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Electro-oxidation of ethanol represents a key process in fuel-cell technology. We introduce a generalization
of the random sequential adsorption model to study the long time scale and large length scale properties of the
electro-oxidation process. We provide an analytical solution for one dimension and Monte Carlo results in two
dimensions. We characterize the coverage and percolation properties of the jammed state and unveil the influence
of quenched impurities in the selectivity of oxidation products.
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I. INTRODUCTION

Ethanol has been considered for fuel cells, given its low
toxicity and abundance [1]. The electro-oxidation of ethanol on
the surface of catalysts can follow multiple reaction pathways
leading to several different products, which are strongly
affected by, e.g., concentration, presence of impurities, and
temperature. In this work, we introduce a model, inspired by
the random sequential adsorption (RSA) model of dimers,
to analyze properties of the oxidation process such as their
dependence on the binding configuration, binding rates, and
reaction pathway probabilities.

Ethanol electro-oxidation has recently been studied through
density function theory [2,3], providing possible reaction
pathways for the adsorption and catalysis of ethanol. However,
the time dependence of the coverage based on the various
reaction pathways would become computationally prohibitive
using density functional theory. Nonetheless, in the limit of
low mobility of bound reaction products, large systems sizes,
and long time scales, a study based on the adoption of a
square lattice to represent the (100) substrate for the various
reaction products becomes appropriate. In this limit, ethanol
electro-oxidation can be described as adsorption of a dimer on
the substrate, thus occupying two adjacent lattice sites, as it
cleaves [2,3] or, in the presence of neighboring preadsorbed
species, is adsorbed as a monomer. A key feature of the model
is to provide a configuration-dependent rule for the landing
site and study the influence on the adsorption rates of the
oxidation process. We also study the influence of immobile
impurities and clarify their role in achieving selectivity of
adsorbed species. Our model can also be extended to analyze
other cleavage mechanisms, e.g., that of sugars [4].

The RSA model has been utilized to describe adsorption
in the limit of low surface mobility and of negligible des-
orption rate [5–14]. Adsorption attempts occur sequentially
at randomly selected sites, where particles interact solely
through excluded volume. Generalized versions have been
proposed where the rates of adsorption are dependent on
the local configuration [5,15], which might, e.g., explain the
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selectivity of adsorbed species [16]. Further extensions have
been considered to study a wide range of problems, such as
chemical reactions [17–19], adsorption on membranes [20],
and protein and colloid adsorption [21,22] with and without
preadsorbed impurities [23–28].

In this paper, we study the model above delineated in both
one and two dimensions. In the one-dimensional study, we
were able to establish a closed hierarchy of rate equations
for which we could obtain exact, closed-form solutions. To
complement and extend the insight provided by this approach,
we also performed a Monte Carlo (MC)–based study for the
relevant two-dimensional case.

The paper is organized as follows: in the next section we
introduce the model, while in Sec. III an analytical derivation
is exactly solved in three specific limits. MC simulations
extend the one-dimensional results to the more realistic case
of a substrate as described in Sec. IV, with results provided
in Sec. V for substrates with and without impurities. Final
remarks are presented in Sec. VI.

II. MODEL

Ethanol oxidation is of great relevance to society, since
each molecule releases twice as much energy as one methanol
molecule [29], posing it as a candidate to replace several
sources of energy [30]. Recently, Wang and Liu [2] proposed
a mechanism for ethanol electro-oxidation on Pt(100) and
Pt(111) substrates, which can be summarized in three path-
ways [3]:

(1) The OH path, where the cleavage of the hydroxyl group
leads to the formation of acetaldehyde, which is then adsorbed.

(2) The CH path, where CH3CHOH is an intermediate
product that degrades into CH3COH.

(3) The concerted path where the ethanol molecule loses
two hydrogens, followed by the desorption of acetaldehyde.

