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nas decisões fáceis e dif́ıceis, pelas conversas esclarecedoras e pelo direcionamento ao longo

dessa pesquisa. Além de professor e orientador, teve que ser também psicólogo, conselheiro
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cussões, sempre relevantes, na sala do café, no DA, na sala de estudos, na sala de aula

ou mesmo na mesa de bar. A esses e também aos demais colegas de curso, sou grato por

compartilharem comigo o conhecimento e as dúvidas ao longo dos anos.
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Resumo

Amostras de nanotubos de carbono de parede única (SWNT) geralmente são compostas

por uma mistura de um grande número de diferentes espécies de SWNTs, cujas diferentes pro-

priedades podem ser determinadas a partir de um par de ı́ndices (n,m), ou, equivalentemente,

pelo seu diâmetro e ângulo quiral (dt, θ). Aqui, utilizamos a espectroscopia Raman ressonante

(RRS), uma técnica amplamente usada para a caracterização de amostras de SWNTs, para obter

quantitativamente a distribuição de diâmetros de uma amostra. Para tanto, nos concentramos

no modo Raman referente à vibração no modo de respiração radial (RBM) dos SWNTs, que, a

partir de sua frequência e da energia de excitação utilizada, pode ser univocamente associado

a uma única espécie de SWNT. Sua intensidade não depende apenas da abundância daquela

determinada espécie de SWNT, mas também da eficiência com a qual o SWNT causa o espal-

hamento Raman (sua seção de choque RBM). Combinando medidas de microscopia eletrônica de

transmissão de alta resolução (HRTEM) e de RRS em uma mesma amostra padrão de SWNTs,

pudemos determinar e calibrar a seção de choque RBM dos SWNTs. Assim, propomos agora um

método para determinar a distribuição de diâmetros de amostras de SWNTs utilizando apenas

RRS.
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Abstract

Single-walled carbon nanotubes (SWNT) samples usually consist of a mixture of several

different SWNT species, whose different properties can be determined from a pair of indices

(n,m), or, equivalently, from its diameter and chiral angle (dt, θ). Here, we use resonance

Raman spectroscopy (RRS), a technique widely used for the characterization of SWNT samples,

to quantitatively determine the diameter distribution of such a sample. In order to do this, we

focus on the Raman feature associated with the radial breathing mode (RBM) vibration of the

SWNTs, which, given its frequency and the excitation wavelength, can be uniquely associated

with a single SWNT species. Its intensity depends not only on the abundance of its related

species, but also on the efficiency with which the SWNT causes Raman scattering (its RBM

cross-section). By combining high resolution transmission electron microscopy (HRTEM) and

RRS on the same standard SWNT sample, we calibrated and determined the RBM cross-section

of a wide variety of SWNT species. Thus, we propose a method for the determination of the

diameter distribution of any SWNT sample with only RRS measurements.
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Chapter 1

Introduction

Nanometer-scaled materials are now commonplace in modern industrialized goods, with

applications across the spectrum of human activities [1, 2, 3, 4, 5, 6]. One such material

worthy of note are single-walled carbon nanotubes (SWNT), with promising applications

in fields as diverse as energy storage [7], molecular diodes and transistors [8, 9, 10], gas

sensors [11], the manufacture of strong and light-weight composite materials [12, 13, 14],

among others [13, 14]. Though grouped under the common designation of SWNT, carbon

nanotubes are in fact a collection of different species, each characterized by a pair of

indices (n,m), which determine the SWNT’s properties, such as its optical transition

energies, or whether it is metallic or semiconducting [15, 16].

One of the requirements for the widespread commercial application of any material

is the ability to efficiently and effectively assess the properties of a sample of material.

Resonance Raman spectroscopy (RRS) has been used extensively [17, 18, 19, 20, 21] as

a non-destructive tool to characterize isolated or bundled SWNT samples. By cross-

referencing the optical transition energy (Eii) and the frequency of the radial breathing

mode (ωRBM), determined by RRS measurements, we can assign (n,m) indices to the

SWNTs present in the studied sample, since each RBM feature can be attributed to a

different (n,m) species. The intensity of a RRS RBM feature depends on both the number

of scatterers – the abundance of its related (n,m) species in the sample – and the RRS

RBM cross-section for the SWNT species. Therefore, it can be used to determine the

relative population of each probed (n,m) SWNT species within the sample.

However, theoretical [22, 23, 24] and experimental [17, 18, 21, 25, 26, 27, 28] efforts
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to determine a SWNT sample’s (n,m) population distribution have relied strongly on the

assumed models for quantifying the photophysics of SWNTs. Luo et al. have obtained

SWNT population information by combining fluorescence and absorption spectroscopy

[17], as well as by observing the intensity of the Raman RBM overtone, while assuming

the exciton-photon coupling dominates the Raman RBM cross-section [18]. Jorio et al.

