s , and the set of equations can be solved to
yield

θ(t) = 1 − (1 − ρ)e−ϒ t

{
1 + �

� + ϒ
(z − 2)(1 − ρ)[1 − e−(�+ϒ)t ]

} z
2−z

. (9)

This expression has interesting limiting properties [35, 61, 62] as z → 2, i.e. the one-
dimensional case, and for ϒ = 0, the latter corresponding to the dimer-only deposition and
formation of a typical RSA jammed state with the final coverage less than unity, whereas we
have θ(∞) = 1 for any ϒ > 0.

Random coverage, just considered, is an important case of pre-treated substrates that finds
experimental realizations [68–71]. However, to actually control the particle deposition for
self-assembly, we have to consider much more restrictive situations, when the substrate is pre-
treated in such a way that particle deposition is possible only in specific locations tailored to
their sizes. Let us, therefore, consider the initial conditions corresponding to only voids of size
s = 1 and 2 left uncovered.

We will denote by σ the initial fraction of sites that are single-site voids, and by τ the
initial fraction of sites that, pair-wise, form two-site voids. Then, we have P1(0) = σ + τ ,
P2(0) = τ/z, as well as Ps>2(t � 0) ≡ 0. The rate equations for Pi (t), i ∈ {1, 2}, then yield
an expression which, not surprisingly, is not sensitive to the coordination number z,

θ(t) = 1 − e−ϒ t

{
σ + τ + �

� + ϒ
[1 − e−(�+ϒ)t ]

}
. (10)

5. RSA on a pre-patterned 2D lattice

In this section, we outline some of our recent Monte Carlo simulation results [36] on how
particles of spherical shape (circular cross-section) irreversibly adsorb on substrates patterned
with a square grid of square regions onto which the particle (projected) centres can adhere. We
consider certain correlation properties of the jammed state, as one varies the various length-
scales involved. We specifically chose a pattern of squares, because of their experimental
interest, though other shapes can also be considered [3]. Thus, the ‘sticky’ portion of the
substrate consists of squares of size a × a, with their parallel sides separated by a distance b.
One can relate, without loss of generality, all length scales to the diameter, d , of the depositing
circular-projection particles. Therefore, we have two effective parameters, namely,

α = a/d and β = b/d. (11)

With the above assumptions, the model represents a generalized version of the random
sequential adsorption (RSA) or car parking model [72, 73, 24, 27, 28]. To better classify the
rich variety of cases embodied in the model, we partition the ‘phase diagram’ into four regions
according to the distance between the squares and their size. We note that arriving particles can
overlap with (be rejected due to) particles centred in different cells only for β < 1; this will
be classified as the interacting cell–cell adsorption (ICCA). For β � 1, there is no cell–cell
overlap; this will be classified as non-interacting cell–cell adsorption (NICCA). Notice that in
the ICCA case, and depending on the relative size of the particles as compared to the cell (the
value of α), an arriving particle could overlap (interact) with particles in cells farther than the
nearest-neighbour ones. Now regarding the size of the cells, at most a single particle can deposit
in each cell for α < 1/

√
2; this will be classified as single-particle-per-cell adsorption (SPCA).

For α � 1/
√

2, more than one particle can be adsorbed in each cell; this will be classified as
multiparticle-per-cell adsorption (MPCA). These regions in the αβ plane are shown in figure 4.
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Figure 4. Phase diagram of the model.

Obviously, the relative values of α and β determine the extent to which the square pattern
affects jamming effects in particle (centre) deposition with each cell, as well as the jamming
properties due to particles in neighbouring cells. A rich diagram of various possibilities can
be developed to expand the classification shown in figure 4, though ultimately numerical
simulations will be needed to clarify the significance of the ‘phase boundaries’ suggested by
such geometrical considerations. For values of α → 0 with β � 1, the model reduces to RSA of
monomers on a square lattice of spacing b. There are then no jamming effects at all. However,
for α → 0 with β < 1, we obtain deposition of extended objects, since each deposited particle
‘shadows’ several lattice sites. For α → ∞ or β → 0 (with the other parameter fixed), one
recovers the usual continuum RSA model in 2D.

We outline here two particular cases, with representative values for the α and β . Our
pattern corresponds to a square lattice of cells (with their no-deposition boundary regions) of
linear size α + β . For good statistics, simulations were carried out for substrates consisting
of 500 × 500 such cells, with periodic boundary conditions applied both vertically and
horizontally. We simulated 103 time steps, where a time step was defined as the time required
to have a number of deposition attempts, on average, that would yield a packed monolayer of
particles, were they actually all deposited and repositioned to form a closed-packed structure.
The Monte Carlo results were averaged over 102 independent runs.