Wang and Liu have shown that for the Pt(100) surface
(which can be mapped onto a square lattice), the relevant
pathway is mainly the CH path [2], where ethanol adsorption
leads to the formation of acetyl (CH3CO). The work of Wang
and Liu [2] discloses that the adsorption mechanism is strongly
influenced by the actual surface coverage. At low surface
coverages, the acetyl dehydrogenates into CH2CO or CHCO,
which leads to a C-C bond cleavage, yielding CH and CO
fragments. Under oxidative conditions, both fragments react
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FIG. 1. (Color online) Schematic representation of the adsorption
rules (1). The A species (red) can deposit either as dimers, on two
empty sites, yielding B products (blue), or as monomers, on one
empty site with at least one occupied neighbor, yielding C products
(green). In ethanol oxidation, A is the ethanol, B stands for the two
products (CH and CO), and C the acetyl.

with the oxygen, O, present on the surface and desorb as carbon
dioxide CO2. Desorption of cleaved products can be neglected
for nonoxidative conditions, which leads to a jammed state,
whereas when the surface coverage is high, the C-C bond
cleavage is blocked, and the surface becomes poisoned by
acetyl.

Based on the proposed mechanism, we introduce a model
which can be summarized by the rules

A + 2v
kd−→ 2B,

(1)
A + v

km−→ C,

where A represents ethanol, v an empty site, 2B represents
cleaved products, C is acetyl, and kd (km) stands for dimer
(monomer) production rates. Note that, as discussed below,
adsorption as a monomer (with product C) can only occur in
the neighborhood of an occupied site.

As sketched in Fig. 1, dimers are uniformly formed on the
substrate (lattice). Successful adsorption of dimers requires
two neighboring empty sites. If only one is available, the
species adsorbs as a monomer. When both sites are occupied,
due to the excluded volume interaction, the adsorption attempt
fails and the particle attempting adsorption is no longer
considered. The model differs from traditional cooperative
sequential adsorption models [5] since, for the latter, the rates
of adsorption depend on the state of the nearest neighbors
but not, as in the present model, on the occupation of the
local configuration provided by neighboring adsorbed sites.
Despite the focus on the electro-oxidation of ethanol, the
model could be utilized for the study of any other process
dependent on the local configuration rather than on constant,
configuration-independent, deposition rates.

III. ANALYTICAL STUDY

The time dependence of the coverage and distribution
of empty sites can be analytically obtained by establishing
a closed hierarchy of rate equations as explained below.
To account for the different rates for monomer and dimer
adsorption [see Eq. (1)], we consider a competitive deposition
of monomers and dimers, with different deposition rates
(km and kd , respectively), under the constraint that monomers
can only deposit in the neighborhood of occupied sites. Results
are divided into three limiting cases: equal rates for dimers
and monomers (Sec. III A), preferential dimer site adsorption

(a)

(c)

(e)

(b)

(d)

FIG. 2. Catalog of possible adsorption attempts of a dimer on a
segment of empty sites with length n = 5, which is part of a larger
segment of length � (� � n). For adsorption events with both landing
sites in segment n, a dimer is adsorbed (a). For adsorption events with
a single landing site in the n segment, either a dimer or a monomer
is adsorbed, depending on the occupation state of the neighboring
site (b–e).

(Sec. III B), and different deposition rates for monomers and
dimers (Sec. III C).

Let us start by considering a segment of empty sites of
size n which is part of a larger (or equal) one with size
� � n. Since the neighboring sites of this segment are not
necessarily occupied, the possible adsorption events depend on
the configuration of the neighbors. A segment can be reduced
in size by adsorption of a monomer on the left-hand side of
the segment [Fig. 2(b)], on the right-hand side [Fig. 2(c)], or
on both sides [Fig. 2(e)]. It can also be split (or reduced in
size) by the adsorption of a dimer on any site of the segment
[Fig. 2(a)], the right-hand side [Fig. 2(b)], the left-hand side
[Fig. 2(c)], or both sides [Fig. 2(d)].

We define Pn as the probability that a randomly selected site
belongs to any segment n defined before. Each configuration
of the catalog in Fig. 2 is obtained with a probability P [· · ·]
given by

P [◦ ◦ ◦ ◦ ◦] = Pn,

P [• ◦ ◦ ◦ ◦ ◦ ◦] = P [◦ ◦ ◦ ◦ ◦ ◦ •] = Pn+1 − Pn+2,

P [◦ ◦ ◦ ◦ ◦ ◦ ◦] = Pn+2,

P [• ◦ ◦ ◦ ◦ ◦ •] = 2Pn − 2P [ • ◦ ◦ ◦ ◦ ◦◦]−P [◦ ◦ ◦ ◦ ◦ ◦ ◦]

= Pn − 2Pn+1 + Pn+2. (2)

The proper set of rate equations depends on the case. Below,
we describe this set for equal rates of dimers and monomers,
adsorption of a preferential dimer site, and different rates for
dimers and monomers.

