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Abstract
We present in this work results concerning the application of the generalized
simulated annealing (GSA) algorithm to the LEED search problem. The
influence of the visiting distribution function (defined by the so-called qV

parameter) in the effectiveness of the method was investigated by the application
of the algorithm to structural searches for optimization of two to ten parameters
in a theory–theory comparison for the CdTe(110) system. Results, obtained
with the scaling relation and probability of convergence as a function of the
number of parameters to be varied, indicate the fast simulated annealing (FSA)
(qV = 2.0) approach as the best search machine.

1. Introduction

The use of electron diffraction as a tool for probing surfaces has been the most effective
approach for surface structural determination [1]. Due to the large electron cross section
and multiple-scattering process that occurs in the first atomic layers, the surface structural
determination using the low energy electron diffraction (LEED) technique is performed using
an indirect methodology [2, 3]. A set of theoretically calculated curves of the intensity of the
elastically scattered beam versus the electric potential used to produce the incident electron
beam (I (V ) curves) is compared with a set of experimentally collected curves. This comparison
is performed in a quantitative way, by using the so-called reliability factor or R-factor [2].

To perform the theoretical calculations, a set of values for a series of structural and non-
structural parameters has to be assumed, corresponding to a theoretical model conceived in
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order to mimic the experimental conditions. As the calculated curves are highly sensitive to the
parameter values, these must be varied in the search for the best coincidence between theory
and experiment. A perfect coincidence among the two sets of curves is, in fact, impossible, as
a result of experimental errors and approximations taken in the conception of the theoretical
models. It is necessary to assume a minimum of tolerance as corresponding to an effective
coincidence among the two sets of curves. While searching this, the set of parameters associated
with the calculations is varied in the proposed models in an attempt to find a minimum for the
R-factor. This converts the structural determination via LEED into a minimization or search
problem.

The strong interaction between the impinging electrons and the surface atoms results in
calculated I (V ) curves that are extremely sensitive to the values of the parameters. This leads
us to infer that the eventual coincidence between calculated and experimental curves can be
interpreted as an indication that the assumed values for the parameters in the calculations do
correspond to the ones experimentally probed. For carefully obtained experimental curves, the
search for agreement is theoretically done in two ways: (a) by perfecting and improving the
theoretical model which gives support to the calculations and (b) by varying the structural and
non-structural parameters for the adopted theoretical model. Case ‘(b)’ constitutes the route
more systematically used for structural determination. In this case, as the number of possible
structures is high, it is essential to establish a route for varying the parameters. The values for
the R-factor at each point of the parameter-space form a hyper-surface with several maxima
and minima. In the search process, the structural determination is considered as achieved
when it is possible to identify the global minimum among the several local minima for the
R-factor. This factor is then the cost-function to be minimized in the search process. Despite
being necessary to establish a route for determining a local minimum [4], a critical aspect of
the search is how to be sure that a global minimum has been achieved and not just a local one.

Since the first days of LEED surface structural determination, several methods of
identifying the aimed for global minimum have been used, which can be classified in two
broad categories: (I) methods based on trial and error search and (II) methods based on some
systematic routes for minimization of the cost function. The first structural determinations
by LEED involved a trial and error process [3, 5] with the values for the parameters being
assumed from indirect hints and guesses in the process of trying to fit the curves. However,
the parameters are correlated in such a way that adjusting one of them implies a readjustment
of the others. This limitation restricted application of LEED to simple structures, and forced
us to establish a more systematic route for the adjustment process, i.e., an automated search.
The first structural determination using an automated process was performed by Cowell and
de Carvalho [6]. That work used a variation of the steepest descent method, i.e., the partial
derivatives of the R-factor with respect to the N parameters were used as a guide in the search
for the minimum R-factor.

