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a b s t r a c t

In this work we have used extensive Monte Carlo calculations to study the planar to paramagnetic phase
transition in the two-dimensional anisotropic Heisenberg model with dipolar interactions (AHd)
considering the true long-range character of the dipolar interactions by means of the Ewald summation.
Our results are consistent with an order–disorder phase transition with unusual critical exponents in
agreement with our previous results for the Planar Rotator model with dipolar interactions. Never-
theless, our results disagree with the Renormalization Group results of Maier and Schwabl [Phys. Rev. B,
70, 134430 (2004)] [13] and the results of Rapini et al. [Phys. Rev. B, 75, 014425 (2007)] [12], where
the AHd was studied using a cut-off in the evaluation of the dipolar interactions. We argue that besides
the long-range character of dipolar interactions their anisotropic character may have a deeper effect in
the system than previously believed. Besides, our results show that the use of a cut-off radius in the
evaluation of dipolar interactions must be avoided when analyzing the critical behavior of magnetic
systems, since it may lead to erroneous results.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

A wide class of interesting phenomena is observed in quasi-two
dimensional systems like thin films, surfaces, superconductors and
easy plane magnets. For example, since the work of Mermin
and Wagner [1] it is known that a continuous symmetry cannot
be spontaneously broken at finite temperature in systems with
sufficiently short-range interactions in dimensions dr2. Although
an order–disorder transition is forbidden in two dimensions a non-
usual phase transition is still possible as pointed by Berezinskii [2]
and Kosterlitz and Thouless [3] (BKT). A prototype model under-
going a BKT transition is the 2d easy-plane anisotropic Heisenberg
(2dAH) model described by the following Hamiltonian:
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with Ao0. If A40 the Hamiltonian has an easy axis symmetry
being in the Ising class of universality. For A¼0 the model turns to
the isotropic Heisenberg model which is known to have no phase
transition at all. The addition of long range interactions having a
power-law fall off in two spatial dimensions may lead to significant
changes in the character of the phase transition. As discussed by
Fisher et al. [4] long range attractive interactions should lead to

modification in the values of the critical exponents from those of
the corresponding models with short range interactions. Such
interaction potentials can induce critical behavior in dimensions
smaller than or equal to two.

In a real magnet the long range dipolar interactions between
magnetic moments are always present. Then, a better model
designed to describe real magnets is
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which is named anisotropic Heisenberg model with dipolar inter-
actions (AHd). Despite the fundamental relevance of the theoretical
problem the technological interest in low dimensional systems with
long range interactions makes the study of such models of para-
mount importance. The inclusion of dipolar interactions induces the
appearance of an easy-plane anisotropy in quasi-two dimensional
systems in such a way that for A40, i.e., for an easy-axis site
anisotropy, the competition between them leads to interesting
phenomena. In earlier studies several authors [5–11] have claimed
that the model for ultrathin magnetic films defined by Eq. (2) with
A40 presents three phases. Referring to Fig. 1 it is believed that the
line labeled a is of first order. The lines b and c are of second order.
Those results were obtained by introducing a cutoff in the long-
range interaction of the Hamiltonian, Hd.

An attempt to determine the true character of the planar-to-
paramagnetic phase (line b in Fig. 1) was done by Maier and
Schwabl [13]. In their work, the authors used renormalization
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group technique to study the model with dipolar interactions
(Eq. (2)). They discussed the existence of a new universality class
with characteristics of BKT and order–disorder transitions as well.
They argued that the dipolar XY model exhibit long-range order at
low temperature (see also Refs. [14,6]), but the correlation length
diverges exponentially as the critical temperature is approached.
The specific heat does not present any divergence as in a BKT
transition. The susceptibility was expected to diverge as χpξ ~γ

where ~γ ¼ γ=ν¼ 1 is the critical susceptibility exponent and χ is
the correlation length. The magnetization approaches zero as
Mpξ" ~β , where ~β ¼ β=ν¼ 1=2, and the correlation function expo-
nent was found to be ~η ¼ η=ν¼ 1 while in the BKT picture is found
to be ~γ ¼ 7=4 and ~η ¼ 1=4. They stated that [13] “ The nature
and flow diagram of the ferromagnetic transition are strikingly
similar to the Kosterlitz–Thouless transition. But while in the
Kosterlitz–Thouless transition the exponential behavior is a con-
sequence of the topological excitations, the predicted phenomena
in the dipolar XY model are solely due to spin-wave excitations”.
The Maier and Schwabl result, in some sense, corroborate the
findings of an earlier work of Patrascioiu and Seiler [15]. Their
results [15] “ ... lead to an interpretation of the Kosterlitz–Thouless
transition, different from the standard one, of dipole dissociation”.

