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Abstract Vortices are objects that are important to de-
scribe several physical phenomena. There are many ex-
amples of such objects in nature as in a large variety of
physical situations like in fluid dynamics, superconduc-
tivity, magnetism, and biology. Historically, the interest
in magnetic vortex-like excitations begun in the 1960s.
That interest was mainly associated with an unusual
phase-transition phenomenon in two-dimensional mag-
netic systems. More recently, direct experimental ev-
idence for the existence of magnetic vortex states in
nano-disks was found. The interest in such model was
renewed due to the possibility of the use of magnetic
nano-disks as bit elements in nano-scale memory de-
vices. The goal of this study is to review some key points
for the understanding of the vortex behavior and the
progress that have been done in the study of vortices in
low-dimensional magnetic systems.

Keywords Vortex · Magnetism

1 Introduction

Vortex is a general name for an object that can be
thought of as streamlines of circulating fluid flowing
around a hole sink (see Fig. 1). There are many exam-
ples of such objects in nature as in a large variety of
physical situations like in fluid mechanics, superconduc-
tivity, magnetism, and many others [1–4]. For example,
vortex generators are used in commercial airplanes to
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improve the quality of the flight [1], in superconductiv-
ity vortices are associated with the phase of the super-
conducting order parameter [3]. In magnetic systems
they are believed to be responsible for an exotic phase
transition in two-dimensional anisotropic Heisenberg
models [5, 6]. Recently, they emerged as candidates to
improve miniaturization in magnetic storage devices.

Historically, the interest in magnetic vortex-like ex-
citations in two-dimensional models begun in the 1960s.
That interest was mainly associated with the phase tran-
sition phenomenon. In one dimension, non-linear exci-
tations called kinks [7–11] are responsible for destroy-
ing the order at any finite temperature in short-range
potential models. In two dimensions, vortices are the
important excitations. Although the Mermin–Wagner
theorem [12, 13] demonstrate the impossibility of the
existence of an order-disorder transition in models with
continuous order parameter, in two dimensions or less,
the Heisenberg model with an easy-plane anisotropy
still undergoes an unusual phase transition with no true
long-range order. There are two interpretations for the
existence of this transition. One by Berezinskii, Koster-
litz, and Thouless which assumes that the transition
is driven by a vortex–antivortex unbinding mechanism
[5, 6]. Pairs vortices–antivortices are shown in Fig. 2.
Another interpretation due to Patrascioiu and Seiler
[14] came out later. They consider that the mechanism
responsible for the transition is a polymerization of do-
main walls. Both interpretations were able to describe
satisfactorily the observed transition. In this work, as
a matter of unification of language and tradition, we
use the terminology Berezinskii–Kosterlitz–Thouless
transition and TBKT for the transition temperature. A
recent experiment [15] seemed to confirm the BKT
picture in a trapped atomic gas where the authors
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Fig. 1 Schematic view of ferromagnetic vortices of types I and II
(top) and the respective antivortices (bottom) configurations. In
an infinite system, all four configurations have the same energy

attribute the transition to the proliferation of free local
topological defects or vortices.

More recently, direct experimental evidence for the
existence of magnetic vortex states in nano-disks was
found by magnetic force microspin-polarized scanning

Fig. 2 Ferromagnetic pairs of vortex–antivortices of types I (left)
and II (right). They are local excitations in contrast with the
vortices that are global

Fig. 3 Ferromagnetic vortices showing the out-of-plane compo-
nent (gray arrow) and the polarization which can be positive
(counterclockwise rotation) or negative (clockwise rotation). The
direction of the out-of-plane component is independent of the
polarization

tunneling microscopy and direct observation [16–21].
The interest in such models was renewed due to the
possibility of applications in several fields, from spin-
tronics to solar panels and biology. A quite special
case is the use of magnetic nano-disks as bit elements
in nano-scale memory devices [22–26]. In anisotropic
ultrathin magnetic films, a few monolayers thick the
ground state may have a vortex configuration. Depend-
ing on the anisotropy strength an out-of-plane magne-
tization develops at the center of the vortex, perpen-
dicular to the plane of the disk, which can be “up” or
“down” (see Fig. 3). Because the vortex structure is
very stable, this twofold degeneracy make the nano-
disk a promising candidate to build highly compact
storage devices.

