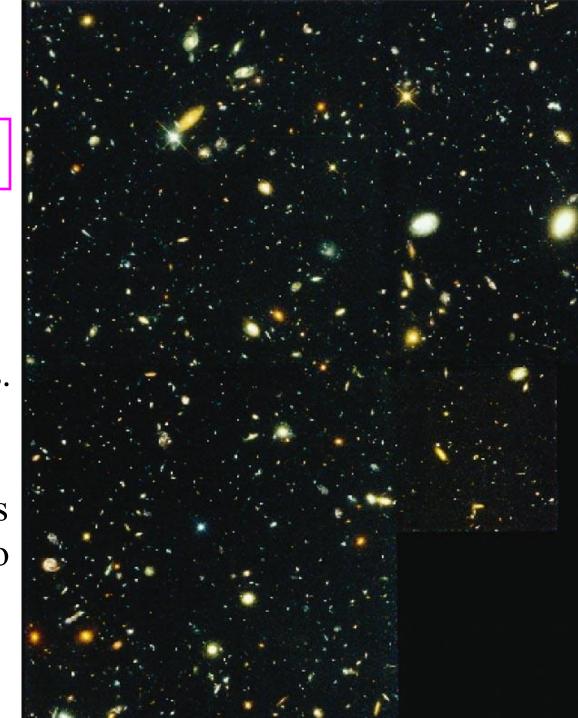

Outras Galaxias Galáxias Regulares


- ASTRONOMIA GERAL
- FIS004
- Prof. Gustavo Guerrero

Agradecimento: Elisabete Dal Pino

Hubble Deep Field milhares de galáxias de diversas cores e formas.

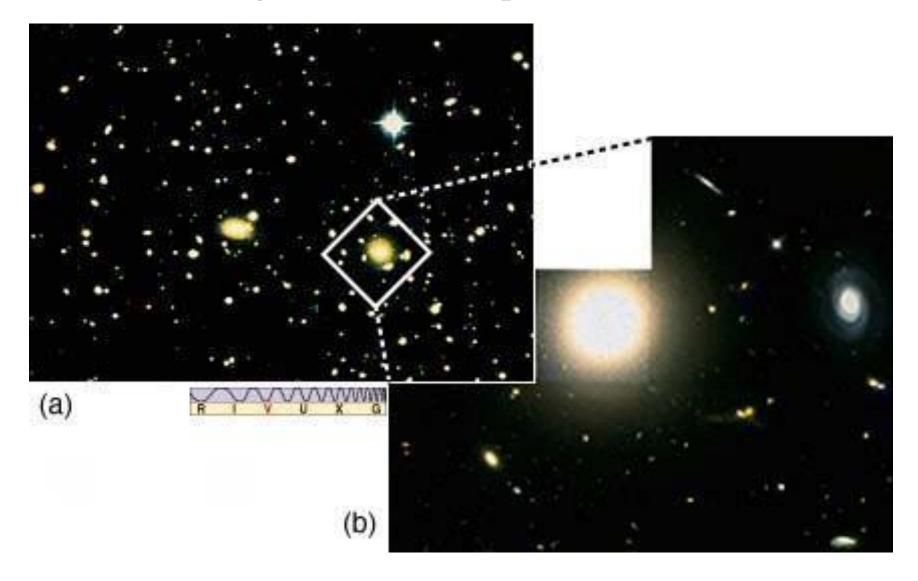
A imagem indica a existência de 40 bilhões de galáxias no Universo observável.

OUTRAS GALÁXIAS

TIPOS DE GALÁXIAS

- Espirais
- Barradas
- Elípticas
- Lenticulares
- Irregulares

PROPRIEDADES INTEGRADAS DAS GALÁXIAS


- Luminosidade e Forma
- As Cores
- Conteúdo Estelar

OUTRAS GALÁXIAS

- Medidas de curvas de luz de Cefeidas mostraram que existem bilhoes de Galáxias além da Via Láctea.
- Maioria não tem braços espirais: diferentes formas, estruturas e dimensoes

