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• A mean-field method to compute long-range interactions in real space is introduced.
• The method describes well the behavior of the anisotropic dipolar Heisenberg model.
• We show that the dipolar interaction is robust to such an approximation.
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a b s t r a c t

Long-range interactions are known to be of difficult treatment in statistical mechanics
models. There are some approaches that introduce a cutoff in the interactions or make
use of reaction field approaches. However, those treatments suffer the illness of being of
limited use, in particular close to phase transitions. The use of open boundary conditions
allows the sum of the long-range interactions over the entire system to be done, however,
this approach demands a sum over all degrees of freedom in the system, which makes a
numerical treatment prohibitive. Techniques like the Ewald summation or fast multipole
expansion account for the exact interactions but are still limited to a few thousands of
particles.

In this paperwe introduce a novelmean-field approach to treat long-range interactions.
The method is based in the division of the system in cells. In the inner cell, that contains
the particle in sight, the ‘local’ interactions are computed exactly, the ‘far’ contributions
are then computed as the average over the particles inside a given cell with the particle
in sight for each of the remaining cells. Using this approach, the large and small cells
limits are exact. At a fixed cell size, the method also becomes exact in the limit of
large lattices. We have applied the procedure to the two-dimensional anisotropic dipolar
Heisenberg model. A detailed comparison between our method, the exact calculation and
the cutoff radius approximation were done. Our results show that the cutoff-cell approach
outperforms any cutoff radius approach as it maintains the long-range memory present in
these interactions, contrary to the cutoff radius approximation. Besides that, we calculated
the critical temperature and the critical behavior of the specific heat of the anisotropic
Heisenbergmodel using ourmethod. The results are in excellent agreementwith extensive
Monte Carlo simulations using Ewald summation.
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1. Introduction

Interactions between particles in the physical world are non-local, i.e., they are long ranged. In some important cases the
interaction is shielded, so that, considering a few neighbors gives a good description of the system. In general long-range
interactions always introduce some complexity in analytical and numerical calculations as well. As a general rule short-
ranged interactions are easier to treat numerically. On the other hand Coulomb interactions, for example, are approximated
by introducing a cutoff in the potential or using some kind of approach like Ewald summation [1–4] or fast multipole
expansion [5,6]. A cutoff is appropriated for disordered systems far from any phase transition or when the interaction decay
is fast enough. It has the advantage of preserving the short-range correlations, being of easy numerical implementation,
but fails when long-range correlations are important. By considering the Ewald summation, or the fast multipole approach,
we exactly account for the long-range interactions, however, the computing time becomes prohibitive as the volume of the
system grows.While the cutoff approach allows us to treat millions of particles using a typical desktop computer, the Ewald
summation restrict us to a few thousands. In this communication we present a new approach, the Cutoff-Cell (CC) method,
to treat potentials with long-range interactions. As will be discussed in the following it has the benefit of preserving short
and long correlations. Intermediate correlations are averaged. It is much better than any cutoff, competing quite well with
the exact numerical results. Besides that, the CPU time used in its computation is comparable to that in the cutoff calculation
and up to two orders of magnitude shorter than exact calculation. In general, methods to treat long-range potentials divide
the interaction in two parts: One, short ranged, non-zero only for separations less than a certain cutoff radius. A second
part, is summed in the Fourier space [7,8]. Also, in the present approach we separate the potential in two parts, one short
ranged and the other long ranged. However, we do not perform a sum over the long-range term in Fourier space. Instead,
we divide the system in sub-domains where the sum in direct space is done. This strategy can be very effectively performed
by appropriately choosing the size of the sub-domains. Further improvement to speed up the algorithm is achieved by using
tables for the neighbors and potential.

