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Abstract

The only exact solution of General Relativity Theory of recognized
practical applicability was obtained by Karl Schwarzschild in 1916. In
the limit of weak field it reduces to Newton’s gravitational law. I present
some aspects of Schwarzschild’s gravitation and show its reduction to the
classical law of gravitation.

1 Introduction

Albert Einstein (1879-1955) completed the formulation of his theory of gravi-
tation, the General Relativity Theory (GRT), in November 1915. The German
astrophysicist Karl Schwarzschild (1873-1916) read Einstein’s article, published
in a Prussian scientific journal, in dramatic circumstances: he was serving the
German army during World War I in the Russian front. Immediately he worked
out the consequences of the theory for the gravitation caused by an isolated star.
He obtained hence the first exact solution of Einstein’s field equations for the
exterior space of a static and spherical distribution of mass M. He sent his results
to Einstein who admired Schwarzschild’s achievement: he himself did not believe
that it was possible to derive an analytical and exact solution of his equations
given the enormous mathematical complexities involved. Schwarzschild had the
ingenuity of choosing a simple and highly symmetrical system in order to derive
the first and most notable particular solution of GRT [1, p. 124].

Schwarzschild’s work was published in January 1916. A few weeks later he
found the solution for the interior of the mass M. In May of that same year,
as a consequence of an illness he acquired in the war, Schwarzschild’s brilliant
scientific career was brought to an end by his premature death.

According to Rindler [2, p. 228], Schwarzschild’s external solution remains,
until today, as the most important exact solution of Einstein’s field equations,
given its vast applicability to real systems. The most known applications are the
calculation of planetary orbits in strong gravitational fields, being the correct



prediction of the annual advance of Mercury’s perihelion the most known exam-
ple, the calculation of the bending of light’s trajectory while passing near very
massive bodies, the calculation of the gravitational redshift, etc. One might not
forget to mention also the opening up of a large and new field of research, with
the consideration of the objects called black holes. These appear as limiting
structures of Schwarzschild’s metric. The black hole remains, nonetheless, as a
“working hypothesis”, which awaits, for its thorough and precise discussion, the
creation of a theory of quantum gravity.

Schwarzschild’s solution of the general equations of Einstein’s gravitation
for the exterior space of a spherical and static mass M will be henceforth called
Schwarzschild’s gravitation in a counterpoint to Newton’s gravitation, which is
the limit of Schwarzschild’s gravitation for large distances from the mass M (the
so-called region of weak field).

GRT’s high prestige comes fundamentally from Schwarzschild’s gravitation,
which sometimes is, in a mistaken way, confused with GRT itself, that is to say,
the part is taken by the whole.

In the next section, I present Schwarzschild’s metric and show that it be-
comes Minkowski’s metric, i.e., the flat space-time metric of Einstein’s Special
Relativity Theory (SRT), for infinitely large distances from the mass M. In the
third section, I show how Schwarzschild’s gravitation reduces to Newton’s clas-
sical gravitation when distances from the mass M are large, but not infinitely
large. 1 present in section 4 some final remarks.

2 Schwarzschild’s metric

The metric field or simply the metric of any space of N dimensions tells us
quantitatively how to measure distances in this space. The spaces of GRT and
SRT have N=4 dimensions. They are, in Cartesian coordinates, t,x,y and z,
one time coordinate and 3 spatial ones. Such a four-dimensional space is called
space-time.

SRT’s space-time is flat (also called Euclidean) and its metric is called
Minkowski’s metric (see [3]). Minkowski’s metric, in Cartesian coordinates,
characterizing it as a flat space, is given by the infinitesimal distance between
two events located at (¢,x,y,z) and (¢t + dt,x + dx,y + dy, z + dz):

(ds)? = —(cdt)? + (dz)? + (dy)? + (d2)?, (1)

where c is the speed of light in vacuum. In spherical coordinates r, 6 and ¢ it is
written as:

(ds)? = —(cdt)? + (dr)? + (rdf)* + (rsinfde)?. (2)

The metrics shown in Eqgs. 1 and 2 can also be written in matrix format and,
in this case, one has the so-called metric tensors g,,,. They are, respectively:
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The indices p and v take the values 0, 1, 2 and 3 corresponding to the time
coordinate and to the three spatial coordinates. As can be seen in Egs. 3 and
4, Minkowski’s metric tensor has only the diagonal terms, which means that
time and space are isotropic (coordinate axes are identical in any direction) and
homogeneous (the axes are identical in any point of space-time). This is also
true for Schwarzschild’s metric, as I show below.

SRT is a geometrical theory of flat space-time (Minkowski’s metric). GRT’s
metrics characterize curved space-times. Schwarzschild’s metric is the metric
corresponding to the exterior space of a spherical distribution of mass, without
rotation. The Sun, and many other stars and planets, can be approximated by
such a distribution. Next, I show how its mathematical expression is obtained
by means of GRT.

