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We performed extensive Monte Carlo simulations of the irreversible adsorption of polydispersed disks inside
the cells of a patterned substrate. The model captures relevant features of the irreversible adsorption of spherical
colloidal particles on patterned substrates. The pattern consists of (equal) square cells, where adsorption can take
place, centered at the vertices of a square lattice. Two independent, dimensionless parameters are required to
control the geometry of the pattern, namely, the cell size and cell-cell distance, measured in terms of the average
particle diameter. However, to describe the phase diagram, two additional dimensionless parameters, i.e., the
minimum and maximum particle radii, are also required. We find that the transition between any two adjacent
regions of the phase diagram solely depends on the largest and smallest particle sizes, but not on the shape
of the distribution function of the radii. We consider size dispersions up to 20% of the average radius using a
physically motivated, truncated, Gaussian-size distribution, and focus on the regime where adsorbing particles
do not interact with those previously adsorbed on neighboring cells to characterize the jammed state structure.
The study generalizes previous exact relations on monodisperse particles to account for size dispersion. Due to
the presence of the pattern, the coverage shows a nonmonotonic dependence on the cell size. The pattern also
affects the radius of adsorbed particles, where one observes preferential adsorption of smaller radii, particularly
at high polydispersity.
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I. INTRODUCTION

Monolayer colloidal films grown by particle adsorption on
substrates have a longstanding interest from both scientific and
technological perspectives. Recently, the interest has shifted
towards structured films at the submicron scale with the inten-
tion to achieve the nanoscale. From the experimental perspec-
tive, the emphasis has been on photonic crystals, quantum dots,
heterogeneous catalysts, and microarrays [1–7]. In particular,
there has been progress on achieving highly reproducible and
regular submicron patterns [1,5,8–12], and control of the final
structure of such films is of paramount importance [13,14].
In this context, new probing techniques to experimentally
follow the kinetics of the films along with novel theoretical
methodologies are required. Specifically, theoretical studies
of the influence of a pattern on the irreversible adsorption of
particles have so far remained restricted to the monodisperse
case [15–17]. Studies on polydispersed particles have been
performed on regular, i.e., nonpatterned, substrates [18–22].
Nonetheless, experimentally produced colloidal particles are
inherently polydisperse, so there is a need to understand the
effect of size dispersion on the morphology of the film.

We partially fill the gap by presenting a study concerned
with the geometrical parameters and properties of the deposi-
tion process, and specifically on the interplay of the adsorption
of size dispersed particles on patterned substrates. The pattern
consists of an array of cells centered on the vertices of a square
lattice. Particles are allowed to deposit inside the cells, which
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we consider in the present study to be squares of equal size.
To this end, particles are considered to attempt adsorption
on the substrate with the same probability regardless of their
position, so that their motion is not, for example, affected
by the hydrodynamics of the solution [23–29]. Particles,
which we model as disks, successfully attach to the substrate
when their geometrical centers fall within a cell and also do
not overlap previously adsorbed ones. If a particle overlaps
a previously adsorbed particle or if its geometrical center
does not fall within the cell region, it is assumed that the
deposition attempt fails and the particle moves away from
the substrate. Moreover, once adsorbed, they cannot either
diffuse on or detach from the substrate [30], so we consider
the ideal case of irreversible adsorption. In this context
of accounting for the basic (geometrical) parameters, the
adsorption process is well described by the random sequential
adsorption (RSA) model [15,17,31–36]. Landing particles are
considered to have a truncated Gaussian-size distribution with
dispersions up to 20% of the average radius, as this represents
a closer description of experimental systems. Finally, we focus
our study on the regime where the kinetics within a cell
is decoupled from the neighboring ones, i.e., the cell-cell
distance is equal or larger than the diameter of the largest
particle.