Using numerical Monte Carlo (MC) calculations Rapini et al. [12]
have found that the line labeled a is of first order and the line c is of
second order in agreement with Ref. [10]. However, the b line was
found to be of the BKT type. Mól and Costa have used extensive
Monte Carlo simulations and finite-size scaling theory to study the
planar to paramagnetic transition (line b in Fig. 1) in two versions of
this model: The first was a bilayer version using a cutoff in the dipole
interaction [16], the second was the dipole planar rotator model,
where the spins have a Oð2Þ symmetry [17]. In the last case the
dipole interaction was considered without a cutoff by using the
Ewald summation technique. In both cases the b line was not found
to be of second order neither of BKT type. In particular they found
that both transitions might belong to a peculiar universality class.
The results indicated that the transition is characterized by a non-
divergent specific heat and by the exponents β¼ 0:18ð5Þ, γ ¼ 2:1ð2Þ
and ν¼ 1:22ð9Þ in the bilayer case [16] and β¼ 0:2065ð4Þ,
γ ¼ 2:218ð5Þ, and ν¼ 1:277ð2Þ in the planar rotator model [17].
These results are far different from those predicted by the BKT theory
but closer to Maier and Schwabl's results [13]. As a step further to
shed some light over this question we have done a very careful
MC study of the anisotropic Heisenberg model with dipolar

interactions (AHd). The technical details and the results we have
obtained are presented in the following.

2. Numerical details

The Monte Carlo schemewe used was a plain single site canonical
Metropolis algorithm since conventional cluster algorithms cannot
be used due to the long-range anisotropic character of the dipolar
interactions. The Metropolis algorithm is sufficiently well known to
deserve any further presentation. We define a Monte Carlo step
(MCS) as consisting of an attempt to assign a new random direction
to all spins in the lattice. To equilibrate the system we used 100'
L2MCS which was found to be sufficient to reach equilibrium even in
the vicinity of the phase transition. We produced histograms for each
lattice size in the interval 20rLr120 and they were built at/close to
the estimated critical temperatures obtained in preliminary simula-
tions. To construct the histograms at least 2' 107 configurations
were obtained using 3 distinct runs. These histograms are summed
so that we obtain a new histogram that allows us to explore a wider
range of temperature (an example of the use of histograms can be
found in Ref. [16]). Periodic boundary conditions are assumed in the x
and y directions. To take into account the long range character of the
dipolar interaction we use the Ewald summation to calculate the
energy of the system [18,19].

All simulations were done using a square lattice, A=J ¼ 1 and
D¼ 0:3J. Energy was measured in units of J and temperature in
units of J=kB, where kB is the Boltzmann constant. Our choice of
D¼ 0:3J was to guarantee that the planar behavior of the system
was not much affected by the frustration existent near the multi-
critical point where the three lines shown in Fig. 1 come together.
We have devoted our efforts to determine a number of thermo-
dynamic quantities, namely the specific heat, magnetization,
susceptibility, fourth order Binder's cumulant and moments of
magnetization as described elsewhere [16,17].

3. Results

Concerning the systems' magnetization no significant size depen-
dence is observed in low temperatures, unlike the results shown in
Ref. [12] where a cut-off radius was used in the evaluation of dipolar
interactions. This may be an evidence that as the full long-range
character of dipolar interactions is taken into account long-range
order develops, as expected by the results of Maleev [14].

In Fig. 2 we show a log–log plot of the maxima of the
susceptibility as a function of the lattice size for L¼20, 40, 80
and 120. The data are very well adjusted by a straight line with
slope γ=ν¼ 1:763ð1Þ exhibiting a power law behavior. This value of
the exponent γ=ν is quite near the expected one for a transition in
the Ising universality class (1.75). Considering the Ising univers-
ality class we were able to determine the critical temperature by
using the location of the maxima of the specific heat and suscept-
ibility and the crossing point of the Binder's cumulant, which gives
TIsing
c ¼ 0:946ð1Þ. By using this value and plotting lnðMXY Þ ' lnðLÞ at

T ¼ Tc we have found β=ν¼ 0:163ð6Þ, which is quite different from
the expected value for the Ising universality class (0.125).