[21, 26] obtain the (n,m) populations of a sample based on the ratio of the observed

Raman RBM intensity to the theoretical value obtained by a non-orthogonal tight-binding

model. Okazaki et al. [25] compares experimental photoluminescence intensities with

those calculated by an extended tight-binding model in order to obtain a sample’s (n,m)

population, while at the same time attempting to validate their results by comparing

the photoluminescence-determined population with a diameter distribution obtained by

transmission electron microscopy of around 100 SWNTs. Thus, it became clear to us that

a more model-independent study of how the RRS RBM intensity depends on (n,m), as

well as a characterization of the population distribution of a SWNT sample was lacking.

By combining high resolution transmission electron microscopy (HRTEM) of 395

SWNTs and RRS measurements on the same sample, we are able to calibrate the RRS

RBM cross-section. In order for this calibration to be as general as possible, we chose a

SWNT sample produced by water-assisted chemical vapor deposition (“super-growth”),

which yields a vertical forest of nearly isolated, high purity SWNTs [20, 28, 29, 30, 31]. The

characteristics of this sample, as determined by several RRS measurements [20, 29, 30],

are close to those expected from ideal free-standing, isolated SWNTs. In particular, it

shows the highest Eii reported in the literature and a strict adherence to the relation

ωRBM = 227/dt nm · cm−1, indicating negligible environmental influence on the SWNTs’

behavior.

This calibration allows us to determine the diameter distribution of a given sample

in a non-destructive way, using only RRS measurements. It is hoped that this will be

instrumental for the widespread commercial use of SWNT.
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Chapter 2

Single-Walled Carbon Nanotubes

2.1 Geometrical description

Single-walled carbon nanotubes (SWNT) are a specific arrangement of carbon atoms

which can be described as a single graphene sheet rolled up into a cylinder. A SWNT

is uniquely characterized by its chiral vector ( ~Ch) [32], which connects the atoms in the

graphene lattice which are seamlessly sewn together during this hypothetical roll-up. In

order to obtain a seamless cylinder, ~Ch must be written as:

~Ch = n~a1 +m~a2 (2.1)

where ~a1 and ~a2 are the graphene lattice vectors and (n,m) are integers which determine
~Ch and, therefore, the SWNT’s properties.

As ~Ch spans the circumference of the cylinder, we can obtain the SWNT’s diameter

(dt) as:

dt =
| ~Ch|
π

=

√
n2|~a1|2 + 2nm

(
~a1 · ~a2

)
+m2|~a2|2

π
=
ac−c
π

√
3
(
n2 + nm+m2

)
(2.2)

where ac−c = 1.42Å is the distance between neighboring carbon atoms in graphene and

n, m are integers.

Another useful parameter is the chiral angle (θ), which is defined as the angle
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between ~Ch and ~a1:

tan θ =
|~a1 × ~Ch|
|~a1 · ~Ch|

=
m
√

3

m+ 2n
(2.3)

SWNTs with θ = 0◦ or θ = 30◦ are termed zig-zag and armchair, respectively, due to the

characteristic shapes of the C-C bonds along these directions. SWNTs with 0◦ < θ < 30◦

are termed chiral.

In addition to the circumferential “periodicity” described by ~Ch, SWNTs are peri-

odic in the traditional sense of the word along their axis. The translation vector ~T which

connects two equivalent carbon atoms along the SWNT axis can be written as:

~T = t1 ~a1 + t2 ~a2 (2.4)

for adequate integers t1 and t2. Since ~T is parallel to the SWNT axis, it is perpendicular

to ~Ch:

0 = ~Ch · ~T

0 = nt1|~a1|2 + (nt2 +mt1)(~a1 · ~a2) +mt2|~a2|2

0 = t1(2n+m) + t2(n+ 2m) (2.5)

The smallest t1 and t2 which satisfy (2.5) are:

t1 =
n+ 2m

dR
; t2 = −2n+m

dR
(2.6)

where dR is the greatest common divisor of (2n+m,n+ 2m).

The vectors ~Ch and ~T define the SWNT unit cell, as can be seen in figure 2.1.

The ratio of the area of the SWNT unit cell to that of graphene gives us the number of

hexagons (N) in the unit cell of a SWNT:

N =
| ~Ch × ~T |
|~a1 × ~a2|

=
2(n2 + nm+m2)

dR
(2.7)

Since each hexagon contains two unique carbon atoms, the number of atoms in the SWNT

unit cell is 2N .