The paper is organized as follows: in the next section,
we present the motivation for the present study along with
a description of the model. In Sec. III, we generalize concepts
previously defined for monodisperse to polydisperse particles,
while in Sec. IV, we present Monte Carlo simulations
characterizing the film morphology. Finally, in Sec. V, we
present our concluding remarks.
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II. MOTIVATION

We address the study of the irreversible adsorption of
polydisperse colloidal particles on patterned surfaces. The
pattern takes a particular shape repeated over the surface,
and in the present study we use as a template the vertices
of a square lattice. We further assume that adsorption of
particles takes place solely within these regions that we term
as cells. We adopt the case of square cells for simplicity, but
depending on the experimental technique used to generate
these, they can assume different shapes with stripes and circles
being experimentally produced [12,37,38]. Though we define
the pattern as regular and deterministic, one might consider
relaxing such conditions and consider random patterns. For
example, an experimental realization of such a pattern can
consist of three-dimensional, hexagonal inverted pyramids
on In-containing and III-nitride substrates, where colloidal
nanoparticles of linear dimensions in the range 5–30 nm
pack inside them [39]. Another example is the independent
adsorption of colloidal particles of different sizes [40,41].

The classical linear dimensions of colloidal particles are a
few microns down to about a micron, but recently the trend
has been to use particles of sizes well into the submicron
length scale. Similarly, the typical geometrical cell length has
fallen below the submicron, and again, with a goal to approach
the nanoscale. Even taking into account such experimental
advances, the size of the colloidal particles remains much
larger than the length scale between binding sites, which are
typically of the order of the linear dimensions of the substrate
molecules. In this context, adsorption at the length scales of
the cell linear dimensions can be regarded as an intrinsically
off-lattice process. We assume that diffusion and detachment
do not occur on a time scale commensurate with experimental
observations, so it seems reasonable to adopt the ideal case of
irreversible adsorption [42–44]. We are primarily concerned
with the effects provided by basic geometrical features of the
pattern, and consequently discard other (possibly relevant)
interactions beyond the excluded volume interaction. Since
particles only adsorb inside cells of the substrate, and do not
interact between themselves (beyond the excluded volume
interaction), a monolayer film is obtained [15,31–36,45–47]
and the model is characterized by an asymptotic jammed limit
where no more adsorption events can possibly take place, and
consequently a limiting value of the coverage is attained, i.e.,
the jamming coverage.

There is presently substantial literature on the adsorption of
monodisperse colloids on regular substrates (i.e., without the
presence of a pattern) [31–33,35,36,48]. Here, we are primarily
interested in addressing the effect of size dispersion on pat-
terned substrates. Unfortunately, even such an extension poses
several challenges that we partially address. As described
above, the patterned substrate is flat with particles being
allowed to adsorb inside the cell regions with a uniform random
distribution. This is clearly an idealization, as one expects
different adsorption characteristics at the cell boundaries,
but we do not address such an effect in the present study.
Furthermore, we take the colloidal particles to be disks. Strictly
speaking, the particles cannot be modeled with full accuracy
as disks since larger spherical particles can accommodate
smaller spheres underneath them, and this effect was reported

in the literature [49]. Besides this effect, spheres of different
radii have different overlapping rules than disks and even the
meaning of what one considers as a cell, i.e., those regions
of the substrate where adsorption can take place, becomes
ambiguous. As an example of the latter, a pattern of cells in
high relief would have different effective adsorption areas than
one sunken relative to the interstitial cell space. In the case of
sunken cells, particles of different radii attempting adsorption
have different effective areas for adsorption.

III. SOME EXACT RELATIONS

We start by properly characterizing the various regions
of a phase diagram, as shown in Fig. 1. The effect of a
pattern has been previously studied in the context of the
adsorption of monodispersed particles [15,17]. As in the
monodispersed particle case, we define two dimensionless
parameters, namely, α as the linear dimension of the cell and
β as the distance between adjacent cells, both in units of the
mean particle diameter 2〈r〉. In terms of the intercell distance
β, the diagram is divided in two distinct regions, namely,
interacting cell-cell adsorption (ICCA) and noninteracting
cell-cell adsorption (NICCA). In the former, adsorption of
a particle at a given cell can be prevented due to overlap with
a previously adsorbed one at a neighboring cell, while in the
latter case, the distance between cells is too large for such
an overlap condition to happen. Regarding the cell size, the
value of α also splits the diagram into two regions, namely,
one region where a single particle can be adsorbed, which we
term single-particle-per-cell adsorption (SPCA), and another
region where more than one particle can be adsorbed, which
we term multiparticle-per-cell adsorption (MPCA). We are
primarily interested in a range of cell sizes where the number
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SPCA MPCA

NICCANICCA
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FIG. 1. Generalized version of the phase diagram for cell linear
dimension α vs intercell distance β. Cell-cell separation β < βc yields
the interacting cell-cell adsorption (ICCA) regime, while β � βc � 1
gives the noninteracting cell-cell adsorption (NICCA) regime. For cell
sizes α < αc �

√
2/2, we find the single-particle-per-cell adsorption

(SPCA) regime, while for α � αc, we find the multiparticle-per-cell
adsorption (MPCA) regime.