We chose two differentmodels to explain and test how the approachworks, respectively. Because of the simplicity of the
equations we consider a ‘pedagogical model’ consisting of N particles in a box of volume Ω interacting through a Lennard-
Jones (6–12) potential. The second example consists of a classical spin model with dipolar interactions. The CC method
is carefully explained in each case and the approximation for the Hamiltonians are obtained. In the Lennard-Jones case
comparing the CC approach with other approaches is worthless since the fast decaying of the Lennard-Jones interaction can
veil any discrepancy between them. Going a bit further, we apply the CC method to the two-dimensional anisotropic dipolar
Heisenberg (2dADH) model. It is known that this model has at least three well defined phase transition lines. In Refs. [9–11]
results using different approaches are reported. To study the long-range dipolar interaction, various methods have been
devised, such as the Ewald summation technique [9,10,12–14], the Particle–Particle–Particle-Mesh (P3M) method [7], and
the naive cutoff radius method [11,15]. The P3M method is known to give good results in molecular dynamics simulations.
Recently some effort has being done to use it in Monte Carlo calculations [16–18]. However, the computer codes are much
more difficult to implement than ours. The Ewald summation technique is widely used in Monte Carlo simulations and
has been the prime method of choice to study systems with long-range interactions [3,4,9,12–14,19,20]. However, a full
implementation is not simple. A crude approximation is to introduce a cutoff radius for the long-range interactions, but
this approximation does not work well in dipolar systems [9,10,12,21]. Our novel approximate calculation of the long-range
dipolar interaction avoids the drawbacks of the cutoff approximation and becomes exact in the limits of large and small cell
sizes as will be discussed in the next section. Using the cutoff-cell method we have simulated the 2dADH model using the
single histogram technique. The results we obtained are in excellent agreement with those in literature, showing that the
cutoff-cell method is a competitive technique to be used in extensive simulations. As a grateful surprise we observed that
the method preserved the critical behavior of the model. Considering the complexity of the interactions studied we dare to
say that the same could be expected for more complex systems.

This paper is organized in the followingway. In Section 2we discuss the general principles of themethod and in Section 3
we apply the method to the two-dimensional ADHM. In Section 3.2 we present our results for the ADHM in two dimensions
and conclude in Section 4.

2. The cutoff-cell approach

Let us consider a system of N particles inside a volume Ω described by a general particle Hamiltonian H . Suppose that
H is separable in two parts, one consisting of short range (SR) interactions and the other gathering all long-range (LR) ones,
H = HSR + HLR

HSR =


over all pairs |r⃗i−r⃗j|≤r0

hSR(r⃗i, r⃗j)

HLR =


All pairs

hLR(r⃗i, r⃗j). (1)

Here, r0 is the range of the interaction. Numerically, the first term does not represent any problem since the number of
arithmetic operations to evaluate it grows linearly with N . On the other hand the evaluation of the second term runs over
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Fig. 1. Schematic of an instantaneous realization for a given site i on a two dimensional lattice, L = Lx = Ly . Here Λ = 25. The interaction is exactly
calculated for all particles contained within the cell centered on site i, λ = 1, and approximately on the remaining cells.

all pairs of particles such that the number of arithmetic operations needed to evaluate it grows with N2. This rapid growth
represents a serious problem when dealing with large systems. We, therefore, will focus our attention in this last term. Let
us consider that HLR can be split into two parts

HLR =


|r⃗i−r⃗j|≤rc

hLR(r⃗i, r⃗j) +


|r⃗i−r⃗j|>rc

hLR(r⃗i, r⃗j). (2)

Here rc is a distance parameter conveniently chosen. Its meaning will be clear in the following. Observe that Eq. (2) is exact,
we just rearranged terms. The summation in this first term is to be performed over all pairs inside a volumeΩc =

Ω

Λ
, where

Ω is the volume of the system and Λ is an integer. To treat the second term we start by enumerating each partition Ωc ,
running from λ = 1 up to λ = Λ (see Fig. 1(a)–(c)). Inside each box, λ, we enumerate the particles belonging to that box.
Each particle can be identified giving two indexes, (λ, i), where i stands for the particle label inside box λ. Suppose we are
computing the contribution of the particle (see Fig. 1). Inside that box we calculate exactly the contribution to Eq. (2). To
compute the contribution due to the other cells, λ ≠ 1, we perform an average of all particle contributions inside a given
cell with the particle in sight of box λ = 1 for the remaining cells. To make ourselves clearer let us consider as an example
a two dimensional system consisting of N particles inside a box of ‘volume’ Ω interacting through a Lennard-Jones (12–6)
potential