Although the properties of low-dimensional mag-
netic systems has experimentally been well studied and
several models have been investigated by both theoret-
ical and simulation means, there are still some proper-
ties that need a closer view, mainly those referring to
their dynamical behavior. Our goal in this paper is to
review some key points for the understanding of the
vortex behavior and the progress that have been done
in the study of vortices in low-dimensional magnetic
systems.

2 The Vortex-Driven Phase Transition
in the Anisotropic Heisenberg Model

The 2-D anisotropic Heisenberg model can be realized
by several compounds as for example BaCo2(AsO4)2
[27], stage-2 CoCl2-GIC [28–32] and Rb2CrCl4 [33–35].
The simplest microscopic model capable of supporting
vortex excitations is the classical two-dimensional



96 Braz J Phys (2011) 41:94–101

anisotropic Heisenberg model described by the
Hamiltonian [6]

H =
∑

<i, j>

Ji, j

(
Sx

i Sx
j + Sy

i Sy
j + λSz

i Sz
j

)
, (1)

where, S⃗i is a classical three-component spin variable
defined on the site i of a square lattice, |S⃗i| = 1, Jij is an
exchange energy coupling spins at sites i and j and λ is
an anisotropy. If λ = 1 we get the isotropic Heisenberg
model that has no phase transition in two dimensions
[12, 13]. For λ > 1, the model is in the Ising class-of-
universality (easy axis); for λ < 1, it is in the planar-
rotator class-of-universality (easy plane) undergoing
a BKT phase transition. For λ = 0, in particular, we
recover the so-called XY model, which should not be
confused with the planar–rotator model, that has only
two spin components. In the BKT picture [5, 6], this
phase transition is believed to be driven by the binding–
unbinding of pairs vortex–antivortex. In Fig. 1 we show
a schematic view of ferromagnetic vortices and antivor-
tices in a lattice. In Fig. 2 a vortex–antivortex pair is
shown. A vortex is a global excitation with energy ∝
ln R, with R the vortex size, while a vortex–antivortex
pair is a local excitation with energy given by Ev−av ∝
ln Rv−av , where Rv−av is the distance between the vor-
tex and the antivortex centers. Because of that, in an
infinite system, a vortex can only exist in the presence
of an antivortex. In Fig. 4, we show the vortex density
as a function of temperature for the two-dimensional
anisotropic Heisenberg model. At low temperature

Fig. 4 Vortex density as a function of the temperature for the
classical two-dimensional anisotropic Heisenberg model in a log-
linear plot. (Extracted from [58])

(below TBKT), vortices and antivortices form a con-
densate of pairs superimposed on a background of
spin-wave excitations. At TBKT, pairs shielded by the
background start to unbind driven a transition to a
free vortex phase. Above TBKT the correlation length
behaves as ξ ∝ exp(bt−1/2) with t ≡ (T − TBKT)/TBKT.
Below TBKT, ξ → ∞ meaning that the model has a
critical line at low temperature. The existence of the
anisotropic term, 0 ≤ λ < 1, does not change the be-
havior of the model. Both analytical as well numerical
simulation results show that TBKT depends weakly on λ,
except for λ ≈ 1 when TBKT → 0. The critical behavior
of this model is well discussed in the references [3, 5, 6].
The vortex structure developed in this model was first
examined by Hikame and Tsuneto [36] and Homma
and Takeno [37]. We follow those references to briefly
reproduce here some important results that we will use
in this paper. A continuum version of Hamiltonian (1)
can be written as