061122-2



EFFECT OF PARTICLE POLYDISPERSITY ON THE . . . PHYSICAL REVIEW E 85, 061122 (2012)

of particles adsorbed per cell is one or, at most, a small number
(less than six), since this provides the highest control of the
actual number of particles per cell and their sizes.

A transition from ICCA to NICCA occurs when the distance
between cells βc is large enough to prevent the largest particles,
i.e., those of radius rmax, from overlapping in the region
between cells, i.e.,

βc = rmax

〈r〉 . (1)

Notice that βc � 1 makes the transition to NICCA at a larger
intercell distance than that of the monodisperse case. Now,
the transition from SPCA to MPCA occurs when the linear
dimension of the cell allows a second particle to adsorb in a
close-packed configuration, which depends on the radius of
the smallest particle rmin. The critical value is

αc =
√

2

2

rmin

〈r〉 , (2)

with αc �
√

2/2, i.e., at a cell size smaller than the monodis-
perse case. Only in the monodisperse limit, one has rmin =
rmax = r ≡ 〈r〉 and previously reported critical values are
recovered [17].

Notice that the values of βc and αc separating the various
regions of the phase diagram are independent of the actual
functional dependence of the distribution function in terms of
the particle radii. In fact, they only depend on the extreme
values of the radii (minimum and maximum), as shown in
Eqs. (1) and (2), and the value of size dispersion. Now, if the
limiting values of the radii are [50]

rmin = 〈r〉 − 2σ (3)

and

rmax = 〈r〉 + 2σ, (4)

then from Eqs. (1)–(4), the critical values αc and βc can be put
in terms of the dimensionless size dispersion by defining the
latter in terms of the mean radius as γ = σ/〈r〉, so that

αc =
√

2

2
(1 − 2γ ) (5)

and

βc = 1 + 2γ, (6)

which allows a useful reinterpretation of Eqs. (1) and (2), apart
from also reducing the number of independent parameters
to one. From Eqs. (3) and (4), one has γ < 1/2 [51], again
due to the functional dependence adopted for rmin and rmax

[Eqs. (3) and (4), respectively] in terms of σ . Now, taking two
distinct distribution functions of the radii, but with the same
size dispersion, Eqs. (5) and (6) show that their phase diagrams
are equivalent.

In the present work, to systematize the effect of size
dispersion on the adsorption process, attention is focused on
the regime where cell-cell separation β is large enough so that
adsorption on a given cell is not affected by particles previously
adsorbed on neighboring cells, since β � βc (NICCA regime).
Depending on the value of α and the level of polydispersity of
the particles, one can have one or more particles inside each
cell. The effect of particle polydispersity is illustrated in Fig. 2

(a) (b)

FIG. 2. (Color online) Particles attempting adsorption have a
truncated Gaussian-size distribution, as described in the text. The two
snapshots represent 20 × 20 unit cell regions from larger simulations
showing a typical configuration at the jammed state with α = 0.96.
Cell-cell separation is large enough for the simulations to take place
in the NICCA regime: (a) At a size dispersion of 1%, β = 1.5 > βc =
1.02, while (b) for a size dispersion of 20%, β = 1.5 > βc = 1.4. In
(a), only monomers, dimers, and trimers within cells are possible (in
fact, trimers are not observed in this snapshot), while in (b) tetramers
and pentamers are also observed.

by snapshots of the jammed state for α = 0.96 for two values of
the size dispersion, namely, γ = 1% [Fig. 2(a)] and γ = 20%
[Fig. 2(b)] [52]. For the remainder of the text, we refer to values
of the size dispersion in terms of their value relative to the mean
radius. We denote as aggregates the set of adsorbed particles
in a cell, and also name aggregates with a specific number
of adsorbed particles, say, 1, 2, 3, . . . as monomers, dimers,
trimers, . . . , respectively. As in the monodisperse case, the
intercell kinetics decouples so that one can follow the kinetics
within each cell [17]. On the basis of this property, we were
able to extend exact relations obtained for the monodisperse
case to account for size dispersion in both the single and
multiparticle regimes. For example, in the SPCA regime, i.e.,
for α � αc, the mean adsorbed radius becomes independent
of both the cell size and the actual distribution function of the
radii, which equals that of the particles attempting adsorption.
Consequently, the distribution of the radii of adsorbed particles
follows a truncated Gaussian with the value of the dispersion
also following that of the particles attempting adsorption.
This can be better understood by considering the density
distribution function of the normalized radii in the film,
ρ(η)dη, where the normalized radius η is defined as

