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Surface structure determination by Low Energy Electron Diffraction (LEED) is based on a comparison
between experimentally measured and theoretically calculated intensity versus energy I(V ) curves for
the diffracted beams. The level of agreement between these, for different structural models, is quantified
using a correlation function, the so-called R factor. Minimizing this factor allows one to choose the
best structure for which the theoretical simulations are computed. Surface structure determination thus
requires an exhaustive search of structural parameter space in order to minimize the R factor. This
minimization is usually performed by the use of directed search methods, although they have serious
limitations, most notably their inability to distinguish between false and real structures corresponding
to local and global R factor minima. In this work we present the implementation of a global search
method based on the simulated annealing algorithm, as suggested earlier by Rous, using the Van Hove
and Tong standard LEED code and the results of its application to the determination of the structure
of the Ag(111) and CdTe(110) surfaces. Two different R factors, RP and R1, have been employed in
the structural searches, and the statistical topographies of these two factors were studied. We have
also implemented a variation of the simulated annealing algorithm (Fast Simulated Annealing) and
applied it to these same two systems. Some preliminary results obtained with this algorithm were used
to compare its performance with the original algorithm proposed by Rous.

1. Introduction

Surface structure determination by LEED is based
on a comparison between experimental and theo-

retical intensity versus energy [I(V )] curves of the
diffracted beams. This comparison is aided by the
use of a so-called reliability factor, or R factor,
that quantifies the agreement between experimental
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and theoretical I(V ) curves.1 By minimizing this R
factor it is possible to determine the best-fit structure
among all the structural models considered. Surface
structure determination by LEED is therefore effec-
tively a search problem in which one seeks to locate
the global minimum of the R factor in the multidi-
mensional parameter space formed by the structural
and nonstructural variables.

Until recently, the majority of the LEED struc-
ture determinations have been performed by employ-
ing an exhaustive trial-and-error exploration of this
parameter space. In this method, all physically fea-
sible combinations of structural parameters are in-
vestigated, usually by calculating the R factor char-
acterizing the level of agreement between calculated
and theoretical I(V ) curves on a grid that extends
over a representative part of the parameter space.
This exhaustive search demands a lot of comput-
ing time, and the effort scales exponentially with
the number of varied parameters. As Pendry2 has
indicated, the exhaustive LEED search belongs to
the class of the NP-complete optimization problems,
which requires a computational effort to locate the
solution that is not bounded by a polynomial in N .
Such a class of problems is of special importance in
the theory of numerical analysis, since even greater
improvements in the speed of computer hardware
cannot make a significant impact on the size of the
NP-complete problem.

More recently, local directed-search methods
have been applied to surface structure determi-
nation. These methods are based upon descent
methods, converting the N -dimensional search into
a sequence of N one-dimensional searches. The
exploration of the local topography of the R fac-
tor hypersurface improves the efficiency of the
structural search. The first gradient method, us-
ing fully dynamical calculations, was developed
by Cowell and de Carvalho.3 Lately several de-
scent methods have been employed by the Berke-
ley group, always using the efficient Tensor-LEED
approach,4 while the Munich group has implemented
a gradient expansion method that goes beyond a
simple descent method.5,6 Descent methods, com-
pared to the exhaustive search approach, can of-
fer substantial improvements in the scaling of the
search effort, since the scaling relation presented by
the gradient methods in actual LEED searches is
approximately N2.

The major problem associated with directed-
search methods is that they can locate only one R
factor minimum, and are unable to distinguish be-
tween local and global minima. A typical proce-
dure employed to locate the global minimum using
directed-search methods is to launch several searches
from different initial structures.4 With this scheme
one hopes to locate all R factor minima, including
the global minimum. However, since the number of
initial structures scales exponentially with the num-
ber of parameters to be varied, this scheme is also
an NP-complete problem. Moreover, there is no cer-
tainty that all local minima can be located, partic-
ularly with a complex (nonuniform) distribution of
local R factor minima. Despite these problems, de-
scent methods have been used successfully in surface
structure determination by LEED.7–9