H ≈ J
2

∫ [(
1 − δ

2
cos2 θ

)
(∇θ)2

+ sin2 θ (∇φ)2 + δ cos2 θ

]
, (2)

where δ = 2(1 − λ). The spin components were para-
meterized by using the spherical angles S⃗ = {sin θ cos φ,

sin θ sin φ, cos θ}. By minimizing (2) in relation to the
angles θ and φ one obtain

∇2φ = 0, (0 < φ < 2π) (3)
(

1 − δ

2
cos2 θ

) (
d2θ

dr2 + 1
r

dθ

dr

)
+ δ sin 2θ

4

(
dθ

dr

)2

− sin 2θ

2r2 + δ

2
sin 2θ = 0. (4)

It is easy to check that φ = ± arctan y
x is a solution for

the first equation together with ferromagnetic bound-
ary conditions. This kind of solution is named a vortex
(+) or antivortex (−) (see Fig. 1). To get the out-
of-plane component, θ , an analysis of (4) shows that
θ = π/2 satisfy the equation. Another solution can be
obtained by inserting the vortex solution in (4) and
assuming the boundary conditions: θ = π/2 (r → ∞)

and θ = 0 (r → 0). Asymptotically, the solution for
θ is

θ ≃

⎧
⎨

⎩

π

2
− ae−

√
δr , r → ∞

br(1− δ
2 )−1/2

, r → 0

A characteristic length scale is provided by 1√
δ

which
can be interpreted as the vortex core. The energy of a



Braz J Phys (2011) 41:94–101 97

single vortex can be estimated by using the solutions
above. It reads

H ≈ J
2

∫ R

a
sin2 θ (∇φ)2

≈ π J

{

ln
(

R
a

)
−

∫ R

a

π

2
e−

√
δr

r
dr

}

(5)

Here, a is an infrared cutoff, normally taken as the lat-
tice size. If θ = π/2 only the logarithmic term survives.
The vortex energy diverges with diverging size. If λ = 1
(δ = 0), the model turns out to the isotropic Heisenberg
model and the vortex becomes an instanton with finite
energy.

The discussion above shows the existence of two
distinct types of vortices, one which has no out-of-plane
spin component and another characterized by an out-
of-plane spin magnetization at the core of the static
vortex. The stability of these solutions were discussed
by several authors [38–40]. It has been found that the
in-plane vortex is stable for λ < λc, where λc is a crit-
ical anisotropy. Conversely, when λ > λc, the in-plane
vortex becomes unstable, and develops into an out-
of-plane vortex. It means that there is a region where
the stable solution is Sz = 0 and another region where
Sz ̸= 0 near the vortex center. We observe that for λ ≈
λc the Sz component is noticeable only inside a small
region near the vortex core. As long as λ increases, Sz

becomes larger and the vortex core grows.

3 Vortex Dynamics in the 2-D Anisotropic
Heisenberg Model

Although the static properties of vortices in the
anisotropic Heisenberg model are well understood via
several numerical and analytical works, the same is not
true for its dynamical behavior. Most of the information
about its properties are given by the space–time corre-
lation function, C(r⃗ − r⃗′, t), and its Fourier transform,
C(q⃗, ω) [41]

Cα(r⃗ − r⃗′, t) = ⟨Sα
r⃗ (t) Sα

r⃗′ (0)⟩ − ⟨Sα
r⃗ (t)⟩⟨Sα

r⃗′ (0)⟩ , (6)

and

Cα(q⃗, ω) =
∑

r⃗,r⃗′

eiq⃗·(r⃗−r⃗′)
∫ +∞

−∞
eiωtCα(r⃗ − r⃗′, t)

dt
2π

. (7)

Following the BKT picture, we expect that as tem-
perature rises through TBKT vortices start to unbind and
diffuse, since vortices and antivortices are excitations
superimposed on a background of spin waves. As a

consequence, the pairs should diffuse through the
Landau–Lifshitz equations of motion for each spin,

d
dt

S⃗i = S⃗i × H⃗eff, (8)

with

H⃗eff ≡ −J
∑

j

(
Sx

j êx + Sy
j êy + λSz

j êz

)
, (9)

where the sum is over the first neighbors of S⃗i and
êx, êy and êz are the unit vectors in the x, y and z
directions respectively. As an alternative formulation
the equations of motion can be obtained as the Euler–
Lagrange equations of a functional [42–44]