A. Equal deposition rate of dimers and monomers

For equal deposition rates of monomers and dimers, the
rate of both species is considered as k. Since Pn refers to
the probability that a randomly selected site belongs to any
segment of n empty sites, which can be part of a larger one, this
probability can never increase with time. The rate of change
of Pn due to the adsorption of dimers is given by

(Ṗn)d = −k(n − 1)Pn − kP [• ◦ ◦ ◦ ◦ ◦ ◦]

− kP [◦ ◦ ◦ ◦ ◦ ◦ •] − 2kP [◦ ◦ ◦ ◦ ◦ ◦ ◦]

= −(n − 1)kPn − 2kPn+1, (3)
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where (n − 1) corresponds to the destruction rate of a segment
with, at least, n empty sites, which is 0 for n = 1 [see Fig. 2(a)].
The rate of change due to monomer adsorption is

(Ṗn)m = −2kP [• ◦ ◦ ◦ ◦ ◦ •] − kP [• ◦ ◦ ◦ ◦ ◦ ◦]

− kP [◦ ◦ ◦ ◦ ◦ ◦ •] = −2k(Pn − Pn+1). (4)

From Eqs. (3) and (4), the total rate of change is given by

(Ṗn)T = (Ṗn)d + (Ṗn)m = −(n + 1)kPn. (5)

This result is equivalent to considering that, regardless of the
type of adsorption, a segment of n, or more, empty sites can
be destroyed by adsorption on (n + 1) different places. This
equation gives Pn(t) = exp [−(n + 1)kt]. The coverage θ can
then be obtained from the probability that a certain site is part
of a segment of size n � 1, i.e.,

θ (t) = 1 − P1(t) = 1 − exp (−2kt). (6)

Defining sm(n) as the rate of monomer adsorption on an n

segment, i.e., sm(n) = −(Ṗn)m, we obtain

sm(n) = 2k(Pn − Pn+1)

= 2k[exp (−[n + 1]kt) − exp (−[n + 2]kt)]. (7)

The adsorption of monomers on a segment of size n � 1, is
given by,

sm(n = 1) = 2k[exp (−2kt) − exp (−3kt)]. (8)

From the rate of adsorption, the coverage of monomers can be
obtained from θ̇m = sm for n = 1, giving

θm(t) = [1 − exp (−2kt)] + 2
3 [exp (−3kt) − 1]. (9)

Now defining sd (n) as the rate of dimer adsorption on an n

segment, i.e., sd (n) = −(Ṗn)d , we obtain

sd (n) = k[(n − 1) exp (−[n + 1]kt)

+ 2 exp (−[n + 2]kt)]. (10)

The adsorption of dimers on a segment of size n � 1 is then
given by

sd (n = 1) = 2k exp (−3kt). (11)

Knowing the rate of adsorption, the coverage of dimers can be
obtained from the rate equation, θ̇d = sd (n = 1),

θd (t) = 2
3 [1 − exp (−3kt)]. (12)

B. Adsorption of a preferential dimer site

Considering a preferential dimer site means that the
symmetry is broken and the first adsorption on the substrate
occurs through a specific compound of the dimer. The cleavage
only takes place if there is a neighboring empty site, in any
direction, to adsorb the other compound. In one dimension,
the left site of the dimer is considered to be the preferred one.
By symmetry, results are independent of the considered one.
For this special case, the change in the Pn by dimers is

(Ṗn)d = −k(n − 1)Pn − kP [• ◦ ◦ ◦ ◦ ◦ ◦]

− kP [◦ ◦ ◦ ◦ ◦ ◦ •] − 2kP [◦ ◦ ◦ ◦ ◦ ◦ ◦]

= −(n − 1)kPn − 2kPn+1, (13)

while that by monomers is

(Ṗn)m = −kP [• ◦ ◦ ◦ ◦ ◦ •] − kP [◦ ◦ ◦ ◦ ◦ ◦ •]