V (i, j) = −4ϵ


σ

rij

6

−


σ

rij

12


, (3)

where ϵ is the minimum of the potential. Reporting to the arrangement shown schematically in Fig. 1, we have chosen a
two dimensional (d = 2) system with Λ = 25 and N = 54. Extending the definition to a three dimensional system is
straightforward. Suppose we have already done the first part of the summation, i.e., the sum inside each cell. For particles
outside the cell we approach the interaction by considering the averaged potential inside the cells. Tomake it clear, consider
Fig. 1(a). Cells are labeled from 1 to 25. Inside each cell we enumerated each particle. Suppose we are calculating the
interaction between the particle marked i = 3 in the cell λ = 1 and those in cell λ = 14. Instead of performing the
calculation for eachparticlewe consider the averaged interaction due to all particles inside that cell. A croquis of this situation
is shown in Fig. 1(b), where the open circle represents this average. The process is repeated for each cell λ ≠ 1. The final
result is shown in Fig. 1(c). The vector R̄(1,3),14 in Fig. 1(c) is just the arithmetic average of the position vectors of the particles
inside cell 14. With those definitions in mind, the interaction potential can be written in an approximate way as

V CC
≈ −ϵ


i,j (|r⃗i−r⃗j|≤rc )

V (i, j) −


i


λ


λ′

ϵ̄R


σ

R(i,λ),λ′

6

−


σ

R(i,λ),λ′

12


. (4)

Here ϵ̄R = Mλϵ, where Mλ represents the number of particles inside cell λ. In the Lennard-Jones case an upper bound for
the error is of order O


(rc/R(i,λ),j)

6

. A judicious choice of the size of the cells has to be done in order to minimize the error.

As a final remark we observe that the approximation becomes exact in the limit of small rc (→ 0) and large rc (→ ∞) cells.
In the first case the particle average position inside each cell coincides with the particle position itself, in the later the cell
becomes the system so that interactions are exactly calculated.

3. The anisotropic dipolar Heisenberg model in two dimensions—a case study

As a case study, we choose to illustrate our approach the two-dimensional anisotropic dipolar Heisenberg (2dADH)
model. It is known that it has a transitionwith a non-divergent specific heat. A behavior like that can easily be confusedwith
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a logarithmic divergence. Besides that, the transition is of the order–disorder type where long-range fluctuations dominate
the system and the correlation length goes to infinity. The critical temperature, Tc , was determinedwith great precision [10].
We consider that if we are successful in reproducing those results using the CC approach it will give us a clear indication
of how far we can go. Let us consider a square lattice, of linear dimensions, Lx = Ly = L, where at each site lives a classical
Heisenberg spin [10] (see Fig. 2). The spins interact ferromagnetically having an easy axis spin anisotropy and a long-range
dipolar interaction. The Hamiltonian describing the system is

H = −J

i,j

s⃗is⃗j − A


i

(szi )
2
+ HD, (5)

where the first term represents the exchange interaction with the summation running over all nearest neighbor spin pairs
and J is an exchange interaction. For J > 0 (<0) a ferromagnetic (antiferromagnetic) behavior is expected. The second
term represents an anisotropy, which for A > 0 favors alignment along the z-axis, while for A < 0, it favors an in-plane
alignment [10,15]. The third term is the long-range dipolar contribution to the Hamiltonian given by

HD = D

⟨i,j⟩


s⃗i · s⃗j
r3ij

− 3
(s⃗i · r⃗ij)(s⃗j · r⃗ij)

r5ij


, (6)

where the sums are now over all pairs of particles (i ≠ j). We consider periodic boundary conditions. From now on we take
J = 1. As before we rewrite the long-range interaction in the hamiltonian as

HD ≈ HD
CC

= D


i,j (|r⃗i−r⃗j|≤rc )


s⃗i · s⃗j
r3ij

− 3
(s⃗i · r⃗ij)(s⃗j · r⃗ij)

r5ij


(7)

+D


i


λ


λ′


s⃗i · m⃗λ′

R3
(i,λ),λ′

− 3
(s⃗i · R⃗(i,λ),λ′)(m⃗λ′ · R⃗(i,λ),λ′)

R5
(i,λ),λ′


. (8)