In view of the problems associated with local
search methods, there is clearly interest in the possi-
bility of applying global search algorithms to studies
of surface crystallography by LEED. A global search
algorithm for this purpose must be able to identify
the global R factor minimum amongst all the local
minima and to present a reasonable scaling relation
when compared to the exhaustive search or to mul-
tiply launched local searches (descent methods). A
global search method which offers these features is
the “Simulated Annealing Algorithm” (SA), which
has attracted significant attention, having been ap-
plied successfully to solve large-scale optimization
problems in physics, chemistry, statistics, neural net-
works, engineering and economics.10 In a recent pa-
per Rous11 has proposed utilizing the simulated an-
nealing algorithm to R factor minimization in LEED
analysis. The algorithm was applied to a search
for the global R factor (Pendry R factor12) min-
imum of the hypersurface generated by a theory–
theory comparison of I(V ) curves calculated for the
Ir(110)(1×2) surface. Its performance was evaluated,
and a scaling relation with respect to the number of
varied parameters was obtained. A simple statistical
analysis of the topography of the RP hypersurface
was used to improve the efficiency of the method,
enabling faster convergence of the search.

More recently two other papers related to this
subject have been published. Döll and Van Hove13

have proposed the application of the genetic algo-
rithm, which simulates the natural evolution of living
organisms, to the LEED structural search problem.
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They also applied the genetic algorithm to a theory–
theory comparison in the Ir(110)(1× 2) system and
evaluated its performance. Although a scaling rela-
tion was not presented, the results obtained with the
optimization of three structural parameters indicate
that the genetic algorithm was able to find the final
structure about 10 times faster than an exhaustive
grid search. This factor is likely to increase signifi-
cantly if more structural parameters are investigated.

Another approach to the global optimization
problem was suggested by Kottcke and Heinz.14 A
modified random sampling algorithm which only al-
lows downhill steps (in contrast to simulated anneal-
ing) was proposed. It performs a global search as
long as the R factor values are high, and becomes
increasingly local when the agreement between the-
ory and experiment improves. This algorithm was
again applied to theory–theory comparison in the
Ir(110)(1× 2) system, but also to real experimental
data from two different surface phases of FeAl(100)
and to data from Mo0.95Re0.05(100)-c(2× 2)-C. The
results obtained for the Ir(110)-(1× 2) system indi-
cate a scaling relation given by N2.5.

In the present work we have applied the simulated
annealing global search algorithm (SA), as proposed
by Rous,11 to the structure determination of the
Ag(111) and CdTe(110) surfaces, using sets of exper-
imental I(V ) curves collected for both systems. The
topographies of the corresponding RP and R1 (linear
X-ray factor)1,15 hypersurfaces for the Ag(111) sys-
tem, and of the RP hypersurface for the CdTe(110)
surface, were studied. We have also investigated the
performance of a variation of the simulated annealing
algorithm, “Fast Simulated Annealing,”16 to surface
structural searches for the same two systems.

2. The Simulated Annealing Algorithm

The simulated annealing algorithm17–19 as discussed
above is a technique that has attracted a lot of at-
tention, as it is suitable for optimization problems
of large scale, especially ones in which the desired
global minimum is located among many shallower lo-
cal minima. The wide range of possible applications
of this method, always associated with problems that
require the minimization of a “cost function,” can be
explained by two of its main features: that it can
be applied when little or no detailed information is
available concerning the specific nature of the opti-

mization problem, and that it is easily incorporated
into any kind of source code.

The main feature of the simulated annealing al-
gorithm is that it is a probabilistic hill-climbing al-
gorithm, i.e. during the search process the moves
that increase the cost function (uphill moves) are
accepted in addition to moves which decrease the
cost function. This is the central point that enables
the search algorithm to locate the global minimum
among all the other local minima. At the heart of
the simulated annealing algorithm is the Metropolis
criterion20 which controls the acceptance probability
of every step of the search. Starting from an ini-
tial point A, a random step δX is chosen, leading
to a new point B. The change of the cost function
∆C = C(B) − C(A) is evaluated. If the cost func-
tion change is negative (∆C ≤ 0) the move will be
accepted (a downhill move); if ∆C > 0 the uphill
move will be accepted with a probability given by the
Boltzmann distribution P (∆C) = e

−∆C
T . This prob-

ability is controlled by the dimensionless parameter
T (an artificial temperature), which is gradually de-
creased during the search. The simulated annealing
algorithm is basically a search based on randomly
choosen steps, accepted or rejected according to the
Metropolis criterion, together with a gradual reduc-
tion of the “temperature” T .