Thus, we can describe the geometry of a SWNT species either by (n,m), or (dt,θ),

which will be done interchangeably throughout this text.
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Figure 2.1: The chiral vector ~Ch and the translation vector ~T for the (6,3) SWNT,
superimposed on a graphene lattice. The dashed rectangle is the (6,3) SWNT unit cell.
[33]

2.2 Electronic properties

In much the same way as a SWNTs’ geometrical structure can be described as a graphene

lattice over which we superimposed the periodicity of the chiral vector ~Ch and the transla-

tion vector ~T , so too can is its electronic structure, as a first approximation, be described

as that of graphene plus the SWNT’s periodicity requirements. This description gives

rise to the picture of cutting lines throughout the first Brillouin zone of graphene, which

describe the wavevectors available to SWNTs. This approach fails to address the effects of

curvature, as well as excitonic and many-body effects, which distort the calculated energy

levels, but is enough to give us much insight into the physics at hand.

2.2.1 Tight-binding approximation for graphene

As a first description, let us take graphene’s electronic structure near the Fermi level

as calculated by a first neighbors tight-binding approximation. This is a perturbative

approach in which the unperturbed eigenvectors are taken as the relevant atomic orbitals

– carbon’s 2pz orbital, denoted by ϕz here – and the crystal’s potential is the perturbation

[15]. The two inequivalent carbon atoms – here indexed as A and B – in graphene’s unit
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cell give rise to two Bloch functions:

ΦA,B =
1√
M

3∑
`=1

ei
~k· ~R`ϕz(~r − ~R`) (2.8)

where M is the number of unit cells in the crystal and ` = 1, 2, 3 represents the three first

neighbors of the relevant carbon atom. The interaction Hamiltonian (H) and the overlap

integral matrix for this system are hermitian and symmetric to a changing of indexes

A↔ B, and depend only on the sum of the phase factors (f(~k) =
∑

` e
i~k· ~R`), being of the

form:

H =

(
ε2p −γ0f(~k)

−γ0f ?(~k) ε2p

)
; S =

(
1 sf(~k)

sf ?(~k) 1

)
(2.9)

where ε2p is the energy of the atomic 2pz orbital, γ0 is the nearest-neighbor transfer

integral and s is the nearest-neighbor overlap integral.

Obtaining the energy eigenvalues reduces to solving the secular equation:

det
(
H− E(~k)S

)
= 0 (2.10)

where “det” denotes the determinant. This yields the familiar energy dispersion of

graphene, which, with a suitable choice of a reference frame can be written as:

E(~k) =
ε2p ± γ0w(~k)

1± sw(~k)
; w(~k) = |f(~k)| (2.11)

2.2.2 Quantization in the electronic structure of SWNTs

Now that we have a basic description of the electronic structure of graphene, we must

apply the periodicity imposed by the peculiar geometry of SWNTs [16]. Since our ideal

SWNT is of infinite length, the wavevector along the direction of the SWNT axis is

unconstrained, but the periodicity along the circumference of SWNTs restricts our choice

of wavevectors to those that satisfy:

~k · ~Ch = µ2π (2.12)

for integer µ. Note that | ~Ch| = πdt and let

~K1 =
2

dt

~Ch

| ~Ch|
; ~K2 =

~T

|~T |
(2.13)
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Figure 2.2: Graphene’s electronic structure close to the Fermi energy, as calculated by
the first-neighbor tight-binding approximation. The inset shows shows cuts along high-
symmetry lines. Here, γ0 and s are, respectively, 3.033 eV and 0.129. [15, 34]

thus we can write the allowed wavevectors of a SWNT as

~kSWNT = µ ~K1 + k ~K2 (2.14)

where µ is an integer and k is a real number. However, since N ~K1 is also a vector of

the graphene reciprocal lattice, we can limit the acceptable values to µ = 0, 1, . . . , N − 1,

limiting ourselves to the first Brillouin Zone (BZ). We can limit −π/|~T | < k < π/|~T | in

order to stay in the first BZ as well. Thus, we obtain the electronic energy dispersion of

SWNTs near the Fermi level as

Eµ(k) =
ε2p ± γ0w(~kSWNT)

1± sw(~kSWNT)
(2.15)

This gives rise to N pairs of bands of electronic states in the first BZ. However, N

can be a rather large number, these bands are all within a few eV of each other and cross

each other frequently, making the band structure rather confusing, as figure 2.3(b) shows.