A few months before the work by Cowell and de Carvalho, the theoretical work by
Rous et al [7], the tensor LEED approach, was published. This method, although not a
proper search method, is useful for structure refinement with the adjustment of parameters
being done in a scale of a fraction of an ångström. The method has the ability to calculate
the partial derivatives of the scattered intensities, reducing the number of guessed structures
previously explored with trial and error procedures. After that, several approaches, sometimes
a combination of methods, have been used for LEED structural determinations: tensor LEED
with gradient methods [7, 8], the so-called direct methods using the approach adopted by
x-ray crystallography [9–11] and methods using the least-squares procedures [12]. Each of
these methods has its own deficiencies, either by being too time consuming for computational
calculation or by not being able to distinguish among local and global minima. In order to avoid
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the possible misidentification of a local minimum as a global one, Rous [13] applied the global
optimization simulated annealing (SA) algorithm to the search problem in LEED. His results,
from a theory–theory comparison, present, for the cost function, a scaling relation given by N6,
with N being the number of parameters. Motivated by this first tentative attempt at establishing
a global search method for the LEED problem, Nascimento et al [14, 15] has investigated an
alternative approach to the SA, the so-called fast simulated annealing (FSA) [16], where the
random step distribution function is a Cauchy–Lorentz function, instead of a Gaussian (or
uniform) one, as used in the SA approach. This modification has proven extremely useful,
since the scaling factor becomes linear with the number of parameters (N1), in a CdTe(110)
theory–theory comparison. The FSA method was applied to real structural determinations
(theory–experiment comparison) for the systems Ag(111), Ag(110) and CdTe(110) [14, 15, 17].

Another approach for identifying a global minimum in a LEED search process was
proposed by Kottcke and Heinz [18], with optimization for the theory–experiment fitting
process using a random sampling algorithm. In contrast to the SA or FSA approaches, the
random sampling algorithm only takes into account downhill moves, with a multiple launching
process (several starting structures), becoming a compromise between global and local search
methods. This procedure turned out to have an N2.5 scaling with the number of parameters.

Motivated by the relative success of the SA algorithm, as employed by Rous [13], which
requires a high number of structures to be tested,Döll and Van Hove [19] have proposed another
global search algorithm, called a genetic algorithm (GA) or evolutionary algorithm [20], a
method that mimics the natural evolution of living organisms. Despite this first suggestion of
applying the GA to the LEED search, this approach still requires a more systematic investigation
to determine a scaling relation within the perspective of its possible transformation into an
effective and adequate search method for LEED structural determination.

In order to be effective, a global search method has to present two main features: (1) a high
probability of locating the global minimum of the R-factor among all other local minima; (2)
a favourable scaling relation of number of parameters to be varied during the search process.

In this work we present the results obtained with the investigation of the influence of
the distribution function used in the generation of the random steps on the performance of
the simulated annealing (SA) algorithm, when applied to the LEED search problem. Aiming
for this, we have adopted the generalized simulated annealing (GSA) approach proposed by
Tsallis and Stariolo [21]. In section 2 we discuss the general characteristics of the GSA. The
results of its application to a specific LEED problem are presented and discussed in section 3,
while section 4 contains the conclusions.

2. The generalized simulated annealing algorithm (GSA)

The mechanism of the simulated annealing method is based on the process by which molten
metals are gradually cooled and annealed, commonly used in metallurgy. In such a process, the
temperature of the molten metal is slowly reduced, in order to produce a decreasing mobility
of the atoms. If this cooling scheme is sufficiently slow, hopefully the atoms will be able
to line themselves up, leading to an organized geometry, reaching the crystalline state, which
corresponds to the global minimum of the thermodynamical energy. In the simulated annealing
method, an artificial ‘temperature’ is introduced as a source of stochasticity, in an attempt to
create an ‘artificial dynamics’, able to prevent the search process (associated with an energy
or a cost function minimization) from getting trapped in a local minimum. At the final steps
of the optimization process, the ‘temperature’ is near zero, and the search process hopefully
results inside the basin of the global minimum (or unfortunately in one of the local minima)
and the search procedure behaves asymptotically as a gradient descent local search method.
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The primary criticism of the simulated annealing algorithm is that it is a slow convergence
method. The main challenge then, in improving the simulated annealing method, consists in
cooling the search process as fast as possible, without increasing the probability of getting
trapped in any of the local minima. In other words, there is a need for the quickest cooling
scheme which assures, 100%, the probability of locating the global minimum.