The main challenge in improving the performance
of the simulated annealing method is to lower the
“temperature” the fast as possible, but to ensure
that one does not get trapped in a local minimum.
The objective is thus to find the quickest anneal-
ing that achieves a value for the probability of find-
ing the global minimum equal to, or near to, unity.
An interesting step taken along this search was the
work of Szu and Hartley,16 who proposed the use
of a Cauchy–Lorentz visiting distribution, instead of
a Gaussian or uniform distribution as is commonly
used, for the choice of the random moves. In this
case the search distribution is semilocal, i.e. the ran-
dom moves are frequently local, but occasionally long
moves can also be considered. With this scheme,
called Fast Simulated Annealing (FSA), the cooling
cycle can be much faster when compared to the other
implementations, making the search quite more effi-
cient. In order to illustrate the visiting probability of
the FSA and of the commonly employed implementa-
tions of the simulated annealing (Gaussian and uni-
form distributions), one can use a one-dimensional
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double-well cost function, as presented in Fig. 1.
The Cauchy–Lorentz and the Gaussian distributions
(which are “temperature”-dependent) and the uni-
form distribution (“temperature”-independent) are
also plotted over the shallower minimum (Fig. 1
— point A), representing a “trapping” in the lo-
cal minimum. We can see that while the “wing”
of the Cauchy/Lorentzian distribution has reached
the deeper minimum (Fig. 1 — point B), the normal
(Gaussian) distribution has a negligible value at the
deeper minimum and thus offers much less chance
to escape from the initial local minimum. The uni-
form distribution will only be capable of escaping
from the local minima after a lot of favorable steps,
also therefore presenting a lower probability. In the
Cauchy–Lorentz scheme, a higher “temperature” im-
plies a faster sampling in a much more coarse-grained
fashion. As the “temperature” is gradually reduced
the search becomes more refined in its sampling.

In recent work Rous11 has implemented the simu-
lated annealing algorithm using the Van Hove–Tong
conventional LEED21 code and discussed its perfor-
mance by applying it to a simple structural search.
The method was applied to locate the global mini-
mum of the Pendry R factor (RP ) hypersurface gen-
erated by a theory–theory comparison of I(V ) curves
calculated for the Ir(110)(1 × 2) system. A scaling
relation for the number of selected structures before
convergence in the search as a function of the number

Fig. 1. Comparison between the Cauchy–Lorentz,
Gaussian and uniform distribution sampling. The
Cauchy–Lorentz and Gaussian distributions are plotted
at the same “temperature.”

of varied structural parameters was obtained. Ad-
ditionally, a statistical analysis of the topography of
RP was performed, allowing a better definition of
the control parameters of the cooling scheme and,
as a consequence, a faster convergence of the search
(“quenching transition”11). In the Rous implemen-
tation of simulated annealing the random steps were
chosen according to a uniform distribution, their size
being constrained to a maximum value that was not
“temperature”-dependent.

The goal of the present work is to apply the sim-
ulated annealing algorithm to actual surface struc-
ture determinations of the Ag(111) and CdTe(110)
systems. We have implemented the simulated an-
nealing method using the Van Hove and Tong con-
ventional LEED code, using the scheme proposed
by Rous, but also implementing the “Fast Simulated
Annealing,”16 in order to explore its performance as
compared to the conventional SA approach. We have
chosen the Ag(111) and CdTe(110) systems because
both of them were recently the subject of quantita-
tive structure determinations carried out at our lab-
oratory, where the LEEDFIT code was used.7,22–27

The two systems are also suitable for testing the per-
formance of the SA algorithm, the number of struc-
tural parameters involved being significantly larger
for the CdTe(110) surface structure determination
than in the case of the Ag(111) surface.