K [θ,φ] = H [θ,φ] −
∑

φ̇iSz
i , (10)

where θ and φ are the spherical angles defined earlier.
In the equation above the z component of the spins,
Sz

i , is to be interpreted as the classical spin angular
momentum. Because free vortices affect globally the
system, the in-plane correlation functions, Cxx = Cyy,
should be sensitive to the vortex–antivortex pair un-
binding. On the other hand, as a consequence of ref.
(10), if the separation cause the pairs to diffuse it is
expected that they develop a z component to begin
to move. Beside that, it is expected a stronger effect
in Czz when λ > λc, since the out-of-plane vortex be-
comes the most stable solution of the equations of
motion as discussed above. The main results found in
the literature so far are summarized in the following.
For λ = 0 Villain [45] and Moussa and Villain [46]
found the in-plane Cxx = Cyy scattering function to have
a δ function spin-wave peak at low temperature and
a spin-wave peak Cxx ∼ |ω − ωq|1−η/2 close to TBKT.
Here, η is the critical exponent of the static spin–spin
correlation function. Nelson and Fisher [47] treated
the model without vortex contributions. They obtained
a correlation function around the spin-wave peak as
Cxx ∼ ωη−3. Menezes et al. [48] found a spin-wave
peak similar to that obtained by Nelson and Fisher.
In addition to the spin-wave peak they found a log-
arithmical diverging central peak, Cxx ∼ 1/q ln ω. This
central peak was conjectured to be caused by vortex
pairs diffusing on the lattice. Huber [49–51] discussed
how a vortex gas approximation could contribute to
a central peak to the Fourier transform of the spin–
spin correlation functions in the hydrodynamic regime.
Mertens [52] and co-workers calculated C(q⃗, ω) above
TBKT, assuming an ideal diluted gas of unbounded vor-
tices moving through the lattice. That phenomenology
was successful in describing the central peak in one-
dimensional soliton dynamics in magnetic spin chains
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[7–9]. They found a squared Lorentzian central peak
for Cxx and a gaussian central peak for Czz. Pereira and
Costa [53] proposed a theory, based on pairs vortex–
antivortex diffusion to describe the central peak below
TBKT. They found a Lorentzian central peak for Cxx.
They did not, however, consider the out-of-plane Czz

scattering function. Papanicolaou and Tomaras [54, 55]
have calculated the dynamics of vortices deriving the
equations of motion from the conservation laws of
linear and angular momentum which are expressed as
moments of a suitable topological density. As a result,
a vortex is shown to be spontaneously pinned in the
absence of external forces, while it would drift in a
direction perpendicular to an applied uniform field at
a speed calculable in terms of its initial configuration.

Several studies in neutron scattering on stage-2
CoCl2.Gic [28–32], have found strong evidences of a
BKT phase transition. The wave vector and frequency
were scanned carefully to obtain in details the spin–spin
correlation function. Their results showed the expected
central peak above the TBKT temperature in the in-
plane correlation function. The out-of-plane correla-
tion function showed only spin-wave peaks. Evertz and
Landau [56] carried out a very extensive and careful
spin dynamics simulation on the 2-D−XY model. They
found that the neutron-scattering function presented
pronounced spin-wave peaks both in the in-plane and
out-of-plane scattering functions over a wide range of
temperatures. The in-plane scattering function also has
a large number of clear but weak additional peaks
which they interpreted as being from two-spin-wave
process. In addition they observed a small central peak
in the in-plane function at all temperatures, below and
above TBKT. No central peak was reported in Czz.
Costa and Costa reported results of Monte Carlo and
spin dynamics calculations [39, 40] for several values
of λ. They found that there is a critical value of the
anisotropy, λc = 0.7035(5), above which appears a cen-
tral peak in the out-of-plane, Czz, correlation func-
tion. This behavior was predicted for the first time by
Hikame and Tsuneto [36]. Costa et al. have explicitly
measured some microscopic vortex properties [57, 58].
They calculated the vortex density as a function of tem-
perature and time, the vortex pair density as a function
of distance between vortices and antivortices, the time
interval for a pair to annihilate, and the time needed for
a vortex to move one lattice spacing. Their results indi-
cated that the vortices do not move extensively through
the lattice, in close agreement with the results of Papan-
icolaou and Tomaras [54, 55]. Indeed, the vortices are
subject to a strong creation-annihilation process mov-
ing only locally. Upon closer investigation they found
that just before the vortices annihilate they develop