The last result may indicate that the assumption of the Ising
universality class may not be correct. Indeed, by analyzing the
moments of magnetization defined in Ref. [16], we obtain
1=ν¼ 0:82ð2Þ and TVj

c ¼ 0:943ð1Þ. This value of the exponent ν
contrasts with the expected for the Ising universality class,
although the value for the critical temperature is approxi-
mately the same. Reanalyzing our previous estimates for the
critical temperature obtained using the location of the specific
heat and maxima of susceptibilities using this new value of the
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Fig. 1. Phase diagram of the anisotropic Heisenberg model with dipolar interac-
tions (AHd) for fixed A=J ¼ 1 in the ðD=J; TÞ space. The solid (black) line represents
the transition lines as obtained using a cut-off in the dipolar interactions [12] and
the dashed (red) line is the results obtained when full long-range interactions are
considered by means of the Ewald summation (this work). The phase I is an Ising-
like phase characterized by an ordered out-of-plane alignment of spins
(that may present stripe-like configurations for full long-rang interactions). Phase
II is an ordered planar ferromagnetic state and phase III is a paramagnetic one. The
border line between phase I and phase II (a) is believed to be of first order and from
regions I and II to III (b and c) to be both of second order.
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exponent ν we obtain Tcv
c ¼ 0:945ð1Þ and Tχc ¼ 0:943ð1Þ (it is

worthy to note that in the analysis of the specific heat data the
point corresponding to L¼20 was disregarded in both cases).
Looking to the crossing point of Binder's cumulant we have
found TU4

c ¼ 0:944ð2Þ. We have thus, as our new estimate for
the mean critical temperature Tc ¼ 0:944ð1Þ. Using this new
value of the critical temperature we obtain β=ν¼ 0:149ð7Þ
in the analysis of the magnetization data.

To distinguish between these scenarios in Fig. 3 we show a
scaling plot of the magnetization obtained with the multiple
histogram technique according to its finite size scaling function
ðm( L

β
νMðtL

1
νÞÞ considering two possibilities: (i) the Ising-like

behavior (TIsing
c ¼ 0:946ð1Þ, ν¼ 1 and β¼ 0:125) and (ii) an

order–disorder critical behavior with exponents ν¼ 1:22ð3Þ
and β¼ 0:18ð1Þ and critical temperature Tc ¼ 0:944ð1Þ. As can
be seen, the scaling plot obtained assuming the Ising univers-
ality class does not describe our data as good as the results
considering a new universality class. Besides, doing the same
analysis with susceptibility and Binder's cumulant no signifi-
cant deviations were observed between these two possibilities.
Indeed, the values obtained in this study are in good agreement
with those obtained for the same model in a bilayer system
[16] and for the dipolar Planar Rotator model [17]. To clarify, in
Table 1 we show the exponents for the Ising model, the results
obtained by Maier and Schwabl for the dPR model, the results
of Refs. [16,17] and the results of this work.

So far, everything corroborates to an order–disorder phase
transition with non-conventional critical exponents. However,
the scale relations [21] αþ2βþγ ¼ 2 and νd¼ 2"α are believed
to be satisfied. Using the values shown in Table 1 and the first
relation we should have α¼ "0:51ð7Þ and using the second
relation α¼ "0:44ð6Þ indicating the possibility that the specific
heat does not diverge. Indeed, to have a better agreement
between the results of this work and those of Refs. [16,17] the
specific heat should be non-divergent. As one knows, to
distinguish between a logarithmic divergence or a slowly
power law divergence or even a non-divergent power law,
much larger system sizes must be used. However, such analysis
demands a prohibitive computer time. Nevertheless, a careful
analysis of the data could give us a clue. In Fig. 4 we show our
data for the maxima of the specific heat as a function of the
lattice size adjusted by two different methods. The dashed line
represents the best fit of a logarithmic divergence ða lnðLÞþbÞ,
the solid line is for a non-divergent power law behavior
ð"aL"bþcÞ. As can be clearly seen, the non-divergent power
law describes better the data. Indeed, the χ2=dof values
obtained are 4:7' 10"4 for the logarithmic divergence and
1:4' 10"6 for the non-divergent power law. The value

obtained for the exponent α=ν from the adjust is "0:36ð14Þ
that agree quite well with the results of the present work and
the simulations for the AHd model (See Table 1).