3. Experimental Details

The Ag(111) data set was collected at the University
of Warwick using a UHV chamber equipped with a
range of facilities for sample preparation and sur-
face characterization. This system was also provided
with a TV camera system combined with a rear-view
LEED optics and the base pressure of the chamber
was typically 1−2×10−10 Torr. The Ag(111) surface
sample was obtained from an Ag single crystal ori-
ented by Laue X-ray diffraction and cut using spark
erosion. The surface was then polished using progres-
sively finer grades of diamond paste to produce a mir-
ror finish. After insertion in the vacuum chamber,
the sample was cleaned using cycles of ion bombard-
ment (Ar+ ions with 3 keV) and annealing (500◦C
for 10 min). The temperature was monitored us-
ing a chromel–alumel thermocouple in contact with
the sample. The cleaning cycles were repeated until
no carbon, oxygen or sulphur were detectable using
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XPS, while LEED indicated a sharp (1× 1) pattern.
The temperature of the Ag(111) sample was then
decreased to −110◦C using a liquid nitrogen cool-
ing system and the diffracted beam intensities of the
LEED patterns from 70 eV to 400 eV were digitized
using an Omicron LEED Star video system at nom-
inal normal incidence. The I(V ) curves of a total of
16 diffracted beams were obtained, normalized with
respect to the incident beam current, and smoothed
using a five-point least-square cubic polynomial
algorithm.

The CdTe(110) experimental data set used in this
work was collected using a UHV chamber equipped
with a range of facilities for sample preparation and
surface characterization together with a computer-
controlled LEED diffractometer at the Physics De-
partment of UFMG, Brazil. The base pressure of the
chamber was typically 5 × 10−10 Torr. The CdTe
crystal was cleaved in air and the exposed (110) sur-
face showed a planar and mirror finish. After inser-
tion in vacuum, the sample was cleaned using 500 eV
Ar+ ion bombardment for 10 min. After this, the
surface exhibited a sharp (1× 1) pattern and no car-

bon, oxygen or sulphur were detectable using Auger
Electron Spectroscopy. The LEED patterns for the
CdTe(110) surface were then recorded from 20 up
to 150 eV using an Omicron video-LEED system in
a scattering geometry near normal incidence. The
sample was mounted on the manipulator in such a
way that the parallel component of the incident wave
vector laid on the mirror plane of the surface. With
this setup, the symmetry between symmetric beams
was preserved and the value of the azimuthal angle
φ was constrained to one of the following two values:
0◦ or 180◦. The I(V ) curves for 10 diffracted beams
were then obtained from the digitized LEED pat-
terns, normalized with respect to the incident beam
current and smoothed using a five-point least-square
cubic polynomial algorithm. Again, each of these 10
I(V ) curves was used as a separate data set in the R
factor calculation for the structure determination.

4. Computational Details

The implementation of the simulated annealing algo-
rithm using the Van Hove–Tong conventional LEED

Fig. 2. Flow chart of the simulated annealing algorithm implementation for the LEED structure search.11
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source code was performed according to the scheme
proposed by Rous.11 A flow chart of this implemen-
tation is presented in Fig. 2.

In order to test out the simulated annealing algo-
rithm it was first applied to the Ni(100) system, ex-
ploring the RP hypersurface generated by a theory–
theory comparison. The distance between the first
and second layers was varied within a limit of 0.4 Å,
centered at the bulk-terminated value. The SA al-
gorithm has shown to be able to locate the global
minimum between a lot of other poorer local min-
ima in this one-dimensional structural search. Then,
the program was adapted in order to be used for the
Ag(111) and CdTe(110) surfaces.

