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Abstract

I discuss some aspects of the Microwave Background Radiation
power spectra obtained by WMAP and Planck space observatories.
Special attention is given to the anomalous power drop verified at the
quadrupole anisotropy.

1 Introduction

Motivated by the publication of the partial results of the Planck space ob-
servatory [1], I turn now to a short discussion of the anisotropies of the
Microwave Background Radiation (MBR), especially of its most popular rep-
resentation, namely, its power spectrum.

The MBR can be very precisely represented by a 2.7 K blackbody. This
was shown in an extraordinary way by the space observatory COBE (Cosmic
Background Explorer), whose endeavor earned its team the 2006 Physics
Nobel prize. The merit of such award is questionable, though, as I report in
[2].

The MBR was discovered in 1964 by the American Arno Penzias and
Robert Wilson, whom were awarded the 1978 Physics Nobel prize for this
feat. Since then there was the suspicion that the radiation was of the thermal
type, represented by the radiation spectrum of a blackbody, also known as
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the Planck spectrum. This was a homage to the German physicist Max
Planck (1858-1947), that in 1900 discovered its theoretical formulation, the
thermal radiation law. I discuss some aspects of the MBR in another article
[3].

2 COBE

The observational advancements around the MBR occurred in a gradual fash-
ion up to the launching of the COBE probe in 1989, aimed to its observation.
The COBE observations represented the end of the issue, with the announce-
ment of the results in the beginning of the 1990s. It turned definitive and
extraordinarily demonstrated that the MBR is originated from a blackbody,
which is very likely the most perfect blackbody in nature. The figure below
illustrates this statement.
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Figure 1: The Microwave Background Radiation observed by the COBE space obser-

vatory. The curve represents a 2.74 K blackbody, and the points with error bars are

the experimental data. The fitting is the best experimental fitting of a blackbody ever

obtained. It is always worth remembering that the fact that the MBR has a perfect black-

body spectrum does not imply that it is from cosmic origin as considered in the Standard

Model of Cosmology (SMC). The original observation of Arno Penzias and Robert Wilson,

the discoverers of the MBR, corresponds to a single point at λ = 73.5 mm, which was not

among the COBE observations (COBE’s team).

The COBE observatory also showed that the MBR was characterized by
fluctuations of temperature all across the celestial sphere, the so-called MBR
anisotropies. But the observations were of low resolution and sensitivity. In
any case, the existence of the anisotropies was vigorously acclaimed by the
SMC cosmologists, because they were extremely necessary in the cosmologi-
cal scenario presented by the SMC. Such anisotropies are presumably indica-
tives of irregularities that existed in the distribution of the cosmic material
when the MBR was formed, that is, when the universe was about 300,000
years old. It was from these primeval irregularities that the gravitational
instabilities developed and ultimately gave origin to stars, galaxies and all
other cosmic structures. Without them, we ourselves would not be here, ac-
cording to the SMC followers. After the end of the COBE mission, a space
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observatory was proposed, the WMAP, to measure only the anisotropies,
with larger resolution and sensitivity. With the great success of WMAP,
new questions appeared, and larger resolution and sensitivity were required.
Consequently the Planck satellite was launched and represents the current
stage of our capacity of investigating the anisotropies. Surely enough new
questions will emerge, which will demand larger resolution and sensitivity,
and so forth. This is the proper character of scientific research.

3 WMAP and Planck

The MBR and its anisotropies are observed all over the celestial sphere. The
MBR will be, for obvious convenience, identified by its average temperature
and by the associated fluctuations. How to quantitatively represent them?
There are several possible ways, but the most appropriate, due to the ge-
ometry of its spatial distribution over the celestial spherical surface, is the
representation of the temperatures in a series of spherical harmonics. The
series is characterized by the linear combination of multipoles identified by
the multiplicity l (see below). The MBR intrinsic fluctuations will show up
when the following components are removed from the observations:

• l = 0 : monopole− corresponds to the average value of the radiation.
The average value is the temperature of a blackbody at 2.7 K, found
by COBE.

• l = 1 : dipole− corresponds to the dipole anisotropy, which is caused,
according to the SMC, by the motion of the Earth with respect to the
microwave background.

Incidentally, the representation in a series of spherical harmonics is widely
utilized in physics. It is used, for example, in the representation of the three-
dimensional distribution of the electron cloud in a atom. The concept of an
orbital appears from the geometrical representation of each component of the
spherical harmonic series.

