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a b s t r a c t

Using the two dimensional XY − (S(O(3))) model as a test case, we show that analysis of the Fisher
zeros of the canonical partition function can provide signatures of a transition in the

∧
Berezinskii–

Kosterlitz–Thouless (BKT ) universality class. Studying the internal border of zeros in the complex
temperature plane, we found a scenario in complete agreement with theoretical expectations which
allow one to uniquely classify a phase transition as in the BKT class of universality. We obtain TBKT in
excellent accordance with previous results. A careful analysis of the behavior of the zeros for both regions
Re(T ) ≤ TBKT and Re(T ) > TBKT in the thermodynamic limit

∧
shows that Im(T ) goes to zero in the former

case and is finite in the last one.
© 2016 Elsevier B.V. All rights reserved.

1. Introduction1

Q3
The

∧
Berezinskii–Kosterlitz–Thouless (BKT ) transition already2

has more than 40 years of history [1] and is still intriguing the3

scientific community. The nature of this transition is completely4

different from the common discontinuous (first order) or contin-5

uous (second order) phase transitions. Long range order does not6

exist and the two point correlation function has an algebraic de-7

cay at low temperature (T ≤ TBKT ) and an exponential decay for8

T > TBKT [2]. Here TBKT is known as the BKT temperature, and9

a model displaying a BKT transition has an entire line of critical10

points for T ≤ TBKT . In addition to that, the corresponding free en-11

ergy, which is a C∞ function, is not analytical in this region. Besides12

these striking features, the correlation function has a characteristic13

universal exponent decay η(TBKT ) = 1/4 at the transition temper-14

ature. Its phenomenology relies on the belief that it is driven by15

a
∧
vortex–antivortex unbinding mechanism [3,4]. Another proposi-16

tion that also describes the transition is based on a polymerization17

of domain walls [5]. Many systems, e.g., superfluid films, Coulomb18

gases and crystal surface roughening, undergo transitions that can19

be classified as belonging to this universality class [6]. More re-20

cently, Berker et al. [7] found that a BKT transition can occur in a21

scale free network.22
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Although the BKT transition is well known, the characterization 23

of an unknown phase transition as being in the BKT universality 24

class is not an easy task since there is no standard method to do 25

so. The lack of a criterion capable of determining the nature of a 26

transition beyond any reasonable doubt is a problem discussed by 27

Bramwell and Holdsworth [8]. They pointed out that to be able to 28

see the transition the system under investigation should be very 29

large. They estimate that for ‘‘a system with atomic spacing of 3 Å 30

the area should correspond to the size of a postage stamp’’. From 31

the analytical point of view, the renormalization group approach is 32

able to describe the main features associated with the transition. 33

However, the approximations involved in the study of a given 34

model may hinder the discovery of its real nature. 35

In this paper we present an algorithm for the systematic anal- 36

ysis of the Fisher zeros of the canonical partition function [9–11] 37

for the 2D XY model (with spin symmetry O(3)) looking for pos- 38

sible signatures of the BKT transition. It was Fisher [11], in 1964, 39

who proposed considering the partition function zeros in the com- 40

plex temperature plane to study phase transitions. As known, the 41

thermodynamic behavior of a given physical system is encoded by 42

its partition function, Z , and all thermodynamic quantities can be 43

obtained as derivatives of the free energy, F = −kBT ln Z . The ba- 44

sic assumption of the Fisher zeros approach to study phase transi- 45

tions is that a system undergoes a phase transition at a given (real) 46

temperature, Tc , if Z(Tc) = 0, reflecting the non-analyticity of F at 47

Tc [12]. Since in a BKT transition there is an entire line of critical 48

points for T ≤ TBKT , one should expect that a map of the Fisher 49

zeros in the complex temperature plane exhibits an entire line of 50

http://dx.doi.org/10.1016/j.cpc.2016.08.016
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zeros in the real temperature axis for T ≤ TBKT , signaling the BKT1