The theoretical analysis was performed assuming
a muffin-tin model of the potential for both Ag(111)
and CdTe(110). Muffin-tin radii of 1.45 Å for the
Ag atoms and 1.40 Å for the Cd and Te atoms were
used. Atomic wave functions were used to calcu-
late the scattering potential and a Slater parameter
α = 2/3 was assumed in the local exchange approxi-
mation. The phase shifts were evaluated by the inte-
gration of the radial part of the Schrödinger equation

in the muffin-tin spheres. Theoretical I(V ) curves
were calculated using the Van Hove–Tong conven-
tional LEED code in the Reverse Forward Scatter-
ing approximation. The calculations were performed
on personal computers (Pentium MMX 200 MHz
and AMD K6-300 MHz) running the Linux operat-
ing system for Ag(111) and on an Alpha-Dec sta-
tion for CdTe(110). Eight phase shifts were em-
ployed in the calculations and inner potentials of
V0 = (−10 + 4i) eV for Ag(111) and V0 = (−1 + 5i)
for the CdTe were assumed; their real parts were op-
timized during each analysis.

5. Results and Discussion

In the Ag(111) structural search the layer spacings
between the first and second layers and between the
second and third layers were allowed to vary in a pa-
rameter space volume of 0.4×0.4 Å2 using the bulk-
terminated surface structure as a reference. The SA
algorithm was run to search for RP and R1 global
minima launched from many different starting struc-
tures. The general scheme used in these searches was

Fig. 3. RP and R1 for Ag(111) plotted as a function of the number of trial structures investigated during the search
using the SA algorithm.
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Fig. 4. RP as a function of d12 for d23 = 2.34 Å and as a function of d23 for d12 = 2.37 Å. These fixed values of the
interlayer spacings correspond to the best-fit structure.

the one proposed by Rous,11 i.e.:

• Random steps: chosen from a uniform distribu-
tion, within the range 0 ≤ |δX | ≤ 0.1 Å.

• Cooling cycle: starting from an initial “tempera-
ture” of 0.8; every 30 structures the “temperature”
was decreased following the rule Tn+1 = α Tn, with
α=0.85.

Figure 3 shows plots of the R factors as a function
of the number of structures investigated for typical
searches.

For all the searches carried out for both R factors,
the SA algorithm always converged to an expected
“bulk-terminated” surface structure, after about the
same number of trial structures. The errors in the
layer spacings d12 and d23 were obtained from the de-
pendence of the R factor on these parameters around
the minima as shown in Fig. 4.

As may be seen from the contour plots of the
RP and R1 hypersurfaces, (shown in Figs. 5 and 6,
respectively), there is a single minimum at the ex-
pected bulk-terminated surface within the volume of
parameter space explored.

The final structure obtained is in agreement with
a recent LEED structural study performed using the

Fig. 5. RP contour plot of the explored parameter space
(0.4×0.4) Å2. This contour plot was generated by a num-
ber of points (explored structures) of the order of 103.

LEEDFIT code22–26 for Ag(111) data collected at
room temperature.27
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Fig. 6. R1 contour plot of the explored parameter space
(0.4×0.4) Å2. This contour plot was generated by a num-
ber of points (explored structures) of the order of 103.

As previously discussed, the great challenge in
the improvement of the simulated annealing algo-

rithm is to decrease the “temperature” as fast as
possible, but ensuring that the search will not get
trapped in a local minimum. Hzu and Hartley16

have proposed a modified version of the SA algo-
rithm, the “Fast Simulated Algorithm” (FSA), which
allows faster cooling when compared with the tra-
ditional implementations. Following their ideas we
modified the SA algorithm, according to the follow-
ing scheme:

• Random steps: chosen according to a Cauchy–
Lorentz distribution G(δX) ≈ Tn/(T 2

n + δX2), al-
lowing occasional long steps. [T (n) corresponds to
the “temperature” in the cooling cycle n.]

• Cooling scheme: a faster cooling scheme was
adopted — at every new structure the “temper-
ature” was decreased according to Tn = T0/n.