Kirkpatrick and co-workers [22] proposed a first approach for this problem, following
the quasi-equilibrium Boltzmann–Gibbs statistics. In this approach, the random steps of the
search procedure were taken according to a Gaussian visiting distribution in the neighbourhood
of the actual search point. Downhill movements, associated with a decrease in the energy or
other cost functions, are always accepted. If the step is uphill, it will be accepted or not
according to an acceptance probability, which is assumed to be the Boltzmann–Gibbs one. A
necessary and sufficient condition for assuring a probability of locating the global minimum
is that, during the cooling scheme, the ‘temperature decreases’ logarithmically with time, i.e,
simulated annealing steps [23]. This approach is usually called classical simulated annealing
(CSA) or Boltzmann machine.

Another approach was proposed by Szu and Hartley [16], which used a Cauchy–Lorentz
visiting distribution in the generation of the random SA steps. With this semi-local distribution,
the random steps are frequently local, but with the occurrence of occasional long ones. The
acceptance probability, as in the Boltzmann machine, is assumed to be the Boltzmann–Gibbs
one. The cooling scheme can be much faster, with the temperature decreasing with the inverse
of time. The algorithm is commonly called fast simulated annealing (FSA) or the Cauchy
machine.

More recently, Tsallis and Stariolo [21] proposed a generalization of both annealing
schemes (CSA and FSA) inspired in the non-extensive Tsallis statistics [24, 25], with an
additional advantage of being able to provide annealing schemes quicker than the one proposed
by Szu. In this scheme, called generalized simulated annealing, the visiting distribution used
in the definition of the random steps (x → x + �x) is given by

gqV(�x) =
(
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π

) D
2 �

(
1
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2

)
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with qV being a parameter defining the curvature for the distribution function (the larger the
qV, the more open is the distribution function, as can be seen in figure 1), � being the gamma
function, t the discrete time corresponding to the search step and D the number of parameters
being optimized.

With such a visiting distribution, an annealing scheme can be defined to assure a probability
of convergence equal to unity:

TqV(t) = TqV(1)
2qV−1 − 1

(1 + t)qV−1 − 1
∼ TqV(1)

2qV−1 − 1

tqV−1
(t → ∞), (2)

with TqV(1) being the initial ‘temperature’ value.
A generalized acceptance probability for the step xl → xl+1 was also proposed by Tsallis

and Stariolo [21]:

PqA (xl → xl+1)

=
{

1 if E(xl+1) < E(xl)

[[1 + (qA − 1)(E(xl+1) − E(xl))/TqA ]1/(qA−1)]−1 if E(xl+1) � E(xl),

(3)

with qA standing for a control parameter for the acceptance probability PqA(xl → xl+1) and
TqA for the ‘temperature’.
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Figure 1. Generalized simulated annealing visiting distribution functions for different qV values.
The curves are normalized with respect to the area between the curve and the horizontal axis.

It can be shown that, for qA = 1, the acceptance function reduces to the well known
Boltzman–Gibbs one [21]. In addition to this, assuming qV values equal to 1.0 and 2.0, it is able
to reduce the distribution gqv

to the Gaussian and Cauchy–Lorentz distributions, respectively.
By adjusting the parameters qA and qV to adequate values, it is able to obtain, through the
generalized simulated annealing, both Boltzmann and Cauchy search machines [21]. Besides
this, by varying the qV and qA parameters, associated with the distribution function and
acceptance probability, respectively, it is possible to define many search machines other than
the Boltzmann and Cauchy ones, which can be suitable for specific optimization problems.
The influence of the qv parameter on the slope of the distribution functions can be seen in
figure 1, where distribution functions for several qv values are presented.