behavior of the transition, while for T > TBKT the zeros should2

not touch the real positive axis, emphasizing the analytical behav-3

ior of thermodynamic functions at high temperatures. Of course,4

these considerations apply only to the thermodynamic limit. We5

warn the reader that the Fisher zeros studied here should not be6

confused with the
∧
Yang–Lee zeros [9,10] defined on the complex7

fugacity plane instead of the temperature plane [13–15]. In what8

follows we will analyze the Fisher zeros map for the XY -model.9

2. Model and methods10

Here we study a ‘‘fruit fly’’ model of the BKT transition [6], the11

classical two-dimensional XY -model on a square lattice, defined by12

H = −J

⟨i,j⟩

(Sxi S
x
j + Syi S

y
j ). (1)13

The sum runs over the nearest neighbors, J stands for the exchange14

coupling constant and Sα
i stands for the componentα = (x, y, z) of15

the ith spin. The same Hamiltonian also defines the Planar-Rotator16

(O(2)) model [16,17], whose spins have only two components17

(one degree of freedom), and can also be viewed as an example18

belonging to the BKT universality class. In spite of the lack of long-19

range order for the model [2], there is a non-zero magnetization20

for any finite volume [18], resulting in a thermodynamic behavior21

very similar to that observed at continuous phase transitions. In22

fact, the behavior can be easily confused with a second order23

phase transition or something else [19–21]. Thus, distinguishing24

between continuous and BKT behavior in finite systems is difficult25

and may require system sizes beyond those feasible. Usually, the26

BKT temperature is estimated by using the Binder cumulant, the27

divergence of themagnetic susceptibility, the correlation functions28

or the more reliable helicity modulus [6,18], quantities that do not29

assure the model is in the BKT universality class.30

In the Fisher zeros approach one starts with a discrete canonical31

partition function that can be written as Z =


E g(E) exp (−βE),32

where g(E) stands for the density of states (DOS). For a continuous33

system one may perform a discretization of the DOS [22]. This can34

be done by dividing the energy range into M bins of size ε. We35

can organize the energies inside the interval [E0, EM−1] by counting36

the energy of the nth bin as En = E0 + nε. By defining a variable37

x ≡ e−βε , we get a discretized version,38

ZD = e−βE0
M−1
n=0

gnxn = e−βE0
M−1
j=1

(x − xj), (2)39

where gn = g(En), and xj is the jth zero of the polynomial, usually40

called Fisher zero. Once gn is obtained, any reliable zero finder can41

be used1 to find the xj’s. As long as gn ∈ R+, Z is an analytical42

function and has no real positive zeros for finite systems. The zeros43

show up as complex conjugate pairs. The analysis of Fisher zeros44

in finite systems is done by considering the special set of zeros45

{x⋆(L) = a(L) + ib(L)} ∈ xj(L), where L is the linear size of46

the system, called first or leading zeros. They have the following47

properties: b(L) → 0 as L → ∞ while limL→∞ a(L) = a(∞), a48

constant value. The leading zeros are very stable against statistical49

fluctuations, in contrast to non-leading zeros, and are, in general,50

featured in the map (see, for example, Ref. [23]). They are related51

to the transition temperature of the system in the thermodynamic52

limit as 1/kBTc = − ln(a(∞))/ε [23] and their impact angle53

1 In this work we decided to use: E.W. Weisstein, ‘‘Polynomial roots’’,
in MathWorld—A Wolfram Web Resource, http://mathworld.wolfram.com/
PolynomialRoots.html.

Fig. 1. Fisher zeros map on the x = e−βε plane for the 2D classical XY -model
in a 50 × 50 lattice. The inset shows a zoom on the inner region for five distinct
simulations, represented by different symbols. The cusp, rz , is indicated.