η = r − rmin

rmax − rmin
. (7)

As defined, ρ(η) represents the fraction of disks of normalized
radius in the interval ]η,η + dη[ such that

∫ 1

0
ρ(η)dη = 1. (8)

In the SPCA regime, since the radii distribution of adsorbed
particles follows that of the particles attempting adsorption,
the mean normalized radius of the truncated Gaussian is 〈η〉 =
1/2. Figure 3 illustrates these arguments in the particular case
of α = 0.4. In fact, it is possible to obtain an exact relation for
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FIG. 3. (Color online) Adsorbed radii distribution for patterned
surface with α equal to 0.4 (solid, red line) and 1.7 (dashed, green
line), and the bulk case (α → ∞) (dotted, blue line). For size
dispersion: (a) 1%, (b) 5%, (c) 10%, (d) 15%, and (e) 20%. The
vertical lines represent the mean normalized radius 〈η〉 of adsorbed
particles. Notice that for α = 0.4, the corresponding value is 1/2,
regardless of the size dispersion.

the coverage in the SPCA regime, i.e., for α � αc, as

θJ (α,β,γT ) = π
(
1 + γ 2

T

)
4(α + β)2

, (9)

where γT = σT /〈r〉, with σT being the effective size dispersion
of particles attempting adsorption, i.e., σ 2

T = 〈r2〉 − 〈r〉2. In
deriving the above expression, we considered the area occupied
by a set of polydispersed particles, with only one particle per
cell, relative to the area occupied by a monodisperse set of
particles. Equation (9) shows that in the polydisperse case,
the coverage is higher and increases by a factor of 1 + γ 2

T

relative to the monodisperse case. Moreover, the coverage
in the SPCA regime does not depend on the shape of the
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FIG. 4. (Color online) For the noninteracting cell-cell adsorption
regime, at the jammed state, as a function of the cell size: (a)
coverage (for β = 1.5), (b) mean number of particles per cell, and
(c) mean adsorbed radius. Each line type corresponds to different
values of the size dispersion, namely, solid (red) to 1%, dashed
(green) to 5%, dotted (blue) to 10%, fine dotted (purple) to 15%,
and dash-dotted (light blue) to 20%. In (a), the solid (black) line
reproduces the monodisperse case in Ref. [17] (vertically displaced
for clarity). In the inset of (a), the region 0.8 � α � 1.2 for 5%
(lower line) and 10% (upper line) of the size dispersion is magnified
(details in the text). The error bars are smaller than the line
thickness.

distribution function of the particle sizes. As an illustration,
in Fig. 4(a) the simulation results, to be detailed in the next
section, show the initial decay of the coverage proportional
to (α + β)−2; deviations from this behavior coincide with the
appearance of dimers (and larger aggregates), as shown in
Fig. 4(b). The solid black line in Fig. 4(a) reproduces the
monodisperse case found in Ref. [17] (vertically displaced for
clarity).

Though it is not, in general, possible to calculate the
jamming coverage for any value of the parameters α, β, and
γ in the MPCA and NICCA regime, it is possible to relate the
coverage to different values of β � βc by using

θJ (α,β,γ )

θJ (α,βo,γ )
=

(
α + βo

α + β

)2

, (10)
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where βo is the simulated value. The uncertainty for an
ensemble of N samples of the coverage is given by

σθJ
(α,β,γ ) =

√√√√∑N
i=1 θ2

J i

N
−

(∑N
i=1 θJ i

N

)2

, (11)

and, using Eq. (10), one finds

σθJ
(α,β,γ )

σθJ
(α,βo,γ )

=
(

α + βo

α + β

)2

. (12)

Equation (12) shows that the uncertainty of a particular simu-
lation can be adjusted to the new β value. Equations (9)–(12)
extend similar equations for monodisperse particles [17] to the
polydisperse particle case. In the following section, we analyze
further results from extensive Monte Carlo simulations.