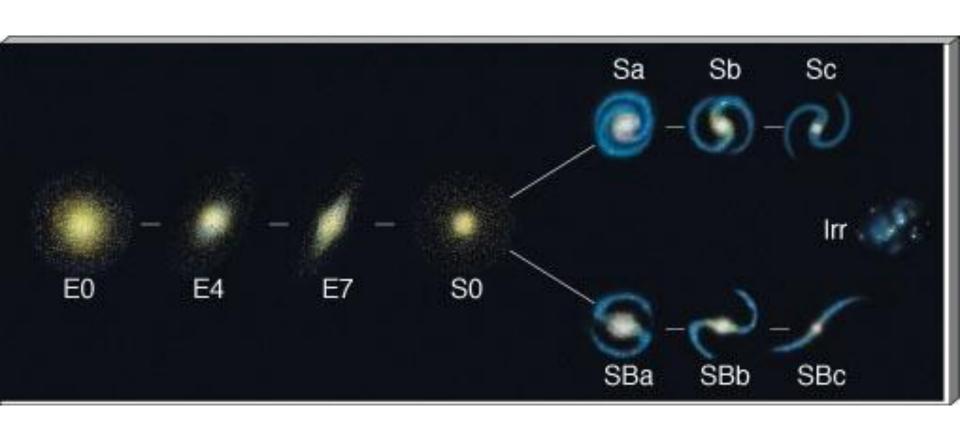
 Galáxias: são os constituintes das maiores estruturas conhecidas no Universo: os aglomerados de galáxias

- (a) Aglomerado de Coma (d ~ 100 milhões de pc);
- (b) Parte do aglomerado visto pelo HST.

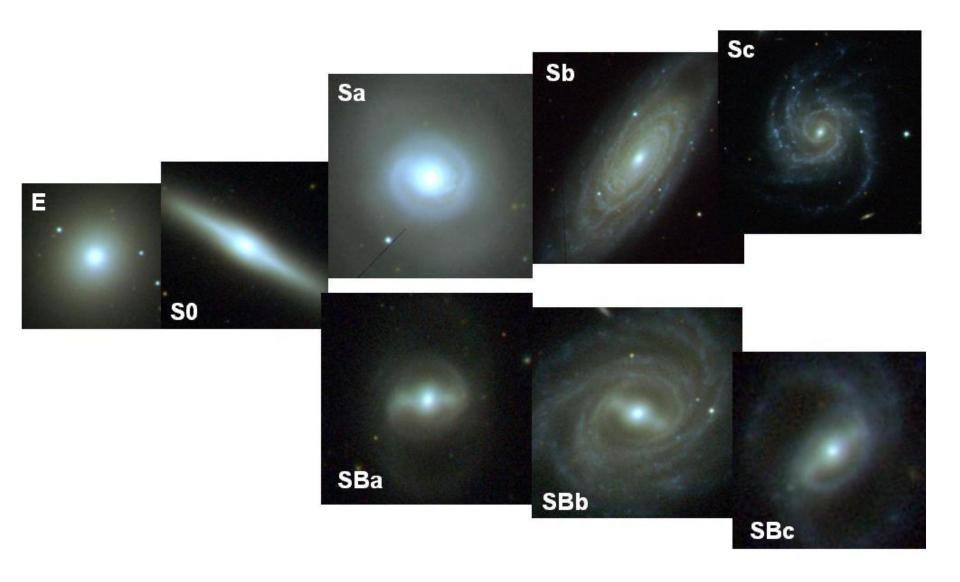
Classificação

Edwin Hubble (1920s) ⇒ identificação das galáxias, baseada em suas formas.

feito com medidas de curvas de luz de Cefeidas (permitiu determinar distancias)


A classificação de Hubble, em galáxias:

espirais
espirais barradas
elípticas
irregulares e subclasses
lenticulares



é usada até hoje.