on the real positive axis is directly related to the order of the 54

phase transition [24]. Recent results also suggest that the pattern 55

of zeros as a whole can be used to characterize the order of the 56

transition [25]. In a paper of 1983
∧
Itzykson et al. [26],

∧
analyzing the 57

zeros distribution for small lattices, found that some properties of 58

the Ising and gauge models seem to exhibit a universal behavior 59

close to complex singularities. However, it is not clear how to 60

extend their arguments to the BKT transition. 61

In order to obtain the DOS of the XY -model we used 62

the Replica Exchange
∧
Wang–Landau (REWL) method [27–30], a 63

parallel version of
∧
Wang–Landau (WL) sampling [31–33], capable 64

of sampling the entire configuration space efficiently in a single 65

simulation. In this scheme the energy range is split into smaller 66

overlapping windows. We considered e0 = −1.9J , eM−1 = 0, 67

and an overlap of 75%, where e = E/L2 stands for the energy per 68

spin. Several different randomwalkers are allowed to run in each of 69

these windows following the original WL scheme.2 We use regular 70

square lattices with sizes ranging from L = 10 up to 200. In this 71

work we chose J = 1, S = 1, kB = 1, and the lattice parameter 72

a = 1. 73

3. Results and discussion 74

In Fig. 1 we show a typical zeros map of the imaginary and 75

real parts of all xj’s, for a 50 × 50 lattice. In a continuous phase 76

transition a single leading zero is expected. However, we cannot 77

identify a single point featured in comparison to others. The inset 78

shows in different symbols the zeros for five different simulations 79

for L = 50, in order to analyze statistical fluctuations. A leading 80

zero cannot be identified in this picture. Instead, a cusp at rz is 81

evident and the border line is quite stable against fluctuations. 82

The size dependence of the internal border of the map pattern 83

as a function of the lattice size is shown in Fig. 2. One should expect 84

the internal border to coalesce into the real axis for Re(x) ≤ rz and 85

L → ∞, in accordancewith the existence of an entire line of critical 86

points at low temperatures. The line for Re(x) > rz on the other 87

hand should not touch the real axis. The cusp rz should, then, give 88

TBKT . 89

In order to systematically investigate the finite size effects and 90

confirm the above expectations, we opted to work in the complex 91

2 The considered flatness criteria is p = 0.7, the final ln f value is 10−9 , and the
acceptance ratio is 60%.
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Fig. 2. Zoom on the real positive semi-axis of the zeros maps in the x plane for
L = 10 → 100. The zeros on the internal border are highlighted.

Fig. 3. Internal border of zeros obtained by using the binning process for L = 10 →

200. Here ∆Tx = 0.1 and the error bars represent statistical fluctuations.

temperature (T ) plane instead of the complex x = e−ε/kBT plane.1

This choice is justified by the fact that finite size scaling in terms2

of the temperature is known [15] and that by doing so our results3

are almost independent on the chosen bin size, ε. This last point4

is especially important when dealing with bigger lattices. In this5

work we used ε = 1 for L ≤ 100 and ε = 3 for L = 200; we6

noted that small modifications in the bin size did not change our7

results. To determine the limits of the internal border we divided8

the real temperature axis into small bins of size ∆Tx centered at9

Tx = Re(T ). The border line was identified by looking inside a10

given bin for the smallest value of Ty = Im(T ) that appears. At11

least five different simulations were used for each lattice size. The12

resulting curves are presented in Fig. 3. Fig. 4 shows Ty as a function13

of L−1 for some typical Tx ≤ TBKT values. The solid lines are linear14

regressions showing that Ty → 0 for L → ∞, i.e., the internal15

border coalesces with the real positive axis in the thermodynamic16

limit. Other scaling functions and exponents were also tested (not17

shown here), but they do not describe our data as well as this18

ansatz.19

To estimate the critical temperature we used the location of the20

cusp position, Tz(L). Since the scaling function for the ‘‘pseudocrit-21

ical’’ temperature is given by [15] TBKT (L) ∼ [ln(L)]−2 we plotted22

Tz(L) as a function of [ln(L)]−2 in the Fig. 6. A linear regression, dis-23

carding the point corresponding to L = 10, gives TBKT = 0.709(2),24

and discarding the points for L < 40 gives TBKT = 0.704(3),25

which agrees very well with previous results [34,18], 0.700(5) and26

0.700(1) respectively. More precise results could be obtained by27

increasing the number of zeros in the map by reducing ε, increas-28

ing the precision in the location of the cusp. However, the zeros29

finder task may become a problem for such a high degree polyno-30

mial (>3 × 104). In any case, conventional methods to locate the31

Fig. 4. Finite size scaling analysis of the imaginary part of the internal border
according to the ansatz Ty ∼ L−1 . The lines represent a linear regression of the
data, showing good agreementwith the ansatz and the convergence to zero or small
negative values for L → ∞. We use ∆Tx = 0.1.