= −k(Pn − Pn+1). (14)

For the total change in Pn we obtain

(Ṗn)T = (Ṗn)d + (Ṗn)m = −nkPn − kPn+1. (15)

Considering the relation between Pn and Pn+1 as Pn+1 =
QnPn [31], then

Ṗn+1 = −(n + 1)kQnPn − kQn+1QnPn, (16)

and plugging it back into Eq. (15), we obtain

dQn

dt

1

Qn

= −(n + 1)k + nk − k(Qn+1 − Qn). (17)

If we assume Qn+1 = Qn, then dQn

Qn
= −kdt . Therefore,

Qn(t) = exp (−kt), which, when replaced in Eq. (17), gives
Ṗn = −[nk + k exp (−kt)]Pn, and so,

Pn(t) = exp [−nkt + (exp [−kt] − 1)]. (18)

Since the coverage θ is dependent on the evolution of the
probability of finding a segment of size n � 1,

θ (t) = 1 − P1(t)

= 1 − exp [−kt + (exp [−kt] − 1)]. (19)

The independent rates of adsorption for dimers and monomers
and the subsequent calculation of the coverage for each species
are obtained as before.

C. Different deposition rates for dimers and monomers

To attempt a generic solution for the rules given by
Eq. (1), it is necessary to consider different deposition rates
for monomers (km) and dimers (kd ). Accounting for the rate
of change of Pn by dimers given by Eq. (3),

(Ṗn)d = −(n − 1)kdPn − 2kdPn+1, (20)

while accounting for that by monomers,

(Ṗn)m = −2km(Pn − Pn+1). (21)

The change in the the total Pn over time is then given by

(Ṗn)T = (Ṗn)d + (Ṗn)m
= −[kd (n − 1) + 2km]Pn − 2(kd − km)Pn+1. (22)

For the sake of simplicity, we define αn = (n − 1)kd + 2km

and β = kd − km. In the same way as before, applying the
relation Pn+1 = QnPn, the rate equation for Pn+1 is

Ṗn+1 = Q̇nPn + QnṖn

= −αn+1QnPn − 2βQn+1QnPn, (23)

and replacing Ṗn by Eq. (21),

Q̇nPn + Qn[−(αn + 2βQn)Pn]

= −(αn+1Qn + 2βQn+1Qn)Pn, (24)

Q̇n = −kdQn − 2β(Qn+1 − Qn)Qn.

Considering Qn+1 = Qn, then Qn(t) = exp (−kdt). From the
above result, Eq. (22) simplifies as Ṗn = −(αn − 2βQn)Pn,
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which gives

Pn(t) = exp

[
−([n − 1]kd + 2km)t

− 2(kd − km)

kd

(1 − exp [−kdt])

]
. (25)

From Eq. (6),

θ (t) = 1 − P1(t)

= 1 − exp

[
−2kmt − 2(kd − km)

kd

(1 − exp [−kdt])

]
,

(26)

which, for km = kd = k, boils down to Eq. (6). If sm(n) is
defined as the rate of monomer adsorption on an n segment,
sm(n) = −(Ṗn)m and so

sm(n) = 2km(1 − Qn)Pn. (27)

The relations y = exp (−kdt) and γ = km

kd
are considered and

the adsorption of monomers on a segment of size n � 1 is
given by

sm(1) = 2km(1 − y)y2γ exp [−2(1 − γ )(1 − y)]. (28)

From the rate of adsorption, the coverage of monomers is given
by θ̇m = sm for n = 1, and so,

θm = −
∫ exp (−kd t)

1
sm(1)(ykd )−1dy. (29)

The dimer rate of adsorption is then

sd (n) = kd (n − 1)Pn + 2kdQnPn. (30)

For the sake of simplicity, the relation y = exp (−t) is used,
and the adsorption of dimers on a segment of size n � 1 is
given by

sd (1) = 2kdy
kd+2km exp

[
−2(kd − km)

kd

(1 − ykd )

]
. (31)

For the rate of adsorption, the coverage of monomers can be
given by θ̇d = sd for n = 1, which, by integrating over y, gives

θd = −
∫ exp (−t)

1
sd (1)y−1dy. (32)

IV. ONE-DIMENSIONAL MONTE CARLO SIMULATIONS

We numerically studied the proposed model through MC
simulations, performed on a lattice with 104 sites, where
periodic boundary conditions have been applied and results
have been averaged over 102 samples.

