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Abstract

I present some relativistic models of the universe that have the cos-
mological constant (Λ) in their formulation. Einstein derived the first
of them, inaugurating the theoretical strand of the application of the
field equations of General Relativity with the cosmological constant.
One of the models shown is the Standard Model of Cosmology, which
presently enjoys the support of a significant share of the scientific
community.

1 Introduction

The first cosmological model based in General Relativity Theory (GRT) was
put forward in 1917 by the creator of GRT himself. Einstein conceived the
universe as a static structure and, to obtain the corresponding relativistic
model, introduced a repulsive component in the formulation of the field
equations of GRT to avoid the collapse produced by the matter. Such a
component appears in the equations as an additional term of the metric field
multiplied by a constant, the so-called cosmological constant (see [1, eq. 10]).
The cosmological constant is commonly represented by the uppercase Greek
letter (Λ) and has physical dimensions of 1/length2.

Besides Einstein’s static model, other relativistic models with the cos-
mological constant were proposed. We will see that these models can be
obtained from Friedmann’s equation plus the cosmological constant, and by
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means of the appropriate choices of the spatial curvature and of the matter-
energy content of the universe. The cosmologist Steven Weinberg presents
several of those models in his book Gravitation and Cosmology, in the chap-
ter entitled Models with a Cosmological Constant [2, p. 613]. I will show
here some of the models discussed by Weinberg and one that he does not
discuss, namely, the modern model of the universe in accelerated expansion,
many times called the Standard Model of Cosmology (SMC).

The classical Friedmann equation [3] has its field of application consider-
ably expanded with the inclusion of the cosmological constant Λ. The result
is presented in the next section. In section 3 I present some features of three
models of universe with a cosmological constant, the Einstein static universe,
the de Sitter universe and the SMC. Einstein’s and de Sitter’s universes will
be presented, by didactic considerations, in the general frame of the Fried-
mann equations, but it is always worth reminding that the Friedmann equa-
tions were discovered in the years 1920s, that is, after the proposition of those
two models. I finish, in section 4, with some general remarks.

2 Friedmann’s equations with Λ

The Friedmann equations are the solutions of the field equations of GRT
when these are subject to the strong restrictions of symmetry imposed by
the Cosmological Principle (CP). The universe of the CP is homogeneous
and isotropic, and has matter-energy density ρ(t), i.e., ρ is only a function of
the cosmic time (see section 4 of [1]). Such constraints enormously simplify
the field equations. For example, the energy-momentum tensor is reduced to
a diagonal tensor [1, eq. 12].

The energy-momentum tensor occupies the right-hand side of the field
equations [1, eq. 4]. For the left side we need the space-time metric that
describes the physical system in question. In 1935, the American physicist-
mathematician Howard Robertson (1894-1975) and, almost simultaneously,
the English mathematician Arthur Walker (1909-2001) derived, from purely
geometrical arguments, the mathematical expression of the space-time metric
of a fluid that obeys the CP. According to Harrison [4, p. 285], they “showed
rigorously that universes obeying the CP have a spacetime that uniquely sep-
arates into a curved expanding space and a cosmic time that is common to
all comoving observers” (i.e., that partake the expansion; see also section 3
of [5], where the mathematical expression of the Robertson-Walker metric is
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presented).
The solutions of the field equations for the Robertson-Walker metric are

the Friedmann equations. They describe in full form the balance of matter
and energy (eq. 1) and the dynamics (eq. 2) of the cosmic fluid:
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S is the scale factor of the universe, k is the constant of spatial curvature,
ρ is the density of matter-energy and p is the pressure of the cosmic fluid (see
more details below eq. 12 of [1]). The curvature constant is, for a closed
and spherical universe, k = +1/R2, where R is the curvature radius of the
spherical space. For a critical (or flat) model, R → ∞, and therefore,
k = 0. The open universe has an imaginary curvature radius, implying in a
negative curvature constant, k = −1/R2 (hyperbolic space). Notice that, like
the cosmological constant, the curvature constant has physical dimensions of
1/length2.

The Friedmann equations so obtained, from the field equations plus Ein-
stein’s cosmological term (also eqs. 16 and 17 of [1]) are the basis of the
majority of modern cosmological models, with or without Λ. For the latter
case, it suffices to make Λ = 0 in eqs. 1 and 2. In the next section I present
three models of the universe with Λ.