BKT may be used together with this one to get even more precise 32

results for TBKT . 33

From Figs. 2 and 3 one can see that the curves diverge from 34

the positive real axis, in accordance with the expectation that for 35

T > TBKT the imaginary part of the zeros should remain finite. 36

Moreover, since the free energy has to be an analytic function at 37

high temperatures, there can be no real positive zero of the partition 38

function at high temperatures. 39

To
∧
analyze the behavior of Ty in the non-critical region we have 40

to be careful. First we have to consider the following. An analysis 41

based
∧
on finite size scaling, as we did in the critical region, is 42

meaningless since the basic assumption of any FSS is that the free 43

energy behaves as a homogeneous function. Following
∧
Itzyksonwe 44

identify three regions. (1) The region far from TBKT where L ≫ ξ ≈ 45

1, where finite size lattice effects are not relevant. Here ξ is the 46

correlation length which for the XY model diverges exponentially 47

when TBKT is approached from above, remaining infinite in the 48

critical region. (2) The region T & TBKT where L ≫ ξ ≫ 1. 49

The finite lattice exhibits the same scaling behavior as the infinite 50

system. And, (3) the region where L ≈ ξ ≫ 1 for which are 51

observed severe finite size effects. Regions (2) and (3) are scaling 52

regions. With that in mind we content ourselves with an analysis 53

in a region far enough from TBKT where we may expect that the 54

border of the zeros map should converge fast to its asymptotic 55

limit. For T > TBKT the free energy is an analytical function of 56

T so that it can be approximated by a polynomial in T with the 57

coefficients depending on the lattice size in powers of 1/L. Farthest 58

we are from TBKT faster will decay the higher coefficients of the 59

polynomial, so that, it is reasonable to suppose that in this region Ty 60

has a power law Ty(∞) + AL−ω behavior. Asymptotic convergence 61

is assured by the Brouwer fixed point theorem [35]. Reasoning in 62

this way we can plot Ty for the largest lattices of our simulations 63

as a function of L−ω . By varying ω we can find the best value that 64

adjusts a linear function to our data. This procedure is shown in 65

Fig. 5. It is noteworthy the different ‘‘scaling’’ behavior of Im(T ) in 66

both regions, T < TBKT and T > TBKT . As should be expected the 67

exponent ω is not universal, depending on T . 68

4. Conclusion 69

In summary, we show that a method of investigating the 70

Fisher zeros of the partition function can identify whether or not 71

the model exhibits a
∧
Berezinskii–Kosterlitz–Thouless (BKT) phase 72

transition. By studying the 2D XY -model we found a qualitative 73

picture that is completely consistent with expectations for the BKT 74

transition, i.e., the zeros map is consistent with the existence of an 75

entire line of zeros in the real positive axis in the thermodynamic 76
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Fig. 5. Typical Ty × L−ω behavior. Here Tx = 3.0 > TBKT . Linear fit gives support to
a power law behavior with exponent ω ≈ 2.4.

Fig. 6. Finite size scaling of the cusp position, Tz(L), according to the prediction
for the BKT ‘‘pseudocritical’’ temperature TBKT (L) ∼ [ln(L)]−2 . Discarding the point
corresponding to L = 10 the BKT temperature is estimated by a linear regression as
0.709(2) (dashed blue line) and discarding L < 40, TBKT = 0.704(3) (solid red line).

limit, with different behaviors for points below and above the tran-1

sition temperature that could be used to signalize the BKT transi-2

tion. Moreover, the BKT transition temperature was successfully3

obtained by considering the location of the cusp that splits regions4

with different behaviors giving TBKT = 0.704(3), in excellent ac-5

cordance with previous results [18,34]. Our quantitative analysis6

shows that for temperatures above TBKT the imaginary part of the7

zeros
∧
converges to finite values. This behavior is in accordancewith8

the fact that the free energymust be an analytical function over the

real axis at high temperatures, which prevents the existence of any 9

real positive zero at high T . 10
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