The coverage as a function of time is plotted in Figs. 3(a)–
3(c) for the three previously described cases. The total
coverage θT , the coverage of dimers θd , and the coverage of
monomers θm are computed over 10 MC sweeps, where one
MC sweep corresponds to one adsorption attempt per lattice
site. Figure 3(a) shows the case of equal deposition rates for
dimers and monomers, where kd = km = 1. The solid lines in
the plot represent the analytical solution given by Eqs. (6),
(9), and (12). The preferential dimer site rule of adsorption
is in Fig. 3(b), where, despite the values of the deposition
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FIG. 3. (Color online) Coverage θ (t) and rates of adsorption s(t)
as a function of time obtained through Monte Carlo simulations
(symbols) and analytically (solid line) for equal rates of adsorption
(a and d), preferential carbon adsorption (b and e), and different rates
of adsorption (kd = 0.5 and km = 1; c and f). Total coverage and rates
of adsorption (open squares), dimers (filled squares), and monomers
(open circles).

rates being given by kd = km = 1, the results are equivalent
to the ones for kd = 1 and km = 0.5, since the deposition
of a monomer by the nonfavored dimer site is not allowed.
For these rules of deposition, the exact results are given by
Eqs. (19), (13), and (14). The final case, where a different
deposition rate for dimers and monomers is considered, is
plotted in Fig. 3(c), with deposition rates of kd = 0.5 and
km = 1. The exact solution is given by Eqs. (26), (29), and
(32). For all cases, data points from MC lay on the line given
by the exact solution.

Figures 3(d)–3(f) show the rates of adsorption as a function
of time (only five MC sweeps are shown). Figures 3(d)–3(f)
correspond, respectively, to equal deposition rates, preferential
dimer site rule, and different deposition rates. Under the same
conditions as for the coverage study, some particular aspects
can be observed. The dimer rate of adsorption, for instance,
starts at a value of 2 for kd = 1 since dimers occupy two sites
at each deposition. The monomer rate of adsorption starts at 0
and increases as it requires previously adsorption of, at least,
one particle. The rate of monomer adsorption increases due
to the large influence of the substrate coverage and reaches
a maximum when the number of isolated empty sites start to
decrease. Exact results are shown for each plot, consistent with
the ones obtained with MC simulations.

Since desorption is neglected, a jamming limit is obtained
where no further particles can be adsorbed. In Fig. 4, we see
the coverage in the jamming limit θ∞ as a function of the ratio
between dimer and monomer deposition rates, R = kd/km,
where the solid line is the analytical solution, open circles are
dimers, and filled squares are monomers. It can be observed
that in the limit of R � 1, complete coverage of monomers
is found, except for one dimer, which always needs to be
adsorbed to start the monomer deposition. With the decrease
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FIG. 4. (Color online) Coverage of dimers (open circles) and
monomers (filled squares) for Monte Carlo simulations and obtained
analytically (solid line), with the analytical solution (solid line), at
the jamming limit as a function of the ratio between the rate of
deposition of dimers and monomers R for the one-dimensional case.
Inset: Two-dimensional Monte Carlo results.

in the coverage of monomers, an increase in the coverage
of dimers is observed, where equal coverage is reached for
a ratio R = 0.207 ± 0.006. In the limit of R � 1, maximum
coverage of dimers is obtained, in agreement with the classical
adsorption of dimers in a one-dimensional lattice [5]. MC
results are also in agreement with the analytical solution.

V. TWO-DIMENSIONAL MONTE CARLO SIMULATIONS

In two dimensions, even for the simplest case of dimer
adsorption, no analytical solution has been found. However, it
is a case of interest, especially the regular square lattice, which
reproduces, for example, the topology of the Pt(100) surface.
In this section, we study the proposed model on a square
lattice through MC simulations. We devote special attention

to the percolation properties of aggregates of monomers and
dimers [32].