Classificação das galáxias segundo critério de Hubble

Classificação Morfológica

Galáxias espirais

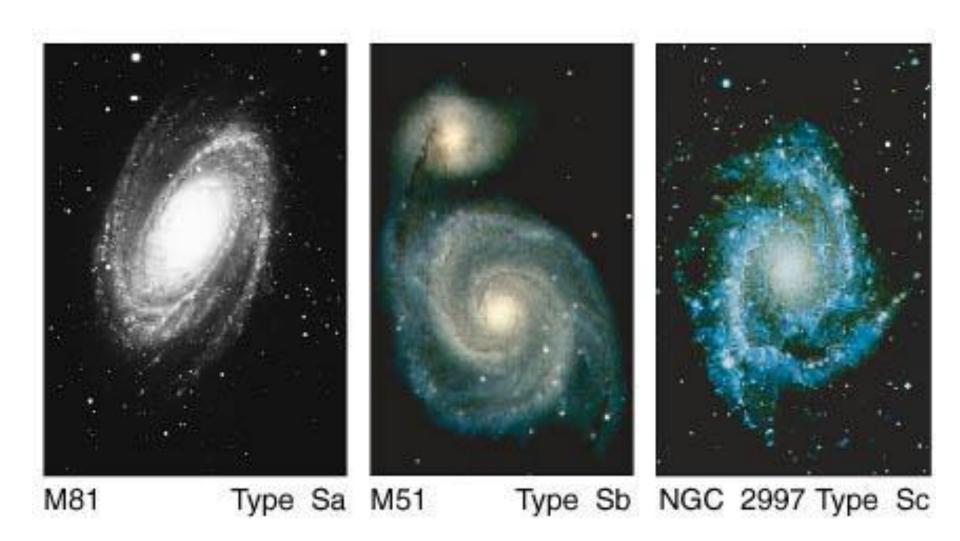
São caracterizadas por um bojo nuclear e braços espirais.

Galáxia espiral mais próxima de nos:

Andrômeda, ou M31:

visível a olho nu no hemisfério norte.

Galáxia espiral M51



Galáxias Espirais

Hubble notou que quanto maior o bojo nuclear de uma galáxia espiral, mais próximos do bojo se encontram braços.

- Galáxias com grandes bojos e braços "colados" a este são chamadas "Sa"
- Galáxias com pequenos bojos e braços muito abertos são chamadas de "Sc"
- Galáxias com características intermediárias entre estes dois casos são chamadas de "Sb".

Galáxias espirais: de Sa até Sc o bojo torna-se menor e os braços menos "apertados".

Galaxias Espirais:

casos onde os braços não podem ser vistos

Û

galáxia ainda pode ser classificada ⇒ tamanho do bojo

Sombrero (M104):

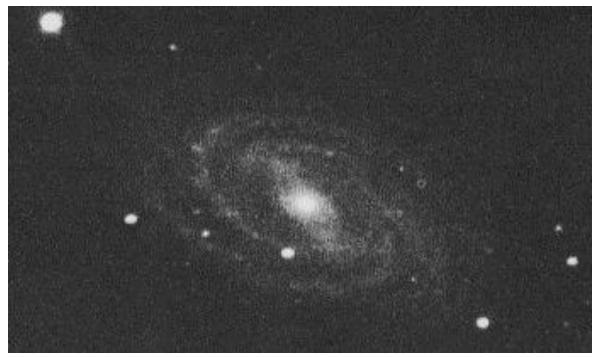
sistema visto edge-on

A faixa escura: gás e poeira do disco galáctico.

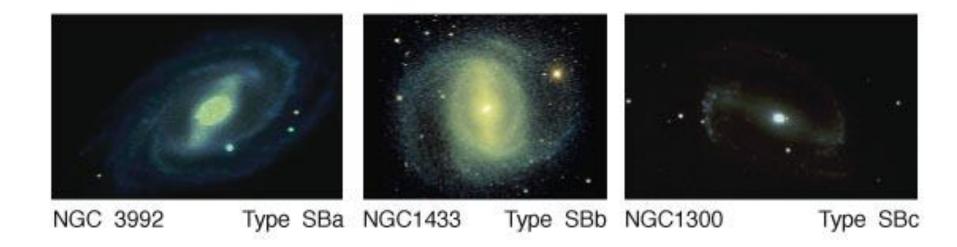
Pelo tamanho maior do bojo é classificada como Sa.

Galaxias Espirais

Aparencia dos braços ⇒


as vezes largos, caóticos e não definidos ou muito bem definidos, com regiões HII brilhantes e associações OB

Numero dos braços: varia de galaxia para galaxia VL: 4?