GRT’s prime equation is Einstein’s field equation, which is a tensor equation
that relate 4x4 tensors (the field here is the metric field g,,; see more details
in [4]). The full Einstein’s field equations, therefore, amount to 16 (=4x4)
equations and are written in a concise form as [4, Eq. 4]:
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where R,,, is Ricci’s tensor, g, is the metric tensor, R is the scalar curvature
and T}, is the energy-momentum tensor; all of these quantities are related to
the system to which the equation is applied. G is the universal gravitational
constant.

In the case of Schwarzschild’s solution 7},, = 0, because one is interested in
the external region of the mass distribution. Einstein’s equation reduces to the
vacuum field equations R, = 0 [4, sec. 3.2]. Rindler [2, pp. 228-229] calculates
the diagonal terms of g,, for the exterior of the static spherical distribution,
submitted to R,, = 0. The result is Schwarzschild’s metric. The metric and
the metric tensor are given below in spherical coordinates, which are the most
appropriate due to the symmetry of the corresponding physical system, namely,
a spherical distribution of mass. The metric is:
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and the metric tensor is:

—(1—=2GM/rc?) 0 0 0

— 0 172G%\/[/r¢:2 0 0
G = 0 0 20 ' @

0 0 0 (rsind)?

Egs. 6 and 7 represent the metric of a curved space-time, which for distances
tending to infinity (r — oo) reduces to the Minkowski flat space-time of SRT,
whose metric is given by Egs. 2 and 4, as can be easily verified.

3 Schwarzschild’s gravitation and Newton’s grav-
itation

The Austrian physicist and cosmologist Wolfgang Rindler comments on the
relation between Einstein’s gravitation and Newton’s gravitation (cf. [5, p. 4-
9]). I quote his words below, originally published in the American Journal of
Physics.

“Fver since Francis Bacon, it had been believed that the laws of Na-
ture were there to be ‘discovered’, if only one made the right ex-
periments. FEinstein taught us differently. He stressed the wvital role
of human inventiveness in the process. Newton ‘invented’ the force
of gravity to explain the motion of the planets. Finstein ‘invented’
curved spacetime and the geodesic law; in his theory there is no force
of gravity. If two such utterly different mathematical models can (al-
most) both describe the same observations, surely it must be admitted
that physical theories do not tell us what nature is, only what it is
like. The marvel is that nature seems to go along with some of the
‘simplest’ models that can be constructed ...”

Schwarzschild’s gravitation (particular solution of Einstein’s GRT) improves
Newton’s gravitation and in many physical situations they furnish almost the
same theoretical predictions for the same phenomena. I show in this section
the reason of the word “almost” that appears between parentheses in Rindler’s
text. In other words, I show how Schwarzschild’s gravitation — curved-space-
time gravitation — reduces to Newton’s gravitation — force-of-gravity theory.

In the previous section I mentioned that for » — oo (that is, too far away
from the mass M) Schwarzschild’s metric (Eq. 7) reduces to the flat space-time
metric (Eq. 4), which also represents a region where there are no masses, or



they are negligible, in such a way that gravitation is nil. For Einstein, this is
a situation in which space-time is flat and for Newton, in which the force of
gravity does not exist. In this case both interpretations are equivalent.

Now, before that » “tends to infinity” one has the situation in which r “is
large” but not “too large” as r — oco. One asks: how is Schwarzschild’s metric
expressed in such a case? I show in what follows that there is a situation in which
space-time is just slightly curved, which corresponds precisely to Newtonian
gravitation. In order to show that, I follow cosmologist Wolfgang Rindler’s
again (an alternative demonstration is in [6, Lecture 14]).

Rindler [2, p. 188] shows that Schwarzschild’s metric can be expressed in
terms of the gravitational potential ®, the language of Newton. The metric
given by Eq. 6 becomes:

(ds)? = —e2®/< (cdt)? + (dl)2, (8)

in which dl represents the whole spatial part of the metric (notice that for & =
constant = 0 one recovers Minkowski’s metric, Eqs. 1 and 2). The relativistic
gravitational potential ® is obtained by the comparison between Eqs. 6 and 8.
One gets [2, p. 230]:
2
c 2 GM
d=—n(l-=—). 9
2 ( 2 r ) ©)
Eq. 9 represents the exact expression of the relativistic gravitational poten-
tial equivalent to Schwarzschild’s curved space-time. For large distances from

the mass M, the term 2G'M /rc? is very small and the logarithmic function may
be expanded in a power series. The logarithmic expansion is given by:

1 1
ln(1+x):x—§x2+§x3—...,f0r|ac|<1. (10)
Making z = —2GM/rc?, the expansion for ® is obtained:
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Taking only the first term of the expansion one has the Newtonian gravi-
tational potential ® = —GM/r. In other words, Newtonian gravitation corre-
sponds to a slightly curved space-time, as previously stated, because with such
an approximation the potential ® that appears in the metric shown in Eq. 8 is
not the whole potential. It must be pointed out that the logarithmic expansion
given by Eq. 11 is only valid for the weak gravitational field; in the neighbor-
hood of the mass M, where the field is strong, the exact equation for ® (Eq. 9)
must be used.