As discussed before, the simulated annealing has been applied to the search problem
associated with the surface structural determination by LEED [13–15]. With this minimization
problem, it is hopefully possible to locate the global minimum of the so-called reliability factor
(R-factor) among all other local minima. The promising results obtained with the application
of the simulated annealing (more specifically with the FSA approach [14, 15]) to the LEED
search problem justify the search for optimized SA search machines, which can be defined
with the generalized simulated annealing variation. Aiming to identifying more efficient
search machines, an investigation has been performed, using a theory–theory comparison
search problem for the CdTe(110) system. In the next two subsections, descriptions of the
dynamical LEED calculations, for the GSA implementation, as well as of the methodology
employed in the GSA algorithm investigation, are presented.

2.1. Implementation of a GSA code for LEED application

The theoretical LEED calculations, concerning a theory–theory comparison for the CdTe(110)
system, were performed using the muffin-tin model for the potential of the Cd and Te atoms,
with muffin-tin radius values of 1.40 Å being assumed for both. The numerical integration of
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Figure 2. Flowchart for the generalized simulated annealing implementation in LEED.

the radial part of the Schrödinger equation in the muffin-tin spheres was used in the calculation
of the phase shifts. A modified version of the Van Hove–Tong conventional LEED code [3]
was used in the dynamical calculation of the I (V ) curves, using the reverse forward scattering
approximation. The calculations were performed in a Linux PC cluster (IF-UFBA) composed
by 16 dual-processor Pentium III-1.0 GHz PCs. Eight phase shifts were used in the calculations,
with an inner potential of V0 = (−10+5i) eV, optimizing its real part during the search process.
A Debye temperature of 140 K was adopted for the Cd and Te atoms in the surface and bulk
layers.

The scheme previously proposed by Rous [13] was adopted in the implementation of the
simulated annealing algorithm within the modified Van Hove–Tong LEED code, while the
necessary changes for the implementation of the generalized simulated annealing were based
on the initial proposal of Tsallis and Stariolo [21]. A flowchart for the LEED implementation
of the GSA search algorithm is presented in figure 2. A key point in the implementation of
the GSA approach is the effective way of generating the random numbers with the visiting
distribution g(�x), given by equation (1). In this work, the multidimensional random steps
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were taken by updating one parameter (dimension) at a time, i.e., using a unidimensional
visiting distribution (D = 1). This procedure [21] is simpler than updating the whole state
vector (all parameters) at the same time.

2.2. GSA performance analysis—methodology

A global search method, considered as an adequate one, to be applied to the LEED structural
problem must present a high probability of locating the global minimum of the R-factor among
all the other local minima, and a favourable scaling relation of the number of parameters. The
scaling relation represents how the computational effort, necessary for one search algorithm to
locate the global minimum of the R-factor, increases with the number of structural parameters
(N) being optimized, i.e., its efficiency as a function of the dimensionality of the parameter
space to be explored.

The exhaustive search method (based on a trial and error procedure) scales exponentially
with N [26], representing a non-polynomial (NP) problem, while the directed-search
algorithms present approximately an N2 scaling [27]. The first application of the simulated
annealing method to the LEED problem performed by Rous [13] has pointed out a not very
favourable scaling (N6). Döll and Van Hove have investigated the application of the genetic
algorithm to the LEED search problem [19], but a scaling behaviour was not obtained. The
global search method proposed by Kottcke and Heinz [18] resulted in a more favourable scaling
(N2.5). The recent work of Nascimento and co-workers [14, 15], concerning the fast simulated
annealing approach, has obtained a very favourable N1 scaling. So, it seems interesting to
apply the GSA method [21] to the LEED optimization problem since, with this algorithm, it
is possible to explore other parameters (qA and qV) that may be important to adjust in order to
get the best search engine for the LEED analysis.