Movimento dos braços: é sempre "atrasado" em relação à rotação

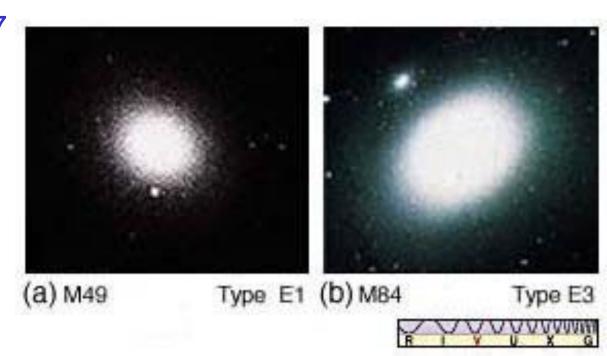
Galáxias Barradas

VL: pode possuir **barra de estrelas** que atravessa o bojo nuclear: galáxia espiral (possivelmente) barrada

Galáxia espiral barrada M109

- Os braços das espirais barradas estendem-se a partir das pontas da barra.
- Modelos sugerem: barras parecem formar-se em galaxias com menor quantidade de matéria escura (ME).
- Há 2 galaxias espirais normais para cada barrada:

$$N(S)/N(Sb) = 2/1$$


Galáxias Elípticas

Não têm braços espirais

Forma esferoidal

Hubble subdividiu-as de acordo com o achatamento, como projetado no céu:

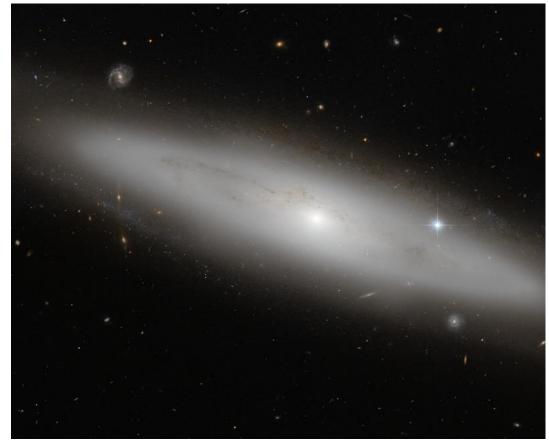
- As mais circulares são chamadas E0
- Mais alongadas: E7

Galáxias Elípticas

- Es: são mais regulares do que as espirais
- contém pouco gás e poeira
- Praticamente n\u00e3o formam estrelas
- Espectros dessa galaxias: maioria de estrelas de POPULACAO II, baixa massa e longo período de vida
- Elípticas gigantes: são mais raras que
- Elípticas anãs: poucos milhoes de estrelas ⇒ difíceis de serem observadas quanto mais distantes

Eliptica Gigante: M87

 M87: no centro do aglomerado de galaxias de COMA

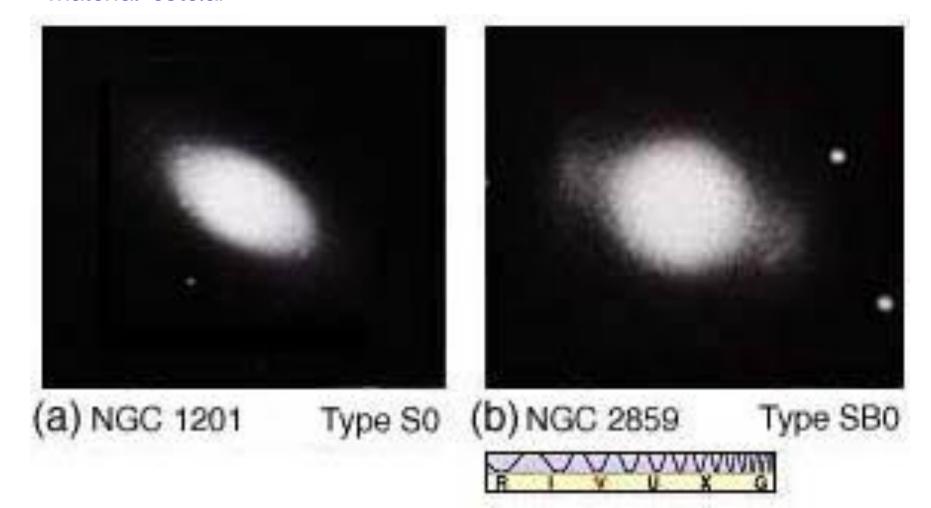


Galáxias Lenticulares

Tipo de galaxia entre E e S: S0 ou lenticular

Postuladas por Hubble (1936) depois confirmada por

observações.