a coherent out-of-plane spin component around the
vortex core. They concluded that, if the vortices are
really responsible for the central peak observed in the
correlation functions, then these processes should play
the defining role. Although there is a lot of results for
the Heisenberg anisotropic model in two dimensions,
the vortex contribution to the dynamics of the model is
still an open question.

4 Dynamical Behavior of Vortices in Magnetic
Nano-structures

As far as I know, the first report of a curly magnetic
structure in a thin film was reported by E. E. Huber
and collaborators [59] in 1958. They called the structure
a “corkscrew”. Iwasaki and Takemura [60] suggested
for the first time, in 1975, the possibility of using a
circular mode of the magnetization for building high-
density magnetic data recording. As was discussed by
Papanicolaou [54, 55] and Compton [61, 62] an isolated
vortex is naturally pinned in the lattice. However, when
an external magnetic field is applied upon the vortex
it can move in a direction perpendicular to the field
(for an illustration see Fig. 3 For an oscillating field,
it can rotate around its core equilibrium position at a
characteristic frequency of several hundred megaHerz
[63–65] (Fig. 5). A schematic view of this effect is shown

Fig. 5 Snapshots showing the behavior of a vortex subjected
to the effect of an in-plane static magnetic field. The vortex is
dislocated in the direction of B⃗ × R⃗ (R⃗ points out in the direction
defined in Fig. 3)
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in Fig. 6. A general Hamiltonian model for a magnetic
nano-dot can be written in a pseudo-spin language as
(for a revision on the subject, see [66–73])

H =
∑

<i, j>

Ji, j

(
Sx

i Sx
j + Sy

i Sy
j + λSz

i Sz
j

)

+ D
∑

i ̸= j

⎡

⎣ S⃗i · S⃗ j

r3
i, j

−

(
S⃗i · r⃗i, j

) (
S⃗ j · r⃗i, j

)

r5
i, j

⎤

⎦ , (11)

where ri, j is the distance between sites in the lattice
and a dipole-dipole interaction with strength D has
to be taken into account. For a finite system the con-
tinuity of the magnetic field in the boundary of the
system imposes the magnetic moments to be tangent to
the border of the nano-disk, so that, the ground state
corresponding to Hamiltonian (11) has an impaired
vortex at the center of the system. Much of the work
done so far uses a variation of the Hamiltonian (11)
by considering an anisotropic interaction

∑
(S⃗ · n⃗)2 in-

stead of the dipole term [74–76], with n⃗ representing
a unit vector perpendicular to the surface and to the
borderline of the system. It favors the magnetic mo-
ment into a configuration tangent to the border of the
system and parallel to the disk plane. The energy due
to this term is minimized when the magnetic moments
arrange themselves in a curling vortex structure. The
low-temperature properties of the hamiltonian with the
anisotropic term is similar to the one obtained by using
the long range dipole interaction. However, the high
temperature and the dynamical behaviors are quite
different. As discussed before, a Sz component can ap-
pears at the center of the vortex. It was found that there