It is usually more instructive to look at the density of electronic states (g(E)), given by

[16]:

g(E) =
2

N

N−1∑
µ=0

∫ [
dEµ(k)

dk

]−1
δ(Eµ(k)− E)dk (2.16)

One of the interesting properties of SWNTs is that, if one of the cutting lines crosses

the K point of the graphene BZ, which happens only for (2n + m)mod 3 = 0 [15], the
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(a) (b) (c)

Figure 2.3: (a) Allowed electronic states for the (4, 2) nanotube superimposed on
graphene’s π and π? bands. Each segment delimited by black bullets represents a single
energy band, as seen in (b). (b) Electronic energy bands for the (4, 2) nanotube. (c)
Density of electronic states for the band diagram in (b). [15, 34, 35]

SWNT has a non-zero g(E) at the Fermi energy, meaning it is metallic (M). If this is

not the case, the SWNT is semiconducting , and is classified as either type 1 (S1, for

(2n+m)mod 3 = 1), or type 2 (S2, for (2n+m)mod 3 = 2).

Note that whenever dEµ/dk = 0, g(E) diverges sharply. These local maxima in

density of states (DOS) are called van Hove singularities (vHS) and are responsible for

strong electronic transitions, causing SWNTs to behave almost like molecules and not

traditional crystals, with discrete, rather than continuous energy levels. The energy dif-

ference between the i-th vHS in the valence band and the j-th vHS in the conduction

band is dubbed EM,S
ij , for metallic (M) or semiconducting (S) SWNTs. Due to symmetry

considerations, the interaction of light polarized along the SWNT axis – which couples

much more strongly to the SWNT’s electrons than other polarizations – can only pro-

mote transitions where i = j [16, 32]. The transitions with smallest Eii will occur close

to the graphene K point, where the electronic dispersion is close to linear, and can be

approximated by [15]:

Eii(dt, θ) ≈ a
p

dt
+ βp

cos 3θ

d2t
(2.17)

where βp takes into account the weak angle dependence of the electronic dispersion, a is

an adjustable parameter and p = 1, 2, 3, 4, . . . for ES
11, E

S
22, E

M
11, E

S
33, . . ..

Even though this simplistic approach can give us much physical insight, for several

reasons it is not enough to quantitatively describe Eii, especially for tubes with small dt
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[36]. The first of these reasons is that we only took into account first neighbors in equation

(2.8), when realistically all neighbors must be accounted for. Also, when first calculating

the tight-binding approximation for graphene, we used only one electron per carbon atom,

since we were only interested in describing in the π bands, which are orthogonal to the

σ bonds in planar graphene [15]. When we rolled up the graphene sheet to form the

SWNT, this orthogonality was lost, but we did not take this into account in subsequent

expressions. Both of these aspects can be adequately described by the so-called non-

orthogonal extended tight-binding (ETB) [37, 38], in which both π- and σ-orbitals are

considered, as well as the entire SWNT geometry. First, one considers as many neighbors

as is practical for carbon atoms along the SWNT in order to obtain an approximate energy

dispersion. Then, while being constrained by the helical symmetry of the specific SWNT

one is interested in, the bonding angles between neighboring atoms are allowed to vary,

lowering the total energy of the system.

While the ETB can accurately describe the SWNT band structure, it does not

describe the excitonic nature of optical transitions in SWNTs [39, 40]. These effects

can be calculated within the tight-binding approximation by solving the Bethe-Salpeter

equation [41, 42], yielding both the excitonic wavefunctions and transition energies. Since

electron-electron repulsion and electron-hole attraction (many-body effects) in SWNTs

almost cancel out, they can be taken into account by a logarithmic correction [43, 44],

given by:

Eii(dt, θ) = a
p

dt

(
1 + b log

c

p/dt

)
+ βp

cos 3θ

d2t
(2.18)

where b is an adjustable parameter and c = 0.812nm−1. Additionally, since the excitonic

contribution is different for small and large ii [36], an extra term of γp/dt must be added

for transitions higher than EM
11 [36].

2.3 Vibrational properties

Similarly to the electronic structure, most of the SWNT’s basic vibrational properties can

be described in terms of graphene’s vibrational properties, while respecting the symmetry

imposed by the geometry of SWNTs [16]. However, the main vibrational mode of interest

to us, the radial breathing mode (RBM), cannot be accurately described by this approach.