Galáxia lenticular NGC4866

Galáxias Lenticulares

- Lenticulares (S0): são tão achatadas quanto as espirais
- Concentração central de estrelas importante
- Não possuem braços e têm um envoltório ao redor do núcleo (com estrelas, alguma poeira, e pouco ou nenhum gas)
- Podem ter barras: galáxias lenticulares barradas:
 SB0

(a) **Galáxias S0**: contém disco e bojo, mas pouco ou nenhum gás interestelar ou braços espirais. Propriedades intermediárias entre elípticas E7 e espirais Sa

(b) Galáxias SB0: similares a galáxias S0, exceto pela barra de material estelar

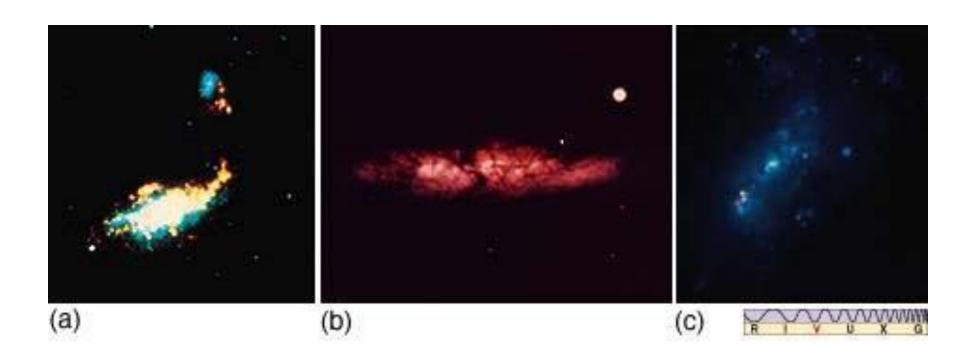
Galáxias Irregulares

Sem simetria ou estrutura bem definida

Dois grupos:

Irr I ou tipo magelânico → conteúdo semelhante às Nuvens de Magalhães

- Ricas em estrelas e regiões HII (nuvens de emissao em torno de estrelas quentes)
- Distribuição de brilho caótica


Irregulares I Small Magellanic Cloud Large Magellanic Cloud (a) (b)

Galáxias Irregulares

Irr II: são as mais raras

- Não classificadas originalmente por Hubble
- Mais raras: peculiares
- Estrelas não podem ser resolvidas em geral
- Possivelmente formadas por colisões entre galáxias

Irregulares II

PROPRIEDADES INTEGRADAS

Luminosidade e Forma

- Difícil definir luminosidade total ⇒ galáxias não têm limite (contorno) bem definido
- Na ausência de contornos bem determinados:
 estima-se a magnitude dentro de uma isofota:
 esta determina o tamanho angular ⊕_G da galaxia

Luminosidade e Forma

Medidas de Magnitudes absolutas das galaxias:

$$M_V = -9$$
 a -22 mag. (10⁶ a $\sim 10^{11}$ L _{\odot})

E anas E gigantes

E gigantes: mais brilhantes que S em geral

Galaxias com M_v> -18 : anas

Nossa Galáxia (vista de fora) teria M_V ~ -21

E super gigantes: $M_V = -25 (10^{12} L_{sol})$

Tamanho

- Galaxias E anas e Irr pequenas: menores galaxias:
 D= 3000 pc
- Tipicamente: D galaxias: D = 15 kpc
- E gigantes: D ≤ 60 kpc
- Galaxias cD (super-gigantes E no centro de aglomerados de gals.): D= 2 Mpc

(> que distancia entre VL e Andromeda)

Imageamento fotométrico

Técnica usada para determinar luminosidade e forma das galáxias

Elípticas: brilho varia gradualmente do centro para fora não mostra descontinuidade.

• Perfil de intensidade:
$$I(R) = I_e \ e^{\left\{-7.67 \left[\left(\frac{R}{R_e}\right)^{\frac{1}{4}} - 1\right]\right\}}$$

R_e (raio efetivo) ⇒ contém metade da luz da galáxia.

Imageamento fotométrico

Lenticulares ⇒ estrutura composta:

- região mais interna (bojo): semelhante à distribuição esferoidal das elípticas
- Para raios maiores (disco) ⇒ lei exponencial:

$$I(R) = I_d e^{\left\{-\frac{R}{R_d}\right\}}$$

onde R_d é o raio de escala do disco.