In this work, the GSA method was applied to the structural search for the CdTe(110), in a
theory–theory comparison. This choice was mainly motivated by the fact that the CdTe(110)
surface presents a relatively complex reconstruction [6, 28], in which the first atomic layer
presents a bond-length-conserving rotation and a contraction towards the substrate. Due to the
characteristics of this reconstruction, the structure determination is a complex one, requiring
the optimization of a relatively large number of parameters: ten parameters, if the first three
atomic layers were allowed to vary, as shown in figure 3. Also the use of the CdTe(110) system
in this investigation would enable a direct comparison with the previous results obtained by
Nascimento et al [14, 15].

The methodology used here consisted of repeated GSA structural searches performed
for the minimization of the Pendry R-factor (RP) [3, 29], using the following values for the
qV parameter: 1.0, 1.5, 1.7, 2.0, 2.3, 2.5 and 2.7. For all the investigated cases, we have
adopted a value of 1.0 for the qA parameter, that corresponds to the classical Boltzmann–
Gibbs acceptance probability. Initial ‘temperatures’ (TqV(1)) equal to 10 were adopted for
every explored qV [14, 15]. Typical results of these structural searches can be seen in figure 4,
for the case of qV = 2.3, where curves for three different starting points are shown. For each
explored value of the qV parameter, 30 structural searches (starting from different points in
parameter space) have been executed for optimization of two, four, six, eight and ten structural
parameters. The first four structural parameters, associated with the first layer, were varied in a
range of 1.0 Å around their ‘bulk terminated’ values. The other six parameters, associated with
the second and third layers, were varied in a total range of 0.5 Å, centred at ‘bulk terminated’
values.

The convergence criterion adopted was as follows: a search process was considered as
having achieved convergence to the global minimum if the RP factor reached a value lower
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Figure 3. Representation of the complex reconstruction presented by the (110) surface of CdTe.
The first four structural parameters, �X1Te,�X1Cd ,�Z1Te,�Z1Cd, define the first layer rumple
as well as the distance between the first and second layers. The �X2Te,�X2Cd ,�Z2Te,�Z2Cd
parameters define the second layer rumple and the spacing between the second and third layers.
Third layer related parameters �X3, �Z3 are assigned to displacements of the entire layer along
〈001〉 and 〈1̄1̄0〉 directions, without any rumpling. The X and Z axes are defined along 〈001〉
and 〈1̄1̄0〉 directions respectively. The total hypervolume explored in this investigation was
(2.0 × 2.0 × 2.0 × 2.0 × 0.5 × 0.5 × 0.5 × 0.5 × 0.5 × 0.5) Å10.

than 0.10. In a theory–theory comparison the global R-factor minimum presents a very deep
and narrow basin and, for RP values of less than 0.10, the optimized structural parameters
present values very close to their optimum ones, with differences around just 0.01 Å.

The mean number of structures accepted by the Metropolis criterion, before convergence
to the global minimum, for the optimization of two to ten parameters—and for each explored
qV value—was obtained. However, during the search process, several structures were rejected
by the Metropolis criterion, and were not included in the accepted ones. In fact, theoretical
calculations have been also performed for the rejected structures as well, and this also requires
some computational effort. So, it would be more realistic [14] to obtain a scaling behaviour
using the total number of trial investigated structures before convergence, which includes
structures accepted and rejected during the search process, and not only the accepted ones.
Therefore, in order to do this, the mean number of trial structures examined during the search
process before convergence were also obtained for the optimization of two to ten parameters,
for each explored qV value.

Another important practical feature of a global search method consists of the probability
of convergence to the global minimum, as a function of the number of explored parameters.
A probability of convergence that decreases slowly with an increasing number of explored
parameters plays a key role in the effectiveness of a global search algorithm. In the second
part of this study, the probability of convergence to the global minimum as a function of the
number of optimized parameters has also been obtained for each examined value of qV. This
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Figure 4. Typical GSA structural searches (qV = 2.3) performed for the optimization of four, six,
eight and ten parameters for the CdTe(110) system in a theory–theory comparison, obtained from
three different initial points, for each number of parameters. Each structural search has started
from a different initial point. The scaling relations, for the number of accepted and trial structures,
as well as the probability of convergence have been obtained from the analysis of these structural
searches.

probability of convergence was obtained as the ratio between the number of structural searches
that has reached the global RP minimum and the total number of structural searches performed.