3 3.5 4 4.5 5
ln(L)

1

2

3

4

5
ln
(χ
xy
)

Fig. 2. Log–log plot plot of the maxima of the planar susceptibility as a function of
the lattice size. The solid line shows the best linear fit of the data given the exponent
g/ν¼1:763(1). The error bars are shown inside the symbols.
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Fig. 3. Scaling plots of magnetization considering the Ising-like behavior (top) and
an order-disorder transition characterized by the exponents shown in the last line
of Table 1 (bottom).

Table 1
In this table we show the critical temperature and exponents for the 2D Ising
model [20] (first line), the results of Maier and Schwabl [13] for the dPR model,
the results of MC calculations in the bilayer AHd model with a cut-off in the
interactions [16], the results of MC calculations for the dPR model [17] and the
results of this work.

Model Tc ν γ β α

Ising 2.269 1 1.75 0.125 0 (ln)
dPR (Maier) 1 1/2 "2
AHd (bilayer) 0.890(4) 1.22(9) 2.1(2) 0.18(5) "0.55(15)
dPR 1.201(1) 1.277(2) 2.218(5) 0.2065(4) "1.1(1)
AHd (this work) 0.944(1) 1.22(3) 2.15(5) 0.18(1) "0.44(18)
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Fig. 4. Specific heat maxima as a function of the lattice size. The dashed line is the
best non-linear fit considering an logarithmic divergence and the dashed line
shows the best non-linear fit considering a non-divergent power law behavior.
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4. Conclusions

In this work we have studied the phase transition in the
anisotropic Heisenberg model with dipolar interactions (AHd).
We have found that the use of the full long-range interaction leads
to an order–disorder transition with unusual exponents and a
non-divergent specific heat. Indeed, it would be interesting to
present a systematic study of the effects in the critical behavior of
the system with an increasing cut-off radius. Nevertheless, this
study is beyond the scope of this paper and will be addressed in a
near future.

Since the analysis of the results presented in this paper is
similar to those of Refs. [16,17], we report the reader to those
references for a more detailed discussion, specially to Ref. [17].
Nevertheless, some points should be stressed. In Ref. [12] the
authors have found that the planar to paramagnetic phase
transition in the AHd model belongs to the BKT universality
class, which implies the absence of long-range order in the low
temperature phase. This result is consistent with the Mermin–
Wagner theorem [1], however, this theorem does not apply to
systems with anisotropic long-range interactions as the AHd
model. Indeed, for such a system one should expect the existence
of long-range order in the low temperature phase as shown by
Maleev [14]. The main difference in the methodology between
Ref. [12] and this work is that in the former a cut-off radius was
introduced in the evaluation of dipolar interactions while in the
latter the Ewald summation was used. This is a clear indication
that the inadvertent introduction of a cut-off radius may hide the
true critical behavior of the system. However, even with the
introduction of a cut-off radius, the results for a bilayer system
[16] show the same critical behavior found in this work. This may
indicate that the anisotropic character of dipolar interactions is a
key factor. Indeed, the authors of Ref. [22] stated that “Anisotropy
has a deeper effect on the ordering of systems of classical dipoles
in 2D than the range of dipolar interactions”, showing that this
observation is not new in the literature.

Although our results show that the unusual exponents shown
in Table 1 describe better the data, specially for the magnetization,
the transition may be in the Ising universality class as well, since
corrections to scaling were not taken into account and the lattice
sizes used may not be large enough. As can be seen in Fig. 3 the
use of the Ising universality class exponents describes well the
data for the largest lattices studied. Nevertheless, it does not seem
to be a good choice simply disregard the data for the lattices with
L¼20 and 40, leaving only two lattice sizes to be analyzed. Thus it
is more prudent to not completely rule out the possibility of this
phase transition to belong to the Ising universality class. On the

other hand, our previous results for the same model in a bilayer
system [16] and the results for the dPR model [17] were also well
described by the same critical behavior found here, such that we
still believe that this phase transition is more likely to belong to a
new universality class with unusual exponents. Studies in much
larger lattices could remove this ambiguity, nevertheless the
computational time needed for such a study turns it impracticable
at the moment.

As a final remark we would like to stress that these results
are much important when the critical behavior of magnetic
systems with dipolar interactions is being considered. They
show that the use of a cut-off radius in the evaluation of
dipolar interactions may lead to erroneous results and that the
anisotropic behavior is also much important. This study may be
a guide for future works in what concerns the introduction or
not of a cut-off radius in the study of critical behavior of
magnetic systems with dipolar interactions.
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