Imageamento fotometrico

Espirais (S):

- Presença dos braços: galáxias espirais tem distribuição de luminosidade + complicada.
- Três componentes:

Disco (~lenticulares)

$$I(R) = I_d e^{\left\{-\frac{R}{R_d}\right\}}$$

Núcleo (~elípticas)

$$I(R) = I_e e^{\left\{-7.67 \left[\left(\frac{R}{R_e} \right)^{\frac{1}{4}} - 1 \right] \right\}}$$

Braços

Cores das Galáxias

Correlação entre tipo morfológico e a cor observada:

- Elípticas (E): mais avermelhadas que espirais (S)
- Espirais: mais avermelhadas que Irregulares
- Entre espirais: quanto maior bojo e menores braços
 ⇒ mais avermelhadas
 - Galaxias E e Sa: cor ~ estrelas K (+ avermelhadas e
 Teff <)
 - **Sb:** cor ~ estrelas F, G, K
 - Sc e Irr: cor ~ estrelas A a F

Conteúdo Estelar

Distribuicao de cores: indicacao dos tipos estelares em varias partes de uma galaxia

Irregulares (mais azuis) → → elípticas (mais vermelhas).

- População II (velha) predomina nas elípticas
- Irregulares possuem uma população I bem mais jovem
- Espirais ⇒

mistura de populações ⇒ tamanho do núcleo (+ população II velha) em relação ao dos braços espirais (+ população I jovem)

partes mais externas do disco ⇒ + azuis ⇒ nas Sc os braços externos parecem conter populações estelares mais jovens que braços internos ⇒ menos gás

Conteudo Estelar

Distribuição dos tipos de estrelas em espirais:

- estrelas mais velhas e vermelhas: formadas mais próximas ao núcleo
- população do disco: estrelas parecidas com o Sol, idade intermediária
- braços espirais: estrelas de formacao recente

Tabela 1 – Propriedades das galáxias elípticas, irregulares e espirais.

Propriedade	Galáxia Elíptica	Galáxia Espiral	Galáxia Irregular I
massa (M _o)	10 ⁵ a 10 ¹³	10 ⁹ a 4 x 10 ¹¹	10 ⁸ a 3 x 10 ¹⁰
magnitude absoluta	-9 a -23	-15 a -21	-13 a –18
luminosidade (L _o)	$3 imes 10^5$ a 10^{-12}	$10^8 \text{ a } 2 \times 10^{-11}$	10 ⁷ a 10 ⁹
$M / L (M_{\odot} / L_{\odot} = 1)$	100	2 a 20	1
diâmetro (kpc)	1 a 200	5 a 50	1 a 10
população estelar	II e I velha	l (braços),	I, algumas II
		I – II (espalhada)	
poeira	quase nenhuma	sim	sim
M_{H_I}/M_T (%)	0	2 (Sa), 5 (Sb), 10 (Sc)	22
tipo espectral	K	K (Sa),	A/F
		F / K (Sb), A / F(Sc)	

Energetica das Galaxias

Teorema do Virial:

- Relaciona energia cinetica (EC) de um sistema com sua en. potencial gravitacional (EP)
- Hipotese fundamental: sistema é estavel (nem colapsando, nem expandindo ou separando-se)
- Se componentes do sistema tem EC >> EP: sistema expande
- Se EP >>EC: sistema contrai (colapsa)
- Se estavel: 2<EC> = -<EP> → TEOREMA DO VIRIAL

Energetica das Galaxias

Para uma galaxia:

$$= /2$$

$$\rightarrow$$
 $\langle V^2 \rangle = \langle GM/R \rangle \propto M/R$

Um calculo mais preciso:

$$\langle v^2 \rangle = 0.4 \text{ GM/r}_h$$

r_h: raio envolvendo M/2 da galaxia

<v2> : valor medio do quadrado das velocidades peculiares das estrelas

M: massa total da Galaxia

Energetica das Galaxias

Consideremos a formação de 1 galaxia a partir de nuvem de gas dispersa:

ET=EC=EP=0 (nuvem em repouso)

Quando nuvem começa a contrair: EC↑ e EP↓ (fica negativa):

→ Estado final de equilibrio:

ET = -EC = EP/2

ET<0: sistema esta ligado (virializado)