Fig. 6 Snapshot of the gyrotropic motion of a vortex

Fig. 7 Dipole interaction strength, D, as a function of the disk di-
ameter, L, showing a diagram for the vortex formation for three
different types of lattices. Squares and diamonds correspond to
square and the hexagonal lattices, respectively. The inset are for
a triangular lattice. Region I does not develop a vortex. Region
III has a vortex in the ground state. The shaded area (region
II) represents a region where the most stable configuration is
a vortex with an out-of-plane component. Observe that this
configurations does not exist for the triangular lattice

exist three regions where the most stable configuration
can be ferromagnetic, an in-plane vortex or an out-
of-plane vortex depending of the choice of the dipole
strength [77] (see Fig. 7). Because the hamiltonian is
invariant under a global operation Sz → −Sz, the out-
of-plane structure developed at the center of the vortex
is degenerated and does not depend on the vortex
orientation (clockwise or counterclockwise).

4.1 Gyrotropic Motion

A field-driven switching of the vortex polarization has
been shown to be possible by applying a static magnetic
field perpendicular to the vortex plane, thus pushing
the vortex core and reestablishing it in the opposite
direction [78, 79] (see Fig. 8). This process requires
high field strengths of the order of 103 mT. Such a

Fig. 8 A field-driven switching of the vortex polarization using
a field perpendicular to the vortex plane. This process requires
field strengths of the order of 500 mT
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Fig. 9 Schematic of the process of pair-creation mediated vortex
core inversion of the Sz component at the center of the vortex. A
field pulse is applied in the disk plane. The vortex core magneti-
zation is switched by a short magnetic field pulse applied in the
film plane. This switching process requires only 40–50 ps

large field value indicates that a high energy barrier
must be surmounted to switch a magnetic vortex core.
This high barrier ensures high thermal stability, which
in combination with their well-defined orientation and
their extremely small size makes the vortex a strong
candidate for binary data storage. The main problem
to be surpassed is the effective control of the Sz com-
ponent. More recently, a demonstration that vortex
cores can also be switched by low-amplitude in-plane
magnetic fields has been provided in an experiment of
short oscillating magnetic field pulses of low amplitude
tuned to the gyrotropic resonance frequency of the
system [80–86]. The gyrotropic frequency depends on
the particle size and shape and is typically of the order
of 102 MHz. A weak oscillating resonant magnetic
field induces a rotation of the vortex on a stationary
orbit (see Fig. 6). Exploiting the sense of rotation, it
was demonstrated that the vortex core reversal can be
triggered with weak sinusoidal field pulses of about 4 ns
duration and strength of about 1.5 mT [87].

Some numerical studies [87] suggested that the re-
versal mechanism is mediated by a process of cre-
ation and annihilation of a vortex–antivortex pair (see
Fig. 9). A recent experiment using high-resolution time-
resolved magnetic X-ray microscopy seems to give
support to that mechanism [88].

5 Final Remarks

The study of models that can support vortex configura-
tions reveals a very rich picture far of being completely
understood. The richness of the models together with
the possibility of technological applications invite us to
look for a deeper comprehension of the phenomena.

Although we held ourselves in the study of ferro-
magnetic models, much of our discussion applies to
anti-ferromagnetic models as well. On the other hand,

fully frustrated models (FFM) lead to a still richer
behavior [89–93]. The ground state of the two dimen-
sional Heisenberg FFM is a condensate of vortices and
antivortices. Beside the continuous spin symmetry it
posses a Z2 symmetry corresponding to the vortex
degree of freedom which may lead to long range order.

The two-dimensional anisotropic Heisenberg anti-
ferromagnetic model has a dynamical behavior simi-
lar to the ferromagnetic one. For the two-dimensional
Heisenberg FFM only an exploratory study was
done [94].

Finally, the dynamical behavior of a confined vortex,
as in a nano-disk, has a strong appeal for technological
applications as for instance, in the fabrication of non-
volatile memory devices. Understanding the mecha-
nism of the out-of-plane switching is of paramount
importance for future applications.
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