3. Results and discussion

Scaling relations have been obtained for the number of accepted structures as well as for the
number of trial structures. The final results are presented in figures 5 and 6 respectively. In
order to get information about the total computational effort, only the results concerning the
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Figure 6. Mean number of trial structures (accepted and rejected) as a function of the number of
varied structural parameters, for various values for the qV parameter. The error bars were obtained
from a standard mean deviation from the mean values.

total number of trial structures examined in the process will be discussed here. So, as can be
seen in figure 6, the trial structure scaling behaviours,obtained for all investigated qV parameter
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Figure 7. Contour plot of the probability of convergence (%) as a function of the number of varied
structural parameters and of the qV parameter. The grey scale varies from white (100%) to black
(0%).

values (2.0, 2.3, 2.5 and 2.7), seem to be (within the associated error bars) linear (N1). The
results for qV equal to 2.0 (corresponding to the FSA approach) agree with those obtained
in the previous work by Nascimento and co-workers [15], with the advantage that they have
been obtained in a larger range of investigated parameters (from two to ten). Despite the fact
that all qV value results indicates this favourable linear scaling, as can be inferred only by
the trial structure results (figure 6), the higher the qV parameter, the lower the computational
effort seems to be. Based only on these results, it would be expected that the larger values
of qV would be the most effective ones. However, as will be discussed in the following, the
probability of convergence results do not indicate the same conclusion.

The probabilities of convergence as a function of the number of parameters have been
obtained for the explored values of qV. For a less wide distribution function (qV = 1.0
(Gaussian), 1.5 and 1.7), the obtained probabilities of convergence presented a fast decrease
with the number of explored parameters. Such behaviour has made it impossible to investigate
the scaling relation for these three qV values, since the number of structural searches that had
reached convergence reduced to zero for a number of parameters equal to four (for qV values
of 1.0 and 1.5) and to six (qV = 1.7). The final results obtained for qV values of 1.7, 2.0, 2.3,
2.5 and 2.7 are presented as a grey scale contour plot in figure 7. As can be seen there, for qV

equal to 1.7 the probability presents a high value for two parameters (90.0%), but decreases
very fast and reaches zero (0%) after only six parameters. The qV = 2.0 (FSA) results present
a slow decrease rate with the number of parameters. The results obtained for the qV = 2.3,
2.5 and 2.7 values present some complexity.

The associated probabilities of convergence for the 2.3, 2.5 and 2.7 qV values do not
present themselves as an almost monotonically decreasing curve as in the case of the FSA
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(and also qV = 1.7), each presenting a shallow minimum for a number of parameters equal
to six, four and six respectively, as can be seen in figure 7. As an example, for qV = 2.5, the
probability of convergence presents a value of 100% at two parameters, a minimum of 71% at
four parameters, with its value rising to 83% at ten parameters. A monotonic decrease in the
probability of convergence with the number of parameters, as in the qV = 2.0 and 1.7 cases,
would be, at first, expected for all cases.

The existence of these shallow minima may be attributed to limitations in our statistical
evaluation, where a total number of 30 structural searches have been performed. Perhaps,
with a more representative statistics, from a larger number of structural searches (≈100), these
minima would not be observed. However, this more representative statistics would consist in a
very tough task, that would require a considerable computational effort, making this approach
not a practical one. Therefore, we believe that the reason for the existence of these minima
is the large number of long random steps taken during the search process (due to the wider
distribution functions). These long steps would then be responsible for the reduction of the
probability of the search process escaping from local minima, in the case of high qV values.

At this point, in order to get some enlightenment, an investigation has been performed
of all the structural search processes that have not been able to achieve convergence to global
minimum, for the number of structural parameters corresponding to the probability minima.
The results of this analysis indicates that for all the three qV cases (2.3, 2.5 and 2.7) in the
non-converging searches, the GSA algorithm got trapped in a well defined local minimum,
not being able to escape. So it can be suggested that the Cauchy–Lorentz distribution, with a
reduced number of long random steps (in comparison with larger qV distributions), seems to
be the most effective in escaping from local minima.