The anisotropy fluctuations are given by ∆T (θ, φ)/T◦, where T◦ = 2.7
K, ∆T (θ, φ) = T (θ, φ) − T◦ and θ and φ are the spherical coordinates that
identify the point of the celestial sphere for which the fluctuation is cal-
culated. The fluctuation of the dipole component (l = 1) is of the order
of 0.001 and the fluctuations of the higher order multipoles are minuscule,
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∆T/T◦ ≈ 0.00001, corresponding to absolute fluctuations ∆T of the order
of some tens of µK. The latter are the primeval, intrinsic, anisotropies as-
sociated to the temperature fluctuations existing at the time of the MBR
formation.

The MBR power spectrum is a measure of the weight of each multipole
in the spherical harmonic series expansion. To obtain it, one starts from
the field of temperature T (θ, φ), represented by the spherical harmonic series
given by

T (θ, φ) =
∑
lm

almYlm(θ, φ), (1)

where (θ, φ) is any point on the celestial sphere and Ylm is called spherical
harmonic function of degree l and order m. The indexes l and m are associ-
ated to the spherical coordinates θ and φ, respectively. The power spectrum
is defined as the mean squared value of the spherical harmonic coefficients:

Cl ≡ 〈|alm|2〉. (2)

The addition theorem of the spherical harmonic functions and the fact
that they constitute an orthogonal basis imply that the power spectrum will
be independent of the azimuthal index m, being expressed only by the index
l, which identify the multipoles of the anisotropies of temperatures.

In practice, the above power spectrum is calculated from the MBR ob-
servational data by calculating the products

∆T (θ1, φ1)

T◦
× ∆T (θ2, φ2)

T◦
(3)

throughout all the celestial sphere. ∆T (θ, φ) is the temperature fluctuation at
the point (θ, φ). The angular separation Θ between any two points, identified
by pairs of (θ, φ), as in Eq. 3, is related to the multipole index of the spherical
harmonic expansion in the following way:

Θ ' 180◦

l
. (4)

The maps of the anisotropies observed by COBE, WMAP and Planck are
shown in Fig. 1 of the reference [4].

The figures below show the power spectrum of the MBR anisotropies
observed by WMAP and by its successor Planck, whose results have already
been published. The multipole corresponding to l = 0 — the monopole, i.e.,
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the mean temperature of the field T◦ = 2.7 K — and the dipole anisotropy
at l = 1 are removed before the derivation of the power spectrum. The first
point in the axis of abscissas corresponds to the quadrupole (l = 2).

Figure 2: Power spectrum of the MBR anisotropies observed by WMAP. Notice the

quadrupole power drop (l = 2), outside the SMC fitting, even considering the cosmic

variance (see text), represented by the horn-shaped strip (WMAP’s team).

6



Figure 3: Power spectrum of the MBR anisotropies observed by Planck. The quadrupole

power drop (l = 2) remains, being now marginally outside the SMC fitting, even consid-

ering cosmic variance (Planck’s team).

What stands out on a first inspection is the increase in resolution and in
sensitivity reached by Planck. The increase in the sensitivity is indicated by
the increase of the largest multipole index, which are approximately 1,000
and 2,500 for WMAP and Planck, respectively. But first and foremost, a
warning with respect to the apparent excellent theoretical fitting exhibited
in both cases: the enormous number of free parameters of the SMC (almost
20!) allows for fitting essentially any set of data.

The spectra are characterized by a number of peaks, each one of them with
a particular meaning in the SMC. Notice that all fluctuations described by the
power spectrum are present in the observational data shown on Fig. 1, which
are perfectly explained by a 2.7 K Planck spectrum. The fluctuations do not
make any difference in the fitting, because the relative deviations introduced
by them are, as we saw, of the order of 0.1% for the dipole anisotropy and of
0.001% for the other fluctuations. The dominant component in the data is
the monopole (l = 0) and, as can be seen in Fig. 1, even with the presence
of the fluctuations of higher multipoles the fitting by a blackbody spectrum
is perfect.