IV. MONTE CARLO SIMULATIONS

We provide some motivation for a truncated exponential
distribution of the size of particles attempting adsorption on
a substrate, for which we foresee two possible scenarios. On
one hand, one can consider that the typical size dispersions
observed in experiments are Gaussian distributed, and the
fact that one does not observe all of the possible sizes is
mainly due to processing and the time scale taken for the
observation. From a theoretical perspective, such an approach
poses difficulties of how to define the limiting coverage.
Strictly speaking, for a Gaussian distribution, one expects
the coverage to approach unity, since particles of any size
are possible, so the system does not jam, but this is not
physically expected. On the other hand, taking a truncated
exponential as the distribution function of the particle sizes
has several benefits: it naturally accounts for the absence of
the extreme values of the linear dimensions of the particles
effectively present [18,20], and removes the nonphysical result
of reaching a fully covered substrate. We define the truncated
Gaussian-size distribution P (r)dr as

P (r) =
{

A exp
[ − (r−〈r〉)2

2σ 2

]
for rmin < r < rmax

0 otherwise,
(13)

where 〈r〉 is the mean radius, σ is the dispersion as measured
from a Gaussian distribution, and A is the normalization
factor. All particles with radius below rmin and above rmax

are discarded on the basis of being extreme values not actually
observed within a typical experimental time scale [53]. The
dispersions of the truncated Gaussian σT G and the Gaussian σ

are related by

f = σT G

σ
=

[
1 − 23/2

√
πe2erf(

√
2)

]1/2

. (14)

However, the actual cutoff values for rmin and rmax are given
by Eqs. (3) and (4) using the Gaussian distribution value,
instead of the truncated Gaussian value, for a more direct
interpretation. Consequently, the coverage in the SPCA regime
is given by

θJ (α,β,γ ) = π (1 + f 2γ 2)

4(α + β)2
. (15)

To study the influence of cell size on various quantities such
as the coverage, mean adsorbed radius, density of monomers,
dimers, etc., and mean number of adsorbed particles per cell,
we resort to extensive Monte Carlo simulations. From the
experimental view, size dispersions above 20% are rarely
observed or of interest, so we consider size dispersions up
to this value in the set of simulations [20]. As mentioned in
Sec. II, the transition from single to multiparticle adsorption
occurs at αc = (1 − 2γ )

√
2/2 [Eq. (5)]. We also mention that

β = 1.5 > βc = 1.4 for the case of a size dispersion of 20%.
Each simulation was carried out on a substrate of 500 × 500
unit cells and for an ensemble of 102 samples.

We used an efficient algorithm, to be described in greater
detail in a separate paper [54], while in the present work
we present only an outline of its main aspects. We note that
similar algorithms exist in the literature [15,17,18,20,54–56].
The substrate is divided into a homogeneous mesh of squares
and their size set to the minimum particle radius rmin. We
denote the squares as mesh cells to avoid confusion with the
physically relevant cells of the pattern. Each mesh cell is
classified as empty, occupied, or shadowed and only empty
mesh cells are tested for adsorption. Occupied mesh cells
contain the geometrical center of a particle and, therefore,
they cannot be available for adsorption. Similarly, shadowed
mesh cells are those where adsorption cannot take place due
to the excluded volume interaction of a previously adsorbed
particle. Once the number of empty mesh cells falls bellow a
critical percentage, typically below 2% of its initial value, the
linear dimensions of the mesh cell are halved. Since mesh cells
classified as empty can have part of their area shadowed, the
fraction of shadowed area present in an empty mesh cell can be
reduced by halving its linear dimensions and eliminating those
offspring that are now shadowed. On average, the procedure
reduces the total shadowed area present in the empty mesh
cells. Such a reduction of shadowed area leads to a higher
probability of acceptance of a particle attempting adsorption,
and, consequently, to improved algorithmic efficiency as
compared to prior to the halving procedure. Further details
of the algorithm are discussed in Ref. [54].