MC simulations have been performed on square lattices
of linear sizes L = {128,256,512} in units of lattice sites,
with periodic boundary conditions in both directions. Results
have been averaged over 104 samples. To decrease the com-
putational effort, a rejection-free algorithm was implemented,
where the next adsorption trial takes place on an empty site
randomly selected from a list of available sites, where the
weight of each configuration is properly taken into account.
To accurately follow the time evolution, the entire population
of events is considered, as well as the rate of monomer and
dimer adsorption.

Simulations have been performed on both clean and
impurity-covered substrates. Impurities are considered to be
quenched and to solely influence the adsorption process by
purely geometrical restrictions.

A. Clean substrate

On a clean substrate, the coverage of dimers is larger
than the coverage of monomers and the rate of adsorption
of monomers as a function of time has a maximum, as
also observed in the one-dimensional case. However, the
coverage of monomers is favored in two dimensions since each
deposited dimer has a greater influence on monomer deposition
than in one dimension, mainly due to a larger fraction of
configurations with occupied and empty neighboring sites.
This can be observed in the inset in Fig. 4, where we plot the
jamming limit θ∞ as a function of the ratio R. In this case,
the point of equal coverage for dimers and monomers occurs
for a ratio R ≈ 0.6, which is higher than in one dimension,
corroborating that monomers are favored.

The percolation properties are analyzed by identifying
clusters with the Hoshen-Kopelman algorithm [33]. While for
lower values of R the system is dominated by monomers, as
discussed for one dimension, for higher values of R, dimers
dominate. Percolation of monomers or dimers is then observed
with R as a control parameter. In Fig. 5(a) we plot the
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FIG. 5. (Color online) (a) Dependence on the ratio R of the spanning probability RL for dimers (open) and monomers (filled). Square
lattices have been considered with 1282 (squares), 2562 (circles), and 5122 (triangles) lattice sites, for the spanning probability RL and
fraction of sites belonging to the largest cluster P∞ (inset). (b) Percolation threshold (Rc) as a function of the system sizes, for linear sizes of
L = {32,64,128,256,512}, for dimers (filled circles) and monomers (filled squares).
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FIG. 6. (Color online) (a) Largest cluster smax and (inset) second moment of the cluster size distribution function M2 at Rc as a function
of the system sizes, for linear sizes of L = {32,64,128,256,512}, for dimers (filled circles) and monomers (filled squares). Fractal dimension
for monomers and dimers of Dm = 1.898 ± 0.008 and Dm = 1.890 ± 0.009, respectively. (b) Correlation function g(r) for dimers (monomers
in the inset) for a system of linear size L = 1024 and averaged over 100 samples with a power-law exponent of η = 0.2101 ± 0.0002
(η = 0.1361 ± 0.0002).

spanning probability RL defined as the probability of having
a percolation cluster touching opposite borders of the lattice.
At the percolation transition of both monomers and dimers,
the fraction of sites occupied by the species under study is
compatible with the percolation threshold for site percolation
in the considered topology [34]. The inset in Fig. 5(a) shows
the fraction of sites belonging to the largest cluster P∞ (the
order parameter of the percolation transition).

The percolation threshold Rc can be estimated by analyzing
the maximum value of the standard deviation of the spanning
probability. It can be observed in Fig. 5(b) that the percolation
threshold scales linearly with the inverse of the lattice lateral
size, L, obtaining Rc(L∞) = 0.98 ± 0.01 for dimers and
Rc(L∞) = 0.41 ± 0.01 for monomers.

The scaling of the average size of the largest cluster 〈smax〉
at Rc is in Fig. 6(a) and scales as ∼LDf , where Df is the
fractal dimension. For both monomers and dimers the obtained
scaling for the mass of the largest cluster is consistent with
the fractal dimension Df = 91/48 = 1.8958 of the classical
percolation universality class [34].

Another important parameter to be taken into account is the
second momentum of the cluster-size distribution, given by

M2 =
∑

i �=max s2
i

N
, (33)

where s is the cluster size, N is the total number of lattice
sites, and the sum runs over all clusters excluding the largest
one. The variable M2 at Rc as a function of the system size is
shown in the inset of Fig. 6(a), where another scaling behavior
is observed consistent with M2 ∼ L

γ

ν , with γ

ν
= 1.80 ± 0.02,

in agreement with the scaling relation γ

ν
= 2Df − d.