This new algorithm (FSA) was used for the
Ag(111) system, following the same strategy used
with the SA algorithm, namely that the first two in-
terlayer spacings were varied within the parameter
space volume of 0.4× 0.4 Å2 referenced to the bulk-
terminated structure. The searches were launched

Fig. 7. Comparison between the typical results of the structural search for the Ag(111) system employing the con-
ventional and the fast simulated annealing. Both searches were launched from the same initial structure.
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from different initial structures and, in all cases, lo-
cated the global minimum. However, much faster
convergence was achieved that with the conventional
SA algorithm. As can be seen in Fig. 7, convergence
occurred after about 100 tested structures. This is a
very encouraging result.

However, the RP hypersurface topography within
the parameter space investigated for the Ag(111) sys-
tem is quite simple, showing only a single minimum,
so the ability of the algorithm to escape from a lo-
cal minimum has not been proved. In order to in-
vestigate this point, the program was launched from
a point located in a secondary minimum that cor-
responds to a diffraction coincidence. The diffrac-
tion coincidences occur because the Bragg condi-
tion is satisfied in a periodic fashion as an atom
is displaced through half of the electron wavelength
(〈k〉.δr ≈ 2π).1,21 The parameter space volume in-
vestigated was of 1.0× 1.0 Å2, again using the bulk-
terminated structure as a reference. A slower cool-
ing scheme was then used. Starting from an initial
“temperature” of 0.8 (see Sec. 2), at every five new
structures the “temperature” was decreased accord-
ing to Tn = T0/n. As may be seen from Fig. 8,
to locate the global minimum (Fig. 8 — point B —
RP = 0.23), the FSA search needs to escape from
the local minimum (Fig. 8 — point A — RP = 0.55)
and to perform many uphill moves.

Fig. 8. Contour plot of the RP hypersurface. Point A
corresponds to a local minimum (coincidence minimum)
and point B to the global minimum.

Fig. 9. RP as a function of the number of trial struc-
tures for the Ag(111). The search was launched from
a secondary minimum corresponding to a diffraction
coincidence.

In spite of the complexity of this RP hypersur-
face, the FSA was able to reach the global minimum
after typically 102 trial structures (Fig. 9). Based
on these results, we may conclude that the FSA
approach does seem to be useful in LEED surface
structure determination for simple systems such as
Ag(111).

The main remaining question concerns how well
this algorithm works under more complex situations,
especially when a large number of parameters have
to be investigated. In order to cast some light on
this problem we have run the FSA program for the
CdTe(110) surface. This surface, as indicated by
previous work,3,7 presents a complex reconstruction.
The top layer is characterized by a bond-length-
conserving rotation and a contraction towards the
substrate. Because of the complexity of this recon-
struction, its structure determination is quite compli-
cated, with a large number of structural parameters
to be optimized: eight parameters if the positions
of atoms in the first two layers are allowed to vary,
or four parameters if only the outermost layer atom
positions are varied. The CdTe(110) surface is there-
fore an interesting system to be analyzed using the
simulated annealing algorithm.

In order to compare the performance of the
SA and FSA algorithms for this more complex



660 V. B. Nascimento et al.

Fig. 10. Comparison between typical results obtained with the SA and FSA structural searches employed for the
CdTe(110) system.

structure determination, the program was run from
different starting structures. As the main point to
be investigated here was the performance of the two
algorithms, our first attempt was to allow the four
parameters associated to the first layer atoms to
vary, and the second layer atoms were kept in their
bulk positions. A parameter space hypervolume of
(1.0 × 1.0 × 2.0 × 2.0) Å4 was searched. The cool-
ing schemes used in the SA searches was identical
to that used for the Ag(111) system, with an ini-
tial “temperature” of 0.8. For the FSA searches the
same initial “temperature” was used but a slower
cooling scheme was employed: at every 10 new struc-
tures the “temperature” was decreased according to
Tn = T0/n. Some preliminary results can be seen in
Fig. 10. The SA searches at this cooling rate were
not able to locate the minimum, even after typically
2000 trial structures. By contrast, the FSA algo-
rithm always located the minimum after about 1000
trial structures. Although these preliminary results
come from a search where only a few parameters were
varied, and therefore the fit cannot be regarded as
the global minimum, the improvement in the time of
convergence to locate the minimum using the FSA,
compared to the SA, is indeed very encouraging.