The first term represents the ‘near’ contribution of the dipolar interaction. In the second term m⃗λ′ represents the net
magnetization inside cell (sum of all spins in the cell) λ′ and R(i,λ),λ′ is the vector pointing from site i at cell λ to the center of
the cell labeled λ′ as shown in Fig. 2. The computational cost to calculate the dipolar interaction, using the above algorithm,
becomes proportional to l2 + (L/l)2 for a square lattice and (l3 + (L/l)3 for a cubic lattice), where l = (Ωc)

1/2 for a square
lattice (l = (Ωc)

1/3 for a cubic lattice). We want to know how good is our approach applied to this specific problem. With
this purpose in mind we have used Monte Carlo to study the 2dADH model. We divided the problem in two parts. Firstly,
we numerically computed the energy and the magnetization of the system for several values of the dipolar interaction
parameter, D, and temperature T using: (1) a cutoff, (2) the exact numerical computation of the energies, and (3) the CC
method. These results were then compared. As a second part of our strategy we used the single histogram method [22,23]
to obtain the critical temperature and to show the non-critical behavior of the specific heat. Our results were then compared
to those in the literature.

3.1. Away from the phase transition

Our first step is the analysis of the energy per spin and themagnetization along the z-axis. A second set of results focuses
on the dissection of how these quantities are perturbed by performing a side-by-side study of the approximate and exact
results during the same simulation run. The runs are for a square lattice size of 28×28 spins with a cell size of l = rc = 7 for
the cutoff case. This use of rc = 7 is more inline with what is being used in the literature. All simulations were performed at
a fixed anisotropy coefficient of A = 2. Averages were taken over runs of 2.5 × 105 Monte Carlo steps, which are sufficient
for demonstration purposes and for the range of simulated temperatures. In Fig. 3 we show the plots of the energies per
spin, E, at various temperatures and dipolar coefficients. At all temperatures the CC approximation follows the exact results
very well. The cutoff case starts to depart from the exact results at the highest dipolar coefficient, except for high T , where
these approaches give the same results as the long correlations are unimportant. In themore thermodynamically interesting
areas of the phase diagram, the cutoff-cell approximation is far superior than the cutoff approximation. For example, at high
values of the dipolar coefficient, theCC approximation follows the exact values closelywhile the cutoff approximation poorly
reproduces the energies, particularly at high values of the dipolar coefficients. The results for the magnetization along the
z-axis also provide someuseful insight on the approximations. Fig. 4, shows rawMonte Carlo data of themagnetization along
the z-axis at an intermediate temperature, T = 0.825, and at a dipolar coefficient, D = 0.05, versus the number of Monte
Carlo steps. At this dipolar coefficient and temperature we observe large fluctuations of the values of the magnetization and
even field reversal for both the exact and cutoff-cell cases, but these are absent in the cutoff case. Furthermore, generally
speaking, the cutoff case shows smaller fluctuations of the magnetization as compared to the exact case. In contrast, the
cutoff-cell method preserves the same level of fluctuations of the exact case. This shows that the cutoff-cell approximation
retains the long-rangememory of the dipolar interaction, which is absent in the cutoff approximation. At values of d ≥ 0.10
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Fig. 2. For each of the remaining cells λ > 1, a net magnetization is computed, given by the sum of all spins belonging to that cell. The spin i centered in
cell λ = 1 then interacts with this net magnetization vector.

Fig. 3. The figure shows the energies per spin for various values of the dipolar coefficient: 0.01, 0.05, 0.2, 0.6, 0.8, 1, and 1.2. Squares represent exact
numerical calculations, circles represent the CC method, and triangles represent the cutoff method. Part (a) shows low-temperature results at a value of
0.1. Part (b) is an intermediate temperature of 0.825 and part (c) represents a high-temperature value of 4.

(not shown) the magnetization along the z-axis becomes vanishingly small, since the dipolar interaction favors an in-plane
alignment of the spins.