To characterize the jammed state, illustrated in figure 5, we studied the radial distribution
function [36] of the distances between the particle centres, P(r, α, β). The shape of the radial
distribution function is significantly affected by the values of α and β . For α = 0.6 and
β = 0.2, the distribution of the particles is homogeneous even on length scales comparable
with their size, as is seen in figure 5(a). Indeed, figure 5(b) demonstrates a nearly featureless
radial distribution function. The peaks observed in the radial distribution function correspond
to distances defined by the cell positions in the square lattice matrix, as marked in figure 5(c).
On the other hand, for α = 0.2 and β = 0.5, the jammed state shows local order, as seen in
figure 5(d). The radial distribution function now shows a series of well developed peaks, see
figure 5(e), which correspond to the cell-defined distances in the square lattice matrix, as shown
in figure 5(f). This emergence of the local order is a correlation effect that develops during the
deposition stage, due to the pre-patterning of the substrate.

8



J. Phys.: Condens. Matter 19 (2007) 065124 A Cadilhe et al

(a) (d)

(b) (e)

 0

 0.3

 0.6

 0.9

 0  1  2  3  4  5

R
ad

ia
l d

is
tr

ib
ut

io
n 

fu
nc

tio
n

Distance/(α+β)

1.25
2.00

2.24 3.00
3.16

 0

 0.3

 0.6

 0.9

 1.2

 0  1  2  3  4  5

R
ad

ia
l d

is
tr

ib
ut

io
n 

fu
nc

tio
n

Distance/(α+β)

1.41

2.00
2.24 3.00

3.16

(c) (f )

3.16

3.00

2.00

1.25

2.24

4.12

4.00

3.16

3.00

2.00
1.41

2.24

Figure 5. Simulation for two choices of the parameters α and β, for a periodic-boundary-condition
system of size 500 × 500 pattern-cells: (a) example of a jammed state for α = 0.6, β = 0.2,
with (b) the corresponding radial distribution function, and (c) the pattern-defined distances that
correlate with the peaks in the radial distribution; (d) a jammed state for α = 0.2, β = 0.5, with the
corresponding (e) radial distribution function and (f) pattern-defined distances.

(This figure is in colour only in the electronic version)

In summary, the versatility of the RSA model has been illustrated by the range of
phenomena it has been useful in explaining, since the seminal work of Flory in 1D [72]. The
model has been extended in several directions, most notably to include the kinetics [42, 27, 24],
as well as being studied in higher spatial dimensions for both on- and off-lattice variants.
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Functional forms explaining the approach to the limiting coverage depend on the particle
shape in the off-lattice case. On-lattice versions show an exponential approach to the limiting
coverage at late times. However, for large values of k (the number of lattice distances that
fit in a particle size), an intermediate regime, for t � (R A)−1, is found, with an off-lattice
type kinetics. The off-lattice (continuum) regime is in fact obtained exactly by taking the limit
k → ∞. Versions of the continuum RSA model with deposition of mixtures of particles of
different sizes and shapes have only been studied for the simplest cases of two particle sizes
and identical shapes [67, 74, 75, 66, 35, 76–78]. In spite of all the research work thus far, the
field remains widely open to new research efforts. Specifically, correlations have to be further
studied, especially for the jammed state and on approach to it.

As experiments on submicron down to nanometre length scales are becoming more
common, the need for studies involving control of particle positioning has also emerged.
Among the various possibilities, patterning of the surface represents a promising option, but
more theoretical work is needed. Specifically, there are no available studies of the effects of
different pattern structures (from irregular to lattice), pattern shapes, and particle shapes; all
these may introduce new interesting features. In the present work, we reviewed the deposition
of discs on square cells arranged on in a square-lattice pattern. In one case the choice of the
parameters led to a locally relatively homogeneous deposition of the particles, while in another
case a degree of local order was imposed.
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[42] González J J, Hemmer P C and Høye J S 1974 Cooperative effects in random sequential polymer reactions Chem.