The RBM is an oscillating symmetric radial displacement of the SWNT’s atoms, and the
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analogous displacement in graphene is merely a translation perpendicular to the graphene

plane, with no associated restoring force. A simple model that predicts the basic behavior

of the RBM is to consider the oscillation of a thin cylindrical shell of thickness h subjected

to an inward pressure p(x) = −Kx [45]:

ρ

Y
(1− ν2)∂x(t)

∂t2
+

4

d2t
x(t) = −(1− ν2)

Y h
Kx(t) (2.19)

where ρ is the cylinder’s density, Y is its Young’s modulus, ν is Poisson’s ratio and x(t)

is a small radial displacement. Solving for an oscillating x(t) = exp(iωRBMt) yields:

ωRBM =

√
4Y

ρ(1− ν2)
1

d2t
+
K

ρh

ωRBM =
A

dt

√
1 + C · d2t (2.20)

Where C is an environment-dependent constant [20] and both elasticity theory [46] and

experimental measurements [20] give the value A = 227nm·cm−1. In free space (p(x) = 0),

this is consistent with the familiar behavior of simple oscillating systems, where ω ∝√
(k/m), since the total mass of the system is proportional to the circumference (m ∝ ρdt)

and the stiffness is inversely proportional to it, like in a system of springs connected in

series (k ∝ Y/dt).
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Chapter 3

Theoretical background

3.1 Raman scattering

3.1.1 Classical description

Classically, Raman scattering is caused by the modulation of a material’s polarizability

due to its vibrations [16]. An incident oscillating electric field ~E will induce a polarization
~P given by:

~P =
↔
α ~E (3.1)

where
↔
α is the electric polarizability tensor, which is generally a function of the atomic

positions of the system. For simplicity, let us assume the system is vibrating in a sin-

gle normal vibrational mode Q. The polarizability can then be expanded around the

equilibrium positions of the atoms as:

↔
α =

↔
α0 +

∂
↔
α

∂Q

∣∣∣∣∣
0

Q+ · · · (3.2)

where the derivative is evaluated in the system’s equilibrium configuration. Let Q and ~E

be:

Q = Q0 cos(ωqt) ; ~E = ~E0 cos(ωIt) (3.3)

Up to first order, equation (3.1) can then be written as:

~P =
↔
α0

~E0 cos(ωIt) +
∂
↔
α

∂Q

∣∣∣∣∣
0

Q0
~E0 cos(ωqt) cos(ωIt) (3.4)
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Since 2 cos(a) cos(b) = cos(a+ b) + cos(a− b), this becomes:

~P =
↔
α0

~E0 cos(ωIt) +
1

2

∂
↔
α

∂Q

∣∣∣∣∣
0

Q0
~E0

[
cos(ωI + ωq)t+ cos(ωI − ωq)t

]
(3.5)

Thus, an incident monochromatic light of frequency ωI will scatter elastically – Rayleigh

scattering – and inelastically – Raman scattering – provided (∂
↔
α/∂Q)0 6= 0. The scattered

light with frequencies (ωI − ωq) and (ωI + ωq) are referred to as Stokes and anti-Stokes

scattering, respectively.

3.1.2 Quantum mechanical description

Within the framework of quantum mechanics, Raman scattering in crystals is the inelastic

scattering of a photon by a phonon [16]. The most intuitive process that allows this scat-

tering in a large crystal is one in which an incident photon of energy ~ωI is absorbed by

the crystal, promoting an electron to an excited state. In the Stokes process, before relax-

ing back to its ground state, the excited electron emits a phonon, losing ~ωq energy. The

excited electron then relaxes back to its original state by an optical transition, emitting

a scattered photon of energy ~ωS = ~ωI − ~ωq. This process is illustrated schematically

in figure 3.1.

Figure 3.1: Schematic representation of the energy levels and the Feynmann diagram for
the Stokes process in Raman scattering. An electron is excited by an incident photon
~ωI , emits a phonon ~ωq and relaxes by emitting a photon of energy ~ωS = ~ωI − ~ωq.
[47]
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The probability for this scattering to occur is described by third-order time-dependent

perturbation theory [15, 16, 33, 34, 47, 48, 49]. Here, instead of deducing the expres-

sion for the scattering probability, we shall concentrate on an analysis of the description

of the system and the use of the end result for calculating RBM Raman intensities in

SWNTs. In order to apply perturbation theory, we define the Hamiltonian of the system

as H = H0 +H1, where:

H0 = HM +HR

H1 = HMR +Hep

(3.6)

such that H0 � H1 and H1 is treated as a perturbation. Here, HM and HR represent the

Hamiltonians for the matter and radiation parts of the system, respectively, and HMR

and Hep describe the matter-radiation and exciton-phonon couplings, respectively. The

process illustrated in figure 3.1 involves four eigenstates of H0: the initial state |i〉, two

intermediate states |a〉 and |b〉, and the final state |f〉. An eigenstate with eigenvalue Ex

is described as |x〉 = |nI , nS, nq, ϕx〉, where nI is the number existing incident photons,

nS is the number of existing scattered photons, nq is the number of existing phonons and

ϕx is the electron’s state. The relevant states and their eigenvalues are then:

|i 〉 = | nI , nS , nq , ϕi 〉
|a〉 = | nI − 1 , nS , nq , ϕa 〉
|b 〉 = | nI − 1 , nS , nq + 1 , ϕb 〉
|f〉 = | nI − 1 , nS + 1 , nq + 1 , ϕf 〉

(3.7)

and their eigenvalues are:

Ei = nI~ωI + nS~ωS + nq~ωq + Ee
i

Ea = (nI − 1)~ωI + nS~ωS + nq~ωq + Ee
a

Eb = (nI − 1)~ωI + nS~ωS + (nq + 1)~ωq + Ee
b

Ef = (nI − 1)~ωI + (nS + 1)~ωS + (nq + 1)~ωq + Ee
f

(3.8)

where Ee
x is the energy of the electronic state described by ϕx.