We now proceed to show the results of more microscopic quantities, which constitute the second set of quantities as
described above. Let us define δE as an elementalMonte Carlo energy difference between the trial and current configurations.
The average of the absolute energy differences obtained exactly is defined as

⟨|δEEx|⟩ =

NMCSL2
i=1

|δEEx
i |

NMCSL2
, (9)

where δEEx
i is the exact energy difference at every elemental Monte Carlo step and NMCS represents the number of Monte

Carlo steps. Let us also define the mean energy differences between the cutoff-cell approximation and the exact calculation
as

⟨|δEEx-CC|⟩ =

NMCSL2
i=1

|δEEx
i − δECC

i |

NMCSL2
, (10)
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Fig. 4. Plots of the magnetization along the z-axis for the intermediate temperature of 0.825 versus the number of Monte Carlo steps. Notice that the both
the exact and cutoff-cell methods show large fluctuations in themagnetization, including field reversal. These behaviors are absent in the case of the cutoff
approximation.

Fig. 5. Plot of the ratios, ϵCC and ϵC of the difference of the energy differences between the exact values and the cutoff-cell or cutoff energy difference
values to the mean exact energy differences, respectively, (please refer to the text) at various values of the dipolar coefficients and for three different
temperatures. Please refer to the caption of Fig. 3 for the actual values of the dipolar coefficients and the values of the temperatures in parts (a), (b),
and (c).

where δECC
i is the energy difference obtained using the cutoff-cell approximation at a given elemental Monte Carlo step.

Similarly, we define the mean energy differences between the cutoff and the exact calculation as

⟨|δEEx-C|⟩ =

NMCSL2
i=1

|δEEx
i − δEC

i |

NMCSL2
, (11)

where δEC
i represents the cutoff energy difference. In Fig. 5, we show plots of the ratios ϵCC = ⟨|δEEx-CC|⟩/⟨|δEEx|⟩ and

ϵC = ⟨|δEEx-C|⟩/⟨|δEEx|⟩ at various temperatures and dipolar coefficients. These ratios probe how off a given approximation
is relatively to the exact values, so that the smaller the values the better the approximation. The cutoff approximation gets
close to the cutoff-cell approximation values solely at the highest temperature, i.e., when a local sampling is sufficient. In the
remaining cases, that is at low and intermediate temperatures, the cutoff-cell approximation is quite superior to the cutoff
approximation, with percentage differences into the double digits for most cases. Moreover, the cutoff-cell approximation
remains stable within a narrow range of 3.4%–4.15%, while the cutoff ratios are above 9.3% for most cases and drop to about
4.2% for the high-temperature and lowdipolar energy values. Though from Fig. 3, the energies per spin seem the same for the
exact, cutoff-cell, and cutoff at low values of the dipolar coefficients, Fig. 5 shows that even for these values the cutoff-cell
fares better than the cutoff approximation. These results emphasize the consistency of the cutoff-cell approximation across
different parameter spaces and ranges, i.e., both in temperature and dipolar coefficient.

Another relevant quantity is the absolute value of the maximum energy difference defined, for the cutoff-cell approxi-
mation, by

|δECC
Max| = max{|δECC

1 |, |δECC
2 |, . . . , |δEEx

NMCSL2
|}, (12)
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Fig. 6. Plot of the ratio of themaximum energy difference to themean absolute, exact energy difference, ϵCC
Max and ϵC

Max , respectively, for the cutoff-cell and
cutoff approximations for various values of the dipolar coefficients and temperature. The reader is referred to the caption of Fig. 3 for the actual values.

Fig. 7. The plots show (a) ϵCC
Max and (b) ϵC

Max versus Monte Carlo steps to offer an idea of the fluctuations at T = 0.1.

for NMCSL2 elemental Monte Carlo steps, and, similarly, we define

|δEC
Max| = max{|δEC

1 |, |δE
C
2 |, . . . , |δE

C
NMCSL2

|}, (13)

for the cutoff approximation. This quantity probes how consistent the approximations are over a given number of Monte
Carlo steps and the lower the values the better is the approximation. Again, we are interested in ratios of the form
ϵCC
Max = |δECC

Max|/⟨|δEEx|⟩ and ϵC
Max = |δEC

Max|/⟨|δEEx|⟩ as plotted in Fig. 6. Overall, the deviations are substantially higher
in the cutoff than in the cutoff-cell approximation. For example, at the low temperature, the variations in terms of the dipo-
lar coefficient are 21.8%–31.2% for the cutoff-cell approximation, while for the cutoff approximation is 64% to 103%. For the
intermediate temperature, the ranges for the cutoff-cell and cutoff approximations are 16.7%–33.8% and 47.7%–78.6%, re-
spectively. Finally, for the high temperature value, the ranges are 28.2%–30.6% and 36.2%–40.7%, respectively. Moreover, the
‘instantaneous’ deviations of the cutoff approximation can be higher than ⟨|δEEx|⟩ as shown in the raw Monte Carlo data of
Fig. 7. This does not happen in the case of the cutoff-cell approximation.