The peaks of the MBR power spectrum, according to the SMC, represent
the peaks of the acoustic oscillations — oscillations in a material medium —
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of the primordial plasma. When the MBR was formed and set free from the
plasma, these oscillations were impregnated in its energy distribution. The
location of the first peak at l ∼ 200 (Θ ∼ 1◦), for example, is directly related
to the total density parameter of the universe, that is, it informs us whether
the universe is open, closed or critical. The results, both from WMAP and
Planck, indicate that we live in a critical universe, which possesses, as we
know, Euclidean global spatial geometry. The amplitude — not the location
— of the second acoustic peak is directly related to the total density of
baryons (essentially protons and neutrons) of the universe.

4 Anomalous quadrupole

Now, both WMAP and Planck present a serious problem, that was already
explored in 2003 with the proposition of an alternative model to the SMC by
the French cosmologist Jean-Pierre Luminet and collaborators. That is the
drop of power for the quadrupole anisotropy, l = 2,Θ = 90◦ (eq. 4).

In some representations of the WMAP power spectrum that detail has
been, in a certain way, hidden by the presentation form of the diagram —
this is not the case, though, with the representations shown in Figs. 2 and 3.
The renowned British theoretical physicist Roger Penrose, in his encyclopedic
2007 “The Road to Reality” [5], on page 775, in the legend of his figure 28.19,
states “Be sure to notice the very significant discrepancy at the quadrupole
(l = 2), almost hidden (accidentally?) by the vertical axis.” A reproduction
of this figure is in Fig. 4. What is the grave implication of such a discrepancy
that led the WMAP researcher team to the point of willing to hide it?
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Figure 4: Figure 28.19 of reference [5] (see text). A symbol ×, close to zero, on the

vertical axis, marks the quadrupole anisotropy observed by WMAP. Only an attentive eye

may note this point, totally outside the theoretical fitting. The concept of cosmic variance

was not yet used to justify the discrepancy, as in Figs. 2 and 3 (WMAP’s team).

In general, the power drop for oscillations of large wavelength (≥ 60◦)
indicate that the universe might be finite. That means it has not sufficient
size to support long oscillations. More or less like the impossibility of a violin
producing the grave long waves of a cello. Note that, as mentioned above,
the l = 2 quadrupole corresponds to an angular scale of the fluctuation
Θ ≈ 90◦. This goes frontally against the SMC that is spatially infinite and
should exhibit the long oscillations with the same power. And what is worst,
the observed discrepancy in the WMAP data was overwhelmingly confirmed
by Planck. In 2003, immediately after the publication of the WMAP data, a
French group, led by Jean-Pierre Luminet, caused uproar with the proposi-
tion of a relativistic cosmological model, alternative to the SMC, closed and
with finite spatial section (see [6]). At the time, the model was called the
“soccer ball model”.

And how the SMC followers try to escape from this problem? Using a
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limitation that they assign to the physical characteristics of the problem,
that is, a possible natural limitation called cosmic variance. As we saw, the
problem arises repeatedly, in WMAP and in Planck. But what precisely is
“cosmic variance”?

The cosmic variance is a natural uncertainty in the determination of the
theoretical and observational power spectra due to the existence of a spatial
limit of observation in the universe. The universe is limited by the finite size
of the horizon of observable distance which, in the cosmological models of
finite age, represents the maximum distance that we can observe from Earth.
This results in that the statistical sampling of multipoles with small l (large
angular scale) be small in comparison with the multipoles of small angular
scale. The consequence of this is the introduction of an intrinsic statistical
error that will be greater the lower the value of l. The horn shades, that
appear in Figs. 2 and 3, represent these errors on the theoretical curve and,
as one can see, it is maximum for the multipole component (l = 2).

There are at least two possibilities: either the observed discrepancy of the
quadrupole, in the framework of the SMC, is assigned to the cosmic variance
or it is assigned to the spatial finiteness of the universe — as Luminet and
collaborators have done —, in which case the cosmic variance would have
little influence. Of course, other alternatives to the SMC to explain the
discrepancy certainly might exist.

In the case of the consideration of the cosmic variance in the SMC, we
clearly witness an anomaly. The cosmic variance throws uncertainties up-
wards and downwards, but what is systematically seen in WMAP and in
Planck is a downward difference of the quadrupole power. Hence, that would
be an indication that there is not a problem of insufficient sampling, but in-
stead the result of a spatially finite universe. Obviously, the SMC champions
will never accept this, but will put forward, as an alternative, yet another
launching of a spatial observatory, with larger resolution and sensitivity, in
order to establish the question. Solving or not the question, this is very good
for the science of cosmology, because better data soon would be available.
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