The standard time-dependent perturbation theory formalism gives the Raman cross-

section for this process as [47]:

σ = C
∑
f

∣∣∣∣∣∑
a,b

〈f |HMR|b〉〈b|Hep|a〉〈a|HMR|i〉
(Ei − Ea)(Ei − Eb)

∣∣∣∣∣
2

δ(Ei − Ef ) (3.9)

where C depends on the incident light source and the material’s refraction index.
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Whenever the denominator in equation (3.9) approaches zero, the cross-section be-

comes very large. This phenomenon is referred to as resonance Raman scattering (RRS)

and, when present, dominates over non-resonant scattering. RRS will occur whenever the

energy of either the incident or scattered photons matches a SWNT’s Eii optical transi-

tion energy. As written, the right hand side of equation (3.9) diverges whenever either

resonance condition is achieved, but this is unphysical. Realistically, all of the processes

involved in RRS take a finite time to occur, such that Heisenberg’s uncertainty princi-

ple restricts the accuracy to which the energy of the excited states is determined. This

leads to the addition of a damping factor of iγ in the denominator, which is inversely

proportional to the lifetime of the intermediate excited states [16]. This damping factor

effectively limits the maximum value of the cross-section, while broadening the resonance

profile.

3.1.3 Selection rules for Raman scattering

The Raman cross-section displayed in equation (3.9) will only be different from zero if

certain selection rules are respected. The most obvious of these is energy conservation,

that is, Ef = Ei. In the limit where the matter-radiation interaction is weak, and where

one extra phonon in the system does not appreciably change the electronic states of the

crystal – which is true for large crystals and, specifically, for SWNTs –, the final electronic

state ϕf is very close to the initial state ϕi, and the energy due to the new phonon and

scattered photon equals that of the incident photon (~ωI = ~ωS + ~ωq), automatically

satisfying energy conservation.

Momentum conservation must also be observed throughout the entire process. The

maximum momentum transfer from the radiation field to the crystal occurs for backscat-

tered light, such that ~kI +~kS = ~kq, where kI and kS are the wavenumbers for incident

and scattered light, respectively, and kq is the wavenumber for the scattered phonon. The

maximum kq is given by the size of the first BZ, which is π/a, where a is the crystal’s

lattice constant. For SWNTs, this is typically around 108m−1. For visible light, kI and kS

are of the order of 106m−1 for visible light. Therefore, momentum conservation restricts

the phonon’s wavenumber to the vicinity of the center of the first BZ, since we must obey

kq � π/a.

Another less obvious requirement is that there must be non-zero matrix element

14



〈x|H1|y〉 connecting the initial and final states. As briefly discussed in section 2.2.2, only

excitonic transition of the form Eii can be promoted by light polarized along the SWNT’s

axis, that is, only some 〈x|HMR|y〉 are non-zero [32, 16]. In the specific case of the RBM

phonon, which is a totally symmetric phonon, similar symmetry considerations to those

involved in SWNT’s optical transitions restrict the non-zero 〈x|Hep|y〉 to those that leave

the excitonic state unaltered, or that return the exciton to the original ground state –

which is not very likely because of the small energy associated with the RBM phonon.

Taking these facts into account, the dominant terms of equation (3.9) for the scat-

tering of light by one RBM phonon can be written as [23]:

σ = C

∣∣∣∣∣∑
a

〈0|HMR|a〉〈a|Hep|a〉〈a|HMR|0〉
(Elaser − Eii + iγ)(Elaser − Eii − ~ωRBM + iγ)

∣∣∣∣∣
2

(3.10)

where |0〉 is the SWNT ground state, the sum needs only extend over the bright excitonic

states [23] and we assumed for simplicity that the resonance window width is the same

for both intermediate states. In the case of the RBM phonon, this assumption is also

justified by the fact that the resonances with the incident and scattered photons cannot

be experimentally resolved, since they are very close in energy.