3.2. Critical properties of the 2dADHmodel

As our second test to the cutoff-cell method we study the 2dADH model just across a phase transition. The values of the
parameters were chosen to reproduce those found in Ref. [10]. In that work the authors have used extensive Monte Carlo
calculations to study the planar to paramagnetic phase transition in the 2dADH model. Their results are consistent with an
order–disorder phase transition with unusual critical exponents in agreement with previous results for the planar rotator
model with dipolar interactions [11]. To apply the CC technique we followed closely Ref. [11]. Initially, we performed an
exploratory Metropolis Monte Carlo calculation for several lattice sizes L = 21, 35, 49, 63, 77, 91, 105, and 119, using CC
with a cell size of l = 7, to determine the region of temperature where the transition is located. Inside this region we have
built histograms [22,23] to obtain the maxima of the specific heat and susceptibilities. Using a finite size scaling approach
we have obtained the critical temperature from the maximum of the magnetic susceptibility, χ = (⟨m2

⟩− ⟨m⟩
2)/T , where
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0 0.01 0.02 0.03 0.04 0.05
1/L

Fig. 8. Critical temperature obtained from the maximum of the susceptibility. The blue symbols were not included in the fit. It only includes the largest
four lattices (red filled circles) (L = 77, 91, 105, and 119). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

1.8

1.9

2

2.1

2.2

2.3

0 40 80 120
In (L)

Fig. 9. Plot of the maximum of the specific heat for lattice sizes of L = 21, 35, 49, 63, 77, 91, 105, and 119 lattice constants. The two smaller lattice
sizes (indigo circles) were not used in the two fits, namely, a logarithmic (blue dashed curve) fit and a non-divergent power law (red solid curve). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

mα =
N

i=1 σ α
i /N with α = {x, y, z}, N the number of spins, and m =


m2

x + m2
y + m2

z , to be T CC
c = 0.946(2) and the

behavior of the specific heat (see Figs. 8 and 9, respectively). The critical temperature agrees very well with that in Ref. [10],
Tc = 0.9481(1). For the specific heat, given by cV = (⟨E2

⟩ − ⟨E⟩
2)/NT , we found that it is compatible with a non-divergent

behavior, the same conclusion found in Ref. [10]. We have to pay attention to the small lattice results differences found in
Ref. [10] and this work. For small lattices we do not expect that the approach could work well since we loose the long range
fluctuations of the system. In this case, the susceptibilities cannot follow the exact values.

Now, as the system size increases, the cells further away from site i have an interaction closer to the exact value, since the
vector connecting site i to the center of any other such cell deviates less and less from the position vectors of the individual
spins inside the cell. Therefore, the CC method becomes more accurate as the system size increases for a given cell size, l.
For large system sizes, the calculation of the long-range term becomes quite accurate, so the dynamics of the larger systems
sizes approach that of the exact numerical calculation. This was the reason whywe had to discard the smaller systems sizes,
but the largest lattice showed the expected convergence.

4. Concluding remarks

Wehave introduced a general novel approach to compute long-range interactions. Themethod can save a lot of computer
time since it performs an average over far cell interactions. When applied to the anisotropic dipolar Heisenberg model in
two dimensions the results obtained compares remarkably well with exact calculations using Ewald summation.

The cutoff-cell approach becomes exact in the limit of large and small cell sizes. At fixed cell-size, themethod approaches
the exact results as the system size increases. The computational effort of themethod scaleswith the number of cells defined
on the lattice at each Monte Carlo elemental update step. It is, therefore, possible to study systems as large as 4 × 104

spins on a single processor of present day desktop computers. As a remark, we would stress that although we applied the
approximation to Monte Carlo, it should work well in any molecular dynamics calculation.
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