EP/2: liberada no colapso: converteu-se em EC

EP/2: outra metade: irradiada durante o colapso

Massa

1. Metodo de determinação por Luminosidade:

- Se cada estrela contribui com tanta L para sua massa total como o Sol:
 - → em media: 1 M_{sol} contribui com 1 L_{sol} (M/L=1)

$$M_G = \Sigma m_* \sim 10^{11} M_{sol}$$
 \rightarrow Massa Luminosa

→ Sem levar em conta gas (ate 30%), poeira (ate 5%) e ME

Esse metodo baseado na massa luminosa resulta:

$$M_G = 10^5 \text{ a } 10^{13} M_{sol}$$

2. Equação obtida do Teorema do Virial (E):

$$< v^2 > = 0,4 \text{ GM/r}_h$$

r_h: raio envolvendo M/2 da galaxia

<v²> : valor medio do quadrado das velocidades peculiares das estrelas

M: massa total da Galaxia

Util para determinar M da galaxia se conhecemos <v2>:

→ Metodo dinamico de determinar M

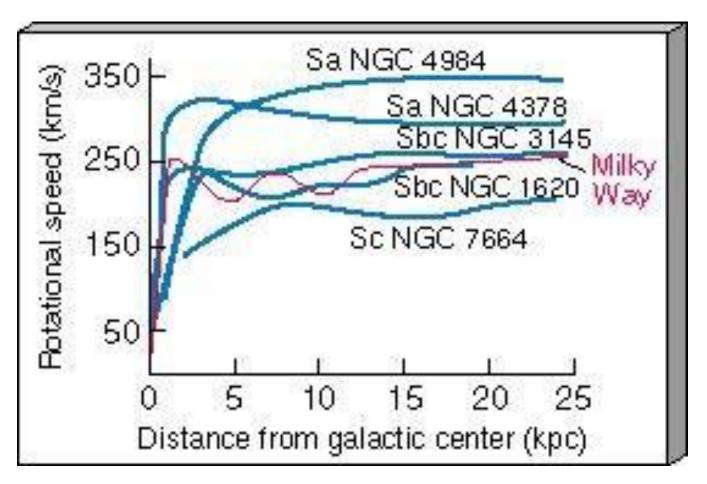
Teorema do Virial: indica quais objetos realmente pertencem a uma galaxia. Se <v> de uma estrela >> que <v> para estrelas da galaxia: entao essa estrela não pertence à galaxia

Tipicamente: <v> ~ 300 km/s

O metodo de determinação de M atraves de L:

resulta M/L=1

Porem Tabela mostra que M/L > 1:


2. Teorema do Virial + medida de $\langle v \rangle$: $\langle v^2 \rangle = 0.4 \text{ GM/r}_h$

resulta: M_G> M_{Luminosa}

Tabela 1 – Propriedades das galáxias elípticas, irregulares e espirais.

Propriedade	Galáxia Elíptica	Galáxia Espiral	Galáxia Irregular I
massa (M _☉)	10 ⁵ a 10 ¹³	10 ⁹ a 4 x 10 ¹¹	$10^8 \text{ a } 3 \times 10^{10}$
magnitude absoluta	-9 a -23	-15 a -21	-13 a –18
luminosidade (La)	3 x 10 ⁵ a 10 ¹⁰	10 ⁸ a 2 x 10 ¹⁰	10 ⁷ a 10 ⁹
$M / L (M_{\odot} / L_{\odot} = 1)$	100	2 a 20	1
diâmetro (kpc)	1 a 200	5 a 50	1 a 10
população estelar	II e I velha	I (braços),	I, algumas II
		I – II (espalhada)	
poeira	quase nenhuma	sim	sim
M_{HI} / M_{T} (%)	0	2 (Sa), 5 (Sb), 10 (Sc)	22
tipo espectral	K	K (Sa),	A/F
		F / K (Sb), A / F(Sc)	

3. Outro metodo dinamico: Curva de Rotacao das galaxias espirais (S)

- 3. Metodo dinamico usando Curva de Rotacao das galaxias espirais (S) (similar à nossa galaxia):
- Se curvas obedecessem lei de Kepler: $v_{rot} = (MG/r)^{1/2}$
- Porem curvas mostram:
 - à medida que nos afastamos da regiao central: v_{rot} ~ cte
 - Grande fração de M(r) não cai no interior mas em HALO ESCURO
 - Se v_{rot} Kepleriano: $M(r) \rightarrow cte$
 - Mas curvas mostram: M(r) ∝ r (similar a VL)
- Investigação de 279 sistemas (maioria S):

$$M_G = 10^{12} M_{sol}$$
 (espirais)

Metodos Dinamicos: $M(M_{sol})/L(L_{sol}) > 1$ (2 ate 30)

→ Maior parte da massa NÃO-LUMINOSA → ME!