Phys. 3 228
[43] Feder J 1980 Random sequential adsorption J. Theor. Biol. 87 237
[44] Tory E M, Jodrey W S and Pickard D K 1983 Simulation of random sequential adsorption-efficient methods and

resolution of conflicting results J. Theor. Biol. 102 439

11

http://dx.doi.org/10.1103/PhysRevLett.91.128301
http://dx.doi.org/10.1016/S0021-9797(03)00311-4
http://dx.doi.org/10.1021/ar0202870
http://dx.doi.org/10.1021/ja037262w
http://dx.doi.org/10.1021/ja035560n
http://dx.doi.org/10.1021/ja0279693
http://dx.doi.org/10.1002/1521-4095(20020205)14:3<221::AID-ADMA221>3.0.CO;2-V
http://dx.doi.org/10.1002/adma.200304792
http://dx.doi.org/10.1021/jp050242r
http://dx.doi.org/10.1063/1.1928321
http://dx.doi.org/10.1002/chem.200400288
http://dx.doi.org/10.1021/cr030063a
http://dx.doi.org/10.1103/RevModPhys.65.1281
http://dx.doi.org/10.1016/S0927-7757(99)00412-4
http://arxiv.org/abs/cond-mat/0609582
http://dx.doi.org/10.1142/S0217984904006846
http://dx.doi.org/10.1142/S0217979291001127
http://dx.doi.org/10.1126/science.7802858
http://dx.doi.org/10.1063/1.1679773
http://dx.doi.org/10.1103/PhysRevLett.62.175
http://dx.doi.org/10.1063/1.460109
http://dx.doi.org/10.1016/0301-0104(74)80063-7
http://dx.doi.org/10.1016/0022-5193(80)90358-6
http://dx.doi.org/10.1016/0022-5193(83)90379-X


J. Phys.: Condens. Matter 19 (2007) 065124 A Cadilhe et al

[45] Hinrichsen E L, Feder J and Jøssang T 1986 Geometry of random sequential adsorption J. Stat. Phys. 44 793
[46] Burgos E and Bonadeo H 1987 On the car parking problem J. Phys. A: Math. Gen. 20 1193
[47] Barker G C and Grimson M J 1987 Random sequential packing in square cellular structures—comment J. Phys.

A: Math. Gen. 20 2225
[48] Vigil R D and Ziff R M 1989 Random sequential adsorption of unoriented rectangles onto a plane J. Chem. Phys.

91 2599
[49] Talbot J, Tarjus G and Schaaf P 1989 Unexpected asymptotic behaviour in random sequential adsorption of

nonspherical particles Phys. Rev. A 40 4808
[50] Vigil R D and Ziff R M 1990 Kinetics of random sequential adsorption of rectangles and line segments J. Chem.

Phys. 93 8270
[51] Sherwood J D 1990 Random sequential adsorption of lines and ellipses J. Phys. A: Math. Gen. 23 2827
[52] Tarjus G, Schaaff P and Talbot J 1990 Generalized random sequential adsorption J. Chem. Phys. 93 8352
[53] Brosilow B J, Ziff R M and Vigil R D 1991 Random sequential adsorption of parallel squares Phys. Rev. A

43 631
[54] Privman V, Wang J-S and Nielaba P 1991 Continuum limit in random sequential adsorption Phys. Rev. B 43 3366
[55] Pomeau Y 1980 Some asymptotic estimates in the random parking problem J. Phys. A: Math. Gen. 13 L193
[56] Swendsen R H 1981 Dynamics of random sequential adsorption Phys. Rev. A 24 504
[57] Evans J W 1984 Exactly solvable irreversible processes on bethe lattices J. Math. Phys. 25 2527
[58] Talbot J and Schaaf P 1989 Random sequential adsorption of mixtures Phys. Rev. A 40 422
[59] Svrakic N M and Henkel M 1991 Kinetics of irreversible deposition of mixtures J. Physique I 1 791
[60] Bartelt M C 1991 Random sequential filling of a finite line Phys. Rev. A 43 3149
[61] Bartelt M C and Privman V 1991 Kinetics of irreversible adsorption of mixtures of pointlike and fixed-size

particles: Exact results Phys. Rev. A 44 R2227
[62] de Oliveira M J, Tome T and Dickman R 1992 Anisotropic random sequential adsorption of dimers on a square

lattice Phys. Rev. A 46 6294
[63] Nielaba P and Privman V 1992 Multilayer adsorption with increasing layer coverage Phys. Rev. A 45 6099
[64] Bonnier B, Hontebeyrie M, Leroyer Y, Meyers C and Pommiers E 1994 Adsorption of line segments on a square

lattice Phys. Rev. E 49 305
[65] McLeod A S and Gladden L F 1999 The influence of the random sequential adsorption of binary mixtures on

the kinetics of hydrocarbon hydrogenation reactions J. Chem. Phys. 110 4000
[66] Bonnier B 2001 Random sequential adsorption of binary mixtures on a line Phys. Rev. E 64 066111
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