We measured the correlation function, also known as the
connectivity correlation function, defined as

g(r) = 〈δij 〉 − s2
max

N2
, (34)

where δij is 1 if both site i and site j are occupied by the
same cluster and 0 otherwise, and smax is the size of the largest

cluster. Figure 6(b) shows that at Rc, both correlation functions
are power laws with an exponent consistent with the one for
random percolation [34].

B. Substrate with impurities

To account for the presence of impurities (e.g., Pb atoms
[35]), quenched impurities are randomly distributed on the
substrate. These impurities do not react and remain immobile,
influencing only the adsorption, as an occupied site, which
promotes the adsorption of monomers.

Since impurities geometrically favor the coverage of
monomers, the value of θm − θd as a function of impurity
coverage θimp is plotted in Fig. 7. A maximum is observed
at a specific value of the coverage by impurities. The position
at which the maximum occurs depends on the ratio R; low
values of R favor monomers, leading to an earlier maximum,
while a high ratio disfavors monomers, thus shifting the
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 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

θimp

θm−θd

FIG. 7. (Color online) Difference in the jamming coverage of
monomers and dimers as a function of the impurity coverage, in two
dimensions, for R = 0.1 (open circles), R = 1 (filled squares), and
R = 10 (filled circles).
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FIG. 8. (Color online) Wrapping probability as a function of the
ratio R, in two dimensions, for (a) monomers with impurity coverage,
from right to left, of 0%, 10%, 20%, 30% and, 40% and (b) dimers
with impurity coverage, from left to right, of 0%, 10%, 20%, and
30%. Simulation of a system size of 5122. Inset: Fraction of sites
belonging to the largest cluster P∞.

position of the maximum to larger values. These results open
up the possibility of tuning the production of monomers by
controlling the fraction of impurities.

Additionally, impurities also shift the percolation threshold.
Figures 8(a) and 8(b) show the spanning probability RL as
a function of the ratio R for different values of impurities
coverage. The monomers percolation transition is mainly
affected at larger impurity coverage and is shifted to lower
values of R. The dimer percolation transition, on the other
hand, is shifted to higher values of R. At higher values of
impurity coverage, the clusters of impurities predominate
on the surface and neither monomers nor dimers percolate.
The insets in Figs. 8(a) and 8(b) show the fraction of sites
belonging to the largest cluster P∞ as a function of R, with
P∞ = 〈smax〉

N(1−θimp) , where N is the total number of lattice sites, and

θimp is the coverage of impurities. In the case of monomers, as
disclosed by the behavior of the spanning probability, the size
of the largest cluster is only significantly affected by impurities
for values of impurity coverage above 30%. In the case of
dimers, impurities have a larger effect on RL and P∞.

VI. FINAL REMARKS

We introduced a model based on the RSA of monomers and
dimers, representing acetyl and cleaved products, respectively,
in the low desorption limit. The kinetic rules based on
recent results by Wang and Liu are dependent on the local
configuration provided by the neighboring adsorbed sites
instead of configuration-independent rates.

The properties of the model were studied in a one-
dimensional lattice and also extended to a two-dimensional
square lattice. In the latter case, the model describes the
mechanisms of ethanol electro-oxidation on a Pt(100) surface,
suggested by Wang and Liu [2]. In one dimension, we have an-
alytically solved the model in three cases: the same deposition
rate for dimer and monomer adsorption, preferential dimer site
adsorption, and different deposition rates. MC simulations are
in agreement with the analytical solution. In two dimensions
we have studied the jammed state and percolation transition
through MC simulations. The percolation properties of the
adsorbed species reveal that, while monomers percolate at low
ratios of dimer/monomer deposition rate, dimers percolate
at high ratios. The influence of impurities has also been
monitored, disclosing that the coverage of monomers is
significantly improved by their presence.

In the present work, we have restricted ourselves to study
of a system as simplified as proposed in Sec. I. One can clearly
devise extensions of the basic model to include desorption and
reaction pathways not included in the present paper. Molecular
dynamics studies could, in principle, provide a more complete
picture of the particle arrangements on the surface, but at a
shorter time scale. It would certainly be interesting to study the
atomistic mechanisms based on cooperative thermal effects,
which could affect some of the reaction pathways.
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