Schwarzschild’s metric (Eq. 7) may also be reduced to a form corresponding
to the Newtonian gravitation. For this it is necessary to make another power
series expansion, now using the binomial expansion:
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The term (1 — 2GM/rc?)~! of Eq. 7 can be expanded using the above
power series. Keeping only the first two terms of the expansion one gets
(1 -2GM/rc?)~t 21+ 2GM/rc® and Schwarzschild’s metric becomes

—1+2GM/rc? 0 0 0
0 14+2GM/rc> 0 0
uv = 0 0 / r2 0 , (13)
0 0 0 (rsind)?

which is the mentioned slightly-curved metric, corresponding to the Newtonian
gravitation. Notice that it is Minkowski’s metric (Eq. 4) with a perturbation
2GM/rc?. Tt is interesting to note also that if one considers one more term of
the expansion (Eq. 12), the metric will be “almost” Newtonian, the “almost”
that Rindler mentions in the quotation at the beginning of this section. As more
terms are considered, the metric increasingly approaches Schwarzschild’s metric,
and one is closer to the mass M responsible for the curving of space-time (and of
space, cf. [3, section 3.1]). The biggest difference between Newton’s gravitation
and Schwarzschild’s gravitation is seen in the regions of strong gravitational
field, that is to say, in the near proximity of the mass M; “gravitational field”
here has two meanings: to Newton it represents the gravitational force and to
Schwarzschild it represents the space-time metric.

4 Additional remarks

As seen in the previous section, Newtonian gravitation can also be expressed in
terms of a curved space-time. This can be done in two ways: (a) it corresponds
to Minkowski’s space-time slightly modified to be non flat, and (b) it corresponds
to Schwarzschild’s space-time modified to be just slightly curved, which occurs
far away from the gravitational source (the mass M). Both visions are perfectly
described by Eq. 13, which for (a) is Eq. 4 slightly modified, and for (b) is Eq.
7 in the limit of very large 7, as shown in the end of section 3.

Schwarzschild’s solution — Schwarzschild’s gravitation — is the only GRT
solution that was experimentally proved in its whole. Its stunning success is
very often taken as the presumed success of all possible GRT’s solutions. One
takes the success of the part as the success of the whole. And this is not neces-
sarily true. For example, GRT’s cosmological solutions, applied to the cosmic
fluid (see [7], [8]), including the current cosmological model, are until now, with-
out exception, non-experimentally proved solutions. The modern cosmological
model only survives at the cost of important hypotheses not yet verified, namely,



the hypotheses of the existences of non-baryonic dark matter, of baryonic dark
matter and of dark energy (further details in [9]).

GRT is in fact still an uncompleted theory and therefore with limited ap-
plication. A more complete theory of gravitation has to implement quantum
mechanical precepts in its structure, in other words, it must be a theory of
quantum gravitation. It could have something from GRT in its formulation or it
could be a completely different theory from GRT, just like GRT is a completely
different theory from the Newtonian theory of gravitation.

This kind of advancement in science is by no means new. It has occurred,
for example, with the electromagnetic theory of the Scottish physicist and math-
ematician James Clerk Maxwell (1831-1879). The success of Maxwell’s electro-
magnetism is also spectacular, it has many successful applications, amongst
them, the prediction and experimental confirmation that light is an electro-
magnetic wave. But electromagnetism also found its limits, which were only
overcome with the advent of quantum mechanics, as were the cases of the pho-
toelectric effect and the blackbody radiation.

In 1948, the American physicist Richard Phillips Feynman (1918-1988) and
others formulated the quantum theory of electricity and magnetism, the quan-
tum electrodynamics which, with great success, incorporated quantum mechan-
ics to the classical electromagnetism. Those interested find an extraordinary
description of quantum electrodynamics by Feynman himself in the booklet
QED, the strange theory of light and matter (QED is the acronym for “Quan-
tum ElectroDynamics” [10]).

FEinstein himself recognized GRT’s limitations, when applied to physical sys-
tems that show solutions with singularities. The obvious examples are in the
most popular relativistic models of modern cosmology, which exhibit a sin-
gularity. Quantum effects are more evident in extreme situations of this sort.
Singularities are theoretical aberrations, which disappear when a more complete
theory is considered.
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