Another interesting aspect is that the position of the minimum, related to the number
of parameters, varies with the adopted value for the qV parameter, indicating a dependence
on the dimensionality of the explored parameter space. This dependence, in our view, is
strongly influenced by two main aspects: the complexity of the RP hypersurface, and the
lower sensitivity of the I (V ) curves, and consequently of the RP, to the second and third layer
parameters. However, a more detailed investigation must be performed in order to elucidate
this.

In another attempt to understand this complex dependence of the probability of
convergence as a function of the number of explored parameters on the qV parameter value,
another investigation was performed. The purpose was to try to understand the effect of
changes in the cooling scheme, given by equation (2) for a determined qV value, on the scaling
behaviour and probability of convergence. A better understanding could enable the proposal
of new practical search engines that would be able to overcome the problems associated
with undesirable behaviours of the probability of convergence with the number of parameters
previously discussed. For this investigation, two qV values have been chosen:

(i) the less wide 1.7 distribution, that presented a fast decrease of the probability of
convergence with the number of parameters;

(ii) the wide 2.5 distribution, that presented a minimum in the probability for a number of
four parameters.

In the case of qV equal to 1.7, a TqV(t) ≈ TqV(1)/t cooling scheme was adopted, instead of
the slow TqV(t) ≈ TqV(1)/t0.7 given by equation (2). As previously discussed, TqV(1) and
t correspond to the initial ‘temperature’ value and the number of cooling steps performed,
respectively. This new qV = 1.7 cooling procedure consists in a ‘quenching’ scheme, a
situation in which a fast temperature schedule is used, unable to establish a true ergodic search,
i.e., to assure a probability of convergence equal to one (100%). For the qV = 2.5 case, the
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TqV(t) ≈ TqV(1)/t cooling scheme was again adopted, and not the fast TqV(t) ≈ TqV(1)/t1.5

one given by equation (2). In other words, we have tried to impose a faster cooling scheme
for the less wide and slow cooling qV = 1.7 distribution and a slower cooling scheme for
the wide and fast cooling qV = 2.5 distribution. The FSA (qV = 2.0) cooling scheme
(TqV(t) ≈ TqV(1)/t) consists in a relatively small change in both qV = 1.7 and 2.5 original
cooling schemes, and was adopted in both cases. The results obtained in the first investigation
are presented in figure 8, with a comparison between the qV = 1.7 ‘quenching’ and SA
cases. As can be seen in figure 8(b), the change in the cooling scheme (‘quenching’) has
improved the probability of convergence, that presented a slower decreasing. However, the
scaling relation was found to be exponential, as seen in figure 8(a). As previously mentioned,
a scaling relation could not be obtained for the qV = 1.7 SA case, due to the null probability
of convergence after just six parameters, as can be seen in figure 8(b). For the qV = 2.5 slower
cooling scheme investigation case, the probability of convergence obtained presents a slightly
shallower minimum, if compared to the SA situation, as shown in figure 8(d). However,
the scaling behaviour for the slow cooling scheme presents a exponential scaling relation
(figure 8(c)). In both investigated cases, the changes in the cooling scheme have led to a
computational effort that increases exponentially with the number of parameters. Within the
limitations of the investigation, the results seem to indicate that changes in the cooling scheme
for a given qV cannot result in a more effective search engine.

Therefore, considering the results obtained so far, this study has provided information
about the scaling relation and probability of convergence, with the FSA approach (qV = 2)
seeming to be the most effective search machine. The FSA scheme presents, at least within
the limitations of this study, a very favourable linear scaling (N1) as well as a slow decreasing
probability of convergence.