3 Relativistic models with Λ

I present here three universes with Λ. The first of them is Einstein’s static
universe, the pioneer model of modern relativistic cosmology. The cosmolog-
ical constant was introduced by Einstein in his field equations to produce a
repulsive energetic component in order to exactly compensate the attractive
energetic component originated in the matter-energy content of the universe.
Einstein had no reasons, in 1917, to imagine an universe that was not static
on large scale. In 1930, the British astrophysicist A. Eddington (1882-1944)
conclusively showed that the model was unstable, casting capital doubts
about its viability (see the discussion of the energetic stability of Einstein’s
static model in section 3 of [6]).
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The second of them is a dynamical model, but with a strange quality: it
does not contain matter, only the energetic component originated with the
introduction of the cosmological constant. Despite its strangeness, such a
model can be useful for representing the real universe. After all, nothing
impedes that the matter content of the universe be, not exactly null but,
approximately null, i.e., mathematically negligible. And even so, sufficient to
create galaxies, stars, planets, humans, etc. The responsible for this model
was the Dutch physicist, mathematician and astronomer Willem de Sitter
(1872-1934). de Sitter’s model was proposed also in 1917, shortly after the
proposition of Einstein’s universe.

The third model presented is the SMC, the Standard Model of Cosmology,
the theoretical universe accepted by considerable parcel of the international
scientific community, in spite of its innumerable problems — acknowledged
even by those that accept it (some of them are listed in section 3 of [7]).
The main feature of this model is having, in the present cosmic time, an
accelerated cosmological expansion. Incidentally, note that the models of
Friedmann, without Λ, have decelerated cosmological expansion in all cosmic
times (cf. [3]).

3.1 Einstein’s static universe

Einstein was guided by its physical intuition and by his preconceived ideas
about the universe, when he put forward the first relativistic cosmological
model. In the 1910s, the universe appears to be a static structure on the
largest scale. The ideas of a dynamical universe on large scales, both the-
oretical and observational, only emerged in the 1920s. Besides static, the
universe might certainly be finite. This avoids uncomfortable boundary con-
ditions in the limits of the universe, if it was infinite.

Einstein’s universe is therefore finite — it has positive spatial curvature,
i.e., it is closed — and static [6].

To obtain such an universe, Einstein was forced to introduce a repulsive
component in his field equations. He put an additional term of the metric
field, multiplied by the cosmological constant Λ. The value of Λ can be fine-
tuned to simultaneously get a closed universe (nonzero and positive spatial
curvature) and static, that is, dS/dt ≡ Ṡ = 0 (see eqs. 1 and 2 and section
2 of [6]).

The main problem of Einstein’s model is its instability. The space is
spherical with curvature radius, in the 4-dimensional hyperspace, defined
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by the matter density of the universe. Now, this situation represents an
unstable equilibrium; any small perturbation leads the system — the universe
— to the collapse or to the disintegrative expansion to infinity. Fig. 1
illustrates that instability by means of a Newtonian analogy. The figure
shows the sum of the components of (gravitational) attractive energy and
of (cosmological constant) repulsive energy. One clearly sees the instability
condition represented by the position of equilibrium at the scale factor RE =
1.

Figure 1: Λ-shaped diagram: the potential energy — in arbitrary units — for the

Newtonian analogy of Einstein’s static model. Notice that the equilibrium at R = RE is

an unstable one. Any small perturbation at RE makes either the universe to collapse or

diverge to R →∞ [6].

It is worthwhile emphasizing that Einstein’s static model has nonzero
and positive spatial curvature constant. Other quantitative and quali-
tative aspects are discussed in more detail in [6].
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3.2 de Sitter’s universe

It is obtained making k = ρ = 0 in eq. 1. One gets Ṡ(t)/S(t) = c(Λ/3)1/2.
The Hubble expansion “constant”, or parameter, H is defined as H ≡
Ṡ(t)/S(t). We see then that de Sitter’s model is characterized by a con-
stant relative rate of expansion — the Hubble parameter. This is not true
in general. For example, the classical models of Friedmann (cf. [3]) have
Ṡ(t)/S(t) ≡ H(t); the Hubble parameter is approximately constant only for
small ranges of cosmic time ∆t around any time t.

Let the present cosmic time be t◦ and S(t◦) ≡ 1. After the integration of
the differential equation shown in the previous paragraph, the scale factor in
de Sitter’s universe can be written as:

S(t) = eH(t−t◦), (3)

with H = c(Λ/3)1/2. de Sitter’s model represents a universe of infinite age,
in exponential expansion, with constant Hubble’s parameter determined by
the cosmological constant Λ and the speed of light c.