We start the analysis by considering the density distribution
function of the normalized radii in the film, ρ(η)dη. At values
of α � αc, the distribution of adsorbed radius follows that of
the particles attempting adsorption. It must, thus, correspond
to the truncated Gaussian distribution, and the observed
distributions for α = 0.4 in Figs. 3(a)–3(e) do corroborate the
expectation. This is no longer the case for α = 1.7 where
several particles can fit inside a cell, but the smallest particle
sizes, on average, have a higher probability of adsorbing than
larger ones do. Though valid at all values of the size dispersion,
this effect becomes more striking for the highest values of the
size dispersion. As the values of the size dispersion increase,
ρ(η) becomes more skewed towards smaller radii. The fact
that particles of radii closer to rmin are less probable affects
the time scale for a successful adsorption to take place, since
particles of larger radius cannot adsorb due to the overlap
condition. The mean values of 〈η〉 are provided in Table I.
Finally, the bulk case (α → ∞) has the highest skewness
towards the smallest values of the radius; the mismatch
between the distribution functions is larger (e.g., α = 1.7) at
small radii for the intermediate values of the size dispersion.
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MARQUES, LIMA, ARAÚJO, AND CADILHE PHYSICAL REVIEW E 85, 061122 (2012)

TABLE I. Values of the mean normalized radius 〈η〉 for the
various values of σ = 1%, 5%, 10%, 15%, and 20% and the two
values of α = 1.7 and the bulk case (α → ∞) belonging to the MPCA
regime as used in Fig. 3.

〈η〉
σ (%) α = 1.7 α → ∞
1 0.4851 0.4792
5 0.4437 0.4235
10 0.4007 0.3686
15 0.3569 0.3190
20 0.3109 0.2712

Geometrical constraints imposed by small cell sizes effectively
filters the smallest particles. The distribution function of the
radii of adsorbed particles does show this trend with clearly
asymmetric, non-Gaussian dependence on the normalized
radius, as show in Fig. 3. Moreover, at a cell size of α = 1.7, the
distribution function of the adsorbed radii in the presence of a
pattern closely follows that of regular (nonpatterned) substrate,
particularly for the highly polydisperse case.

To further characterize the NICCA regime, we study the
dependence of various quantities on the size of the cells α.
We first consider the jamming coverage θJ as a function of
the cell size α for values of the size dispersion ranging from
1% to 20%, as shown in Fig. 4(a). As observed in Sec. III,
values of the coverages, while within the SPCA regime, decay
proportionally to (α + β)−2. Figure 4(a) shows the curve for
the monodisperse case (offset down to 20% instead of 21.76%
at α = 0.4 and β = 1.5 for clarity) as a guide for similar
behavior in the polydisperse cases, and, of course, one observes
that coverage values increase as the mean number of particles
per cell is no longer unity. In the MPCA regime, an increase of
the jamming coverage with the cell size is observed, as shown
in Fig. 4(a), regardless of the value of the size dispersion.
For the highly monodisperse case of a size dispersion of 1%,
the values of the jamming coverage with α closely follow
those of the monodisperse case [17], with features such as the
cusp at the transition from up-to-two to up-to-three particles
per cell present [α = (1 + √

3)/23/2 ≈ 0.96]. More surprising
is the presence of a faint signature of the cusp at a size
dispersion of 5% [see inset of Fig. 4(a)]. Since the transition
from SPCA to MPCA depends on the size of the smallest
particle, an increase of the size dispersion leads to a lower
transition threshold, as shown in Fig. 4(a). This dependence
can be observed in Fig. 2 for snapshots of the jammed state
for size dispersions of 1% [Fig. 2(a)] and 20% [Fig. 2(b)] at a
fixed α = (1 + √

3)/23/2, which represents the transition from
up-to-two to up-to-three particles per cell in a close-packed
arrangement in the monodisperse case. At this cell size and
for a size dispersion of 1%, only monomers and dimers are
observed [Fig. 2(a)], though trimers could, in principle, be
possible. At a size dispersion of 20%, larger aggregates become
possible, like pentamers [Fig. 2(b)].