The results we have obtained so far are not
enough to obtain the scaling behavior for the FSA,
but it is clear that for the Ag(111) system where two
parameters were varied the FSA is about eight times
faster than the SA. For the CdTe(110) system we
do not have the correct scaling but it can be seen
that the FSA is at least twice as fast as the SA. At
this point in the work we are not able to compare
the effectiveness of the FSA algorithm with that of
other global search methods proposed by Döll and
Van Hove13 and by Kottcke and Heinz.14 However,
calculations including a greater number of parame-
ters for the two systems are underway in order to un-
derstand the scaling behavior of the algorithm. The
influence of the cooling rate of the search process on
the probability of finding the global minimum, which
must not be distinguishable from 1, is also under in-
vestigation.

6. Conclusions

In this work we have investigated the application of
the simulated annealing (SA) global search algorithm
to the determination of the structure of surfaces by
LEED. The algorithm was implemented with the
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Table 1. Vertical spacings for the best RP and R1 structural models. d12 and d23

correspond to the distances between the first and second and between the second
and third layers respectively.

Vertical spacing RP model R1 model “Bulk-terminated” model

d12 (2.37 ± 0.02) Å (2.35± 0.02) Å 2.3589 Å

d23 (2.34 ± 0.03) Å (2.35± 0.04) Å 2.3589 Å

Van Hove–Tong conventional LEED code using the
scheme suggested by Rous.11 Structural searches us-
ing the SA algorithm have been performed for the
Ag(111) system, using the RP and R1 factors, and
the final structures obtained indicate that the surface
is ideally bulk-terminated (Table 1).

A variation of the SA algorithm, the Fast Sim-
ulated Annealing (FSA),16 was also implemented
and applied to the structure determination of the
Ag(111) surface. A comparison of the results ob-
tained with the two algorithms showed that the
FSA converges faster and, even with a faster cooling
scheme, it was able to locate the global minimum of
the RP hypersurface, without getting trapped into a
local minima.

For the CdTe(110) system, preliminary results
show that only the FSA algorithm seems to be able
to locate the global minimum, under the cooling
schemes performed for the SA and FSA searches.

Although more detailed studies are necessary, the
FSA algorithm appears as a very efficient search
scheme, allowing faster convergence and a lower
probability of getting trapped in local minima. It
may therefore be a promising alternative search
method for structure determination by LEED.
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13. R. Döll and M. A. Van Hove, Surf. Sci. 355, L393

(1996).
14. M. Kottcke and K. Heinz, Surf. Sci. 376, 352 (1997).
15. S. L. Cunningham, C.-M. Chan and W. H. Weinberg,

Phys. Rev. B18, 1537 (1978).
16. H. Szu and R. Hartley, Phys. Lett. A122, 157 (1987).
17. S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi,

Science 220, 671 (1983).
18. S. Kirkpatrick, J. Stat. Phys. 34, 975 (1984).
19. V. Cerny, J. Opt. Theory Appl. 45, 41 (1985).
20. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A.

Teller and E. Teller, J. Chem. Phys. 21, 1087 (1953).
21. M. A. Van Hove and S. Y. Tong, Surface Crystallog-

raphy by LEED (Springer, Berlin, 1979).
22. H. Over, W. Moritz and G. Ertl, Phys. Rev. Lett. 70,

315 (1993).
23. W. Moritz and J. Landskron, Surf. Sci. 337, 278

(1995).
24. G. Kleinle, W. Moritz, D. L. Adams and G. Ertl,

Surf. Sci. 219, L637 (1989).
25. G. Kleinle, W. Moritz and G. Ertl, Surf. Sci. 238,

119 (1990).
26. H. Over, U. Ketterl, W. Moritz and B. Ertl, Phys.

Rev. B46, 15438 (1992).
27. E. A. Soares, V. B. Nascimento, V. E. de Carvalho,

C. M. C. de Castilho, A. V. de Carvalho, R. Toomes
and D. P. Woodruff, Surf. Sci. 419, 89 (1999).