De Sitter faced great resistance to his model, even many years after its
proposition. A 1930 Dutch newspaper displayed a cartoon that mocked the
Desitterian idea (see Fig. 2).
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Figure 2: Cartoon in a 1930 Dutch newspaper. Notice that de Sitter’s body has the

shape of the lowercase Greek letter λ (cf. [8]). Translation of the legend: Prof. W. de

Sitter on the Wednesday July 9, 1930 General Commerce Newspaper “Who

does actually blow up the balloon? What does make that the universe

expands, or swells? It is lambda that does this. One other answer is not

to give.”

Notice that the cartoon is conceptually wrong because de Sitter’s universe
is spatially flat and not curved, like the balloon that appears in the figure.
On the other hand, if the curvature radius of the balloon is very large (→∞),
de Sitter’s universe can be imagined as a cap of this hypersphere, because
then it will be approximately flat.

De Sitter’s universe has an accelerated expansion, as can be seen in Fig.
3. This can be be verified in two ways. Qualitatively, the shape of the curve
S(t) has the temporal derivative Ṡ, i.e., the tangent to the curve, increasingly
larger as time passes. Quantitatively, we know that the upwards concavity
of the curve implies that the second derivative of S(t) is positive, in other
words, Ṡ increases with time. Note that all classical Friedmann models have
decelerated expansion, which can be verified by these same reasonings (see
[3]).

7



Figure 3: The scale factor for the de Sitter universe increases exponentially with time

(cf. eq. 3). The expansion is accelerated in all cosmic times.

De Sitter’s model became famous for being the first expanding model.
The expansion was called at the time “de Sitter’s effect”. It was a very
strange model, as we saw, due to the fact of not containing matter, i.e., for
having zero matter density. It is worthwhile point out also that de Sitter’s
model has zero spatial curvature constant.

3.3 Standard Model of Cosmology

The SMC represents an universe that has matter and energy associated to the
cosmological constant at the exact proportion to yield zero spatial curvature,
that is, to be characterized, on large scales, by a flat spatial geometry,
also called Euclidean. This requires that the sum of the densities of matter
and of the energy associated to the cosmological constant be exactly equal
to the critical density ρc. Expressed in another way, ρc = ρm + ρΛ.

8



With the aid of the density parameter Ωm ≡ ρm/ρc and ΩΛ ≡ ρΛ/ρc, one
can state that the SMC obeys the relation Ωm +ΩΛ = 1. At the present time
t = t◦, it follows that Ωm◦+ΩΛ◦ = 1, with Ωm◦ ≡ ρm◦/ρc◦ and ΩΛ◦ ≡ ρΛ◦/ρc◦,
being all quantities evaluated at t = t◦ (more details in [9, cap. 8] and [10,
cap. 29]).

Eq. 1 can be written in terms of Ωm◦ and ΩΛ◦ [10, cap. 29]. The resulting
differential equation must be integrated to obtain S(t) for the SMC. The
solution of the integral ([9, eq. 8.4]1) gives the function S(t):

t =
(

2

3H◦

)
1

Ω
1/2
Λ◦

ln

[(
1 +

ΩΛ◦

Ωm◦
S(t)3
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+
(

ΩΛ◦

Ωm◦
S(t)3

)1/2
]
, (4)

where H◦ is Hubble’s constant at t = t◦, i.e., at the present time. Fig. 4
shows the function S(t) with Ωm◦ = 0.3 and ΩΛ◦ = 0.7, figures close to those
adopted by the SMC in the current scientific literature.

The age of this universe is t◦ = 1.45×2/(3H◦), as shown in the figure. To
get the value of 1.45 just do S(t = t◦) = 1, Ωm◦ = 0.3 and ΩΛ◦ = 0.7 in eq. 4.
The quantity 2/(3H◦) corresponds to the age of the Friedmann model with
Ωm◦ = 1 and ΩΛ◦ = 0. This model is known as critical Friedmann model or
Einstein-de Sitter model (cf. [3, 11]).

1Notice that the numerator of the integrand of eq. 8.4 in Ref. [9] must be corrected to
R1/2dR.
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Figure 4: The diagram shows the scale factor for the SMC, which represents an universe

with an accelerated phase in recent cosmic times. The age of the universe in this model is

shown and corresponds to the unit scale factor. Notice the change of concavity of the curve

a little before of the scale factor equal to 1, which indicates that the expansion switched

from a decelerated phase to an accelerated one.