In general, the higher the values of the size dispersion, the
higher the coverage, at the expense of a lower control over both
the number of particles adsorbed on each cell and their sizes.
The mean particle number per cell is shown in Fig. 4(b). The
mean adsorbed radius φ of the resulting film as a function of the

cell size is shown in Fig. 4(c). The quantity reflects the balance
between the population of small and large adsorbed particles
as a function of the cell size and the degree of polydispersity
of the particles. At small size dispersions, the values of the
radii remain relatively undifferentiated with nearly symmetric
distributions, as shown in Fig. 3(a) for the case of 1%. As the
size dispersion increases, the distribution of the adsorbed radii
becomes more skewed towards smaller values. The overall
result is reflected by a substantial decrease of the average value
of the mean adsorbed radius (at fixed α) as a function of the
size dispersion, as shown in Fig. 4(c). This can be illustrated
by considering the case of dimers for values of α that are
above, though close, to αc. In this limit, only small particles
are allowed to adsorb in the formation of dimers, so the mean
adsorbed radius must decrease. However, at a fixed value of
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FIG. 5. (Color online) Density of monomers (red, solid line),
dimers (green, dashed line), trimers (blue, dotted line), tetramers
(magenta, fine dotted line), and pentamers (light blue, dash-dotted
line) for different values of the size dispersion: (a) 1%, (b) 5%,
(c) 10%, (d) 15%, and (e) 20%.
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α, say 0.8, and for increasing values of the size dispersion,
the relative population of particles changes significantly, as
shown in Fig. 5. As the value of αc shifts to lower values with
increasing values of the size dispersion, dimers and trimers
become possible. At the transitioning points, from monomer to
dimer and from dimer to trimer, the cell acts as a filter to allow
adsorption of the smallest particles, i.e., particles with radii at
or close to rmin. As the values of α > αc increase, the fraction
of dimers grows, peaks, and decays; this feature reproduces
itself on larger particle aggregates like trimers, tetramers, etc.
The distribution functions are skewed towards the large cell
sizes. At large values of cell size (α > 1), although the mean
number of particles per cell increases with the size dispersion
[Fig. 4(b)], still the decrease in the mean adsorbed radius is
such [Fig. 4(c)] that the coverage is no longer a monotonic
increasing function of the size dispersion.

Finally, we briefly address possible particle arrangements
inside a cell. For example, dimers tend, on average, to orient
themselves along the diagonals of the cells. Considering
cells sizes that accommodate up to three particles, one can
understand the underlying reasons. Particles adsorbing at
the center may block further particles from adsorbing and
becoming monomers. Now, if two particles adsorb along
the diagonal, this blocks the possibility of a third particle
from adsorbing, thus becoming a dimer. Finally, two particles
adsorbed along an edge permit a third particle to fit in and
form a trimer.

V. CONCLUDING REMARKS

We performed extensive Monte Carlo simulations of the
irreversible adsorption of polydisperse disks on a patterned
substrate. A pattern consisting of square cells positioned at the
vertices of a square lattice was considered, but extensions and
generalizations to other lattice arrangements and cell shapes
are straightforward. We used a physically motivated, truncated
Gaussian-size distribution to model the polydispersity of the
particles attempting adsorption and size dispersions up to 20%
of the average radius. The model extends a previous study
of the irreversible adsorption of monodispersed particles on
patterned substrates [17]. In the present work, we focused on

the noninteracting cell-cell adsorption regime (NICCA) and
on the jammed state properties.

The model is suitable to describe relevant features of
colloidal particle adsorption under the assumption that no
particle can fit under another particle of larger radius, as
discussed in Sec. II. Even though the modeling relies on the
excluded volume interaction, several quantities are generally
valid, even if more realistic interactions are taken into account,
such as Coulomb and van der Waals. For example, the
various transition points of the phase diagram, as, e.g.,
the transition from monomer to dimer, solely depend on
geometrical parameters such as the minimum and maximum
values of the radii of particles attempting adsorption. Hence,
these transition values are not affected by the inclusion of
more complex interactions especially for the more interesting
case of small cell sizes, where geometrical constraints are
more significant and one observes substantial departure from
the bulk (regular) substrates. In contrast, the interparticle
distance of the adsorbed particles will depend on the choice of
interaction potential, or the presence of hydrodynamic effects,
since the quantity depends on the way adsorbed particles
interact with a landing particle. Coverage represents another
quantity that depends on the interactions taken into account.

Coverage efficiency, for the excluded volume interaction
case, improves with size dispersion, even accounting for the
fact that the adsorption of small particles is favored. The
presence of a pattern favors adsorption of small particles for
cell sizes near, but above, the transition points, e.g., from
monomer to dimer and dimer to trimer.

Finally, the present study provides insight on the values of
the parameters required to tune the average number of particles
adsorbed per cell.
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