Another interesting aspect is that it is possible to perform a detailed comparison of the
results obtained in this study with the previous work of Nascimento et al [15] for the case
of qV = 2.0, i.e., the fast simulated annealing search engine. Both studies have employed
a theory–theory comparison for the CdTe(110) system. A comparison between the results
obtained for the number of trial structures is presented in figure 9(a). As can be seen, the scaling
relation is linear (N1) for both cases. However, the least squares fitting results indicate different
slopes for each data set. This can be explained because, although both studies have employed
a theory–theory comparison for the CdTe(110) system, this comparison has been performed
in different ways. This work has adopted a normal incidence geometry for the theory–theory
comparison in order to achieve a better use of symmetry in the multiple-scattering calculations
and consequent reduction of the computational effort. In the previous work [15], an off-normal
symmetry was adopted in the theory–theory comparison in order to mimic the situation for an
experimental data set then collected. For each situation (normal and off-normal incidence) a
different hypersurface is associated, for the RP factor. Each hypersurface presents different
topographic features, and different results should be expected for the number of trial structures
as a function of the number of explored parameters. So, as can be inferred from this comparison,
the slope for the trial structure curve seems to be case dependent, but the scaling relation does
not. The probability of convergence as a function of the number of parameters is presented
in figure 9(b) for both studies. There are some changes in the behaviour of the probability
of convergence, with the curve for the off-normal situation presenting a faster decrease with
the number of parameters. These changes can also be explained as a consequence of the
different features in the R-factor hypersurfaces for both cases, that will alter the probability
of locating the global minimum. So, the probability of convergence also seems to be case
dependent. However, for both situations, the FSA algorithm has presented not only the very
favourable linear scaling, but also a slow decreasing probability of convergence with the
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Figure 8. Number of trial structures (a) and (c), and probability of convergence (b) and (d), as a
function of the number of parameters, for qV equal to 1.7 and 2.5 respectively. For the qV = 1.7
case, besides the standard simulated annealing scheme (TqV (t) ≈ TqV (1)/t0.7), a faster cooling
scheme (TqV (t) ≈ TqV (1)/t) was investigated, in a ‘quenching’ situation. The well defined curve in
(a) corresponds to a least-squares exponential fitting, which presented a correlation equal to 0.983.
In the qV = 2.5 case, the standard simulated annealing scheme (TqV (t) ≈ TqV (1)/t1.5) and also
a slower cooling scheme (TqV (t) ≈ TqV (1)/t) were investigated. The well defined curves in (c)
correspond to exponential (correlation equal to 0.999) and linear least-squares fittings (correlation
equal to 0.987), respectively for the slower cooling and the SA scheme data.

number of investigated parameters. These two features indicate the FSA search machine as a
very effective one.
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Figure 9. Number of trial structures (a) and probability of convergence (b) as function of the
number of varied parameters for the FSA search engine (qv = 2.0) obtained in this study and in
the previous work of Nascimento et al [15]. The dark straight lines in (a) represent least squares
fitting results for the two data sets. Correlations equal to 0.995 and 0.993 have been obtained for
the results concerning this and the previous work, respectively.

4. Conclusions

This work has investigated the influence of the visiting distribution function in the behaviour
of the generalized simulated annealing (GSA) algorithm when applied to the LEED search
problem. Several searches have been performed (for the optimization of two, four, six, eight
and ten structural parameters) in an attempt to locate the RP global minimum in the case of
a theory–theory comparison for the CdTe(110) system. The obtained results, concerning the
scaling relation and convergence probability, indicate the FSA approach (qV = 2.0) to be the
most effective search machine. For higher values of the qV parameter a complex dependence
of the probability of convergence on the dimensionality of the parameters space was observed
and a more detailed investigation is necessary.

Two investigations have been performed aiming to examine the effects of changes in the
cooling schemes from its defined relation (equation (2)), for the cases of qV = 1.7 and 2.5. A
faster (‘quenching’) and a slower cooling scheme have been employed for the qV = 1.7 and
2.5 cases respectively. It can be inferred, from the results obtained in both cases, that although
changes in the cooling scheme can improve the probability of convergence the associated
computational effort increases exponentially with the number of parameters investigated.
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