The larger the value of ΩΛ◦, the larger the model’s age. The SMC does
not allowed total freedom in the choice of ΩΛ◦, because there are evidences
of the existence of about 30% of matter in the universe (Ωm◦ = 0.3). In
any case, the value of ΩΛ◦ = 0.7 results in a plausible age for the universe.
That is, the cosmological age is approximately equal to the age of the oldest
objects in our galaxy (see [11, 12]).

Incidentally, a precursory model of SMC was the semi-qualitative model
of the Belgian cosmologist Georges Lemâıtre (1894-1966), put forward in
1947, and that has three phases: (i) initial phase of decelerated expansion,
(ii) static phase or of stagnation and (iii) final phase of accelerated expansion.
With the exception of the static phase, this model is a replica of the SMC and
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allows for the construction of models with ages compatible with the ages of
the oldest observed objects. The SMC has, instead of a phase of stagnation,
a rapid phase of transition from a decelerated to an accelerated expansion,
as we saw in Fig. 4 (see more details in [12]).

Now, it is important to stress that Ωm◦ = 0.3 means that 30% of all
the matter-energy content of the universe is in the form of matter, but it
is divided between baryonic matter (protons and neutrons) and nonbaryonic
matter (exotic). Indeed, the SMC predicts approximately 5% of baryonic
matter and approximately 25% of exotic, nonbaryonic matter. Matter can-
not be all baryonic, because then the amount of baryonic matter in the time
of the synthesis of the light chemical elements would be much larger than
the required by the model. From this arises the prediction of the existence
of exotic matter (more details in [7, 13]).

Finally, in order to compare with the other models presented, the SMC
is a model with zero spatial curvature constant and nonzero matter
density.

4 Final remarks

In 1958, Arthur Eddington, in his influential book The Expanding Universe,
made the famous comparison between Einstein’s and de Sitter’s model: “The
de Sitter Universe contains motion without matter, while the Einstein Uni-
verse contains matter without motion” [14, p. 46]. In spite of not containing
matter in its theoretical formulation, it is possible to imagine, as we saw,
test bodies, of negligible masses, present in the de Sitter universe. And these
bodies have expanding motion because the space itself is in expansion, as
mentioned in section 3.2.

The Einstein and the de Sitter models became cornerstones in the con-
struction of the theoretical building of modern cosmology.

In the years 1920s arose the idea of an expanding universe. Einstein’s
static universe soon became just a theme of the history of cosmology. It
appears often in the literature the statement that Einstein would have said,
in this context, that the cosmological constant was the greatest of his “blun-
ders”. However, as already suggested in Soares [6, sec. 4], Einstein’s real
great blunder was not the adoption of the cosmological constant, but rather
the formulation of an unstable cosmological model. The cosmological con-
stant is perfectly acceptable in the expression of the GRT field equation,
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representing no error whatsoever, from the formal point of view.
The three models with Λ presented in section 3 can be characterized by

their spatial geometries and by their matter contents.

Section 3.1) Einstein’s static universe: nonzero positive spatial
curvature constant, resulting in a spherical 3-D space. The matter
content is linked to the cosmological constant with the aim of
having a static universe.

Section 3.2) de Sitter’s universe: zero spatial curvature con-
stant, resulting in a flat or Euclidean 3-D space. The matter con-
tent is zero. The space-time tissue has an accelerated expansion
in the interval −∞ < t <∞.

Section 3.3) Standard Model of Cosmology: zero spatial cur-
vature constant, resulting in a flat or Euclidean 3-D space. The
matter content is nonzero. The energy associated to the cosmo-
logical constant comes to dominate in the present time and forces
the universe into a transition to an accelerated expansion.

In 2002, the American cosmologist Michael Turner coined the term dark
energy to represent the energy associated to the cosmological constant, and
that would be responsible for the accelerated expansion of the universe (later
studies enlarged the concept of “dark energy” to include other hypothetic
forms of energy not associated to the cosmological constant, most of them
being not constant). Why dark? Because until present times this new kind
of energy — totally different from electromagnetic energy, for example —
remains completely unknown, both from the observational point of view and
from the theoretical characterization standpoint (see [7, 15]).

Acknowledgment – Figuras 3 and 4 were made in one of the computers
of the Kapteyn Astronomical Institute, Groningen, The Netherlands, under
the auspices of Prof. Reynier Peletier.
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