3.2 Matrix elements calculations

In order to proceed with the calculation of the Raman cross-section, we must write both

the perturbation Hamiltonian H1 and the unperturbed eigenstates explicitly. In section

2.2.2, we presented methods for the calculation of a SWNT’s electronic wavefunctions,

and gave a brief description of how to extend the treatment to excitonic wavefunctions.

Here, we show the explicit form of the perturbation Hamiltonians, which allow us to

obtain the matrix elements needed in equation (3.10).

3.2.1 Matter-radiation interaction Hamiltonian

Classical electromagnetism gives us the Hamiltonian for a spinless electron in the presence

of an external electromagnetic field in the Coulomb gauge (~∇ · ~A = 0) as [16]:

H =

[
|~p|2

2m
+ V (~r)

]
− e

m
~p · ~A+

e2| ~A|2

2m
(3.11)
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where ~p, m and e are the electron’s momentum, mass and charge, ~A and V (~r) are the vec-

tor potential and the crystal’s potential, and ~A points along the direction of the oscillating

incident electric field. The term in brackets is simply H0 for an electron in the crystal.

In the weak field regime, we can neglect the | ~A|2 term, such that the matter-radiation

interaction becomes:

HMR = − e

m
~p · ~A (3.12)

We are interested in describing an interaction between matter and visible light

polarized along a SWNT’s axis. Since the wavelength of visible light is much larger than

a SWNT’s diameter, we can neglect the spacial dependence of ~A. A gauge transformation

[50] then transforms equation (3.12) into:

HMR = − ~D · ~E (3.13)

where ~D = e~r is the dipole moment of the electron and ~E is the electric field. This is

known as the dipole approximation for matter-radiation interaction, since it also describes

the interaction between a pure dipole and an electric field.

Thus, knowledge of the relevant excitonic wavefunctions allows us to obtain the

matter-radiation matrix elements involved in calculating the Raman cross-section.

3.2.2 Exciton-phonon interaction Hamiltonian

A deformation of the crystal lattice caused by a vibration changes the electronic structure

of a material, introducing a coupling between a crystal’s electronic and vibrational states.

Within the Born-Oppenheimer approximation, which considers the electronic Hamiltonian

to be independent from the momentum of the nuclei, this coupling is obtained as the

difference between the Hamiltonian with atoms displaced by the vibration and with atoms

at their equilibrium positions. Since the electron’s momentum contributes equally to both

Hamiltonians, this coupling can be written simply as [16, 51]:

Hep = V~Rd
(~r)− V~R0

(~r) ≡ δV (~r) (3.14)

where V~Rd
(~r) is the potential caused by the crystal’s atoms at their displaced positions

and V~R0
(~r) is the potential caused by the crystal’s atoms at their equilibrium positions.
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In order to progress further, we consider the potential of each carbon atom as the

Kohn-Sham potential of a neutral pseudo-atom (v(~r − ~R`)) at position ~R` [16, 51]:

δV (~r) =
∑
`

v(~r − ~Rd,`)− v(~r − ~R0,`) (3.15)

where the sum is over all the carbon atoms one wishes to include in the approximation.

If we consider only small displacements ~Qi, such that ~Rd,` = ~R0,` + ~Q`, we get:

Hep = δV (~r) = −
∑
`

[
~∇~R`

v(~r − ~R0,`)
]
~R0,`

· ~Q` (3.16)

where the gradient ~∇~R`
operates on the coordinates of the atoms. Here, ~Q` points along

the phonon eigenvector – radially outward, in the case of the RBM phonon – and has

amplitude [16]:

| ~Q`| =

√
~nq

NCmCωq
(3.17)

where NC is the total number of carbon atoms in the SWNT, mC is the mass of each

atom, nq is the number of existing phonons and ωq is the phonon’s frequency.

Thus, Hep can be obtained explicitly and knowledge of the relevant excitonic wave-

functions allows us to obtain the exciton-phonon matrix elements involved in calculating

the Raman cross-section.

3.2.3 Resonance window width

The resonance window width is determined by the lifetime of the intermediate states in

equation (3.10). The lifetime, or its so-called relaxation time τ , is related to the resonance

window width γ by the uncertainty principle as[16]:

γ =
~
τ

(3.18)

In order to calculate the lifetime of a given state, we must consider all available

scattering processes. However, the main scattering event for photoexcited electrons in

SWNTs is phonon scattering [16], for which we have already obtained the interaction

Hamiltonian in section 3.2.2. In the case of metallic SWNTs, plasmon scattering is also

expected to be a relevant process and is treated qualitatively by Park et al. in [22].
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Even by restricting ourselves only to electron-phonon scattering, we must still con-

sider both the creation and absorption of any phonon mode, which can scatter the electron

to any available electronic state. Our calculations are reduced by requiring energy and

momentum conservations, as well as by the fact that the symmetries of the electronic

states and the electron-phonon interaction restricts the allowed scattering processes. The

electron-phonon interaction contribution to the resonance window width is given by [16]:

γ =
S~

8πmCdt

∑
µ′,k′,q

∣∣〈ϕµ′(k′)|Hep|ϕµ(k)〉
∣∣2

~ωq(k′ − k)

[
dEµ′(k

′)

dk′

]−1
×

×

{
δ
(
Eµ′(k

′)− Eµ(k)− ~ωq(k′ − k)
)

e~ωq(k′−k)/kBT − 1
+

+
δ
(
Eµ′(k

′)− Eµ(k) + ~ωq(k′ − k)
)

1− e~ωq(k′−k)/kBT

} (3.19)

where S is the area of the graphene unit cell, mC is the mass of a carbon atom, dt is the

SWNT diameter, |ϕµ(k)〉(|ϕµ′(k′)〉 is the initial (scattered) electronic state, denoted by

the band index µ(µ′) and wavenumber k(k′) and q is the phonon mode. The terms in

curly brackets account for energy conservation in the creation or absorption of a phonon

with wavenumber (k′ − k) and energy ~ωq(k′ − k).
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Chapter 4

Experimental details

4.1 Sample selection and preparation

The SWNT sample chosen for this study was produced by water-assisted chemical va-

por deposition (CVD) (“super-growth”) [31], yielding a millimeter-long vertical forest of

nearly isolated, high quality SWNTs [20, 28, 29, 30, 31]. Its wide dt distribution – 1nm to

6nm, as established by high resolution transmission electron microscopy (HRTEM) [52]

– along with its high quality SWNTs make this an ideal sample for a calibration of its

RBM Raman intensity. The electronic and vibrational characteristics of this sample, as

determined by several RRS measurements [20, 29, 30], are close to those expected from

ideal free-standing, isolated SWNTs. In particular, it shows the highest Eii reported in

the literature and a strict adherence to the relation ωRBM = 227/dt nm · cm−1, indicating

negligible environmental influence on the SWNTs’ behavior.

In order for us to obtain a consistent calibration of the Raman cross-section, the

same “super-growth” sample was used for both HRTEM and RRS measurements, but

due to the different requirements of the techniques, were prepared in different ways.

Raman measurements were performed on the as-grown sample, requiring no special sample

preparation. As-grown, the “super-growth” SWNT sample is a carpet-like vertical forest

of nearly vertically aligned, mostly isolated SWNTs, supported on a silicon wafer, as

shown in figure 4.1 [31].

For HRTEM measurements, the sample was prepared by placing several very small
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Figure 4.1: SWNT forest grown with water-assisted CVD. (A) Picture of a 2.5mm tall
SWNT forest on a 7mm by 7mm silicon wafer. A matchstick on the left and ruler with
millimeter markings on the right are for size reference. (B) Scanning electron microscopy
image of the same SWNT forest. Scale bar, 1 mm. (C) SEM image of the SWNT forest
ledge. Scale bar, 1 µm. (D) Low-resolution transmission electron microscopy image of
the nanotubes. Scale bar, 100 nm. (E) HRTEM image of the SWNTs. Scale bar, 5 nm.
From [31].

particles of dry, as-grown carbon nanotubes on a holey carbon TEM grid (EMS 200 mesh

copper grid) supported on a piece of tissue, and wetted with a drop of methanol [53, 54].

The sample particles become compressed as the solvent evaporates, and adhere to the

support film. In the process, SWNTs at the particles’ extremities fold onto themselves

and create loops, some of which end up being positioned normal to the grid plane. This

way, it is possible to image the cross-sections of the SWNTs, represented as circles in

figure 4.2(a), which facilitates diameter measurements.
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Figure 4.2: (a) HRTEM image of the SWNT sample. The white circles represent circular
fittings to determine the dt. (b) Diameter distribution of the SWNT sample measured
from HRTEM images, with a binning of 0.2nm. The solid line is the sum of two log-normal
distributions, represented as dashed lines, plus a small upshift, for clarity.

4.2 High resolution transmission electron microscopy

HRTEM imaging was done by collaborators from NASA Johnson Space Center, USA,

using a JEOL 2000 FX instrument equipped with a LaB6 gun, operating at a 160kV

acceleration voltage and low enough beam intensity so that no irradiation damage was

caused to the sample [53, 54]. Images were recorded with a 4 Megapixel Gatan CCD at

a ×250,000 magnification.

Since we required accurate measurement of the SWNT diameters, and incorrect

calibration of the HRTEM magnification is the largest source of systematic error, great

care was taken to verify the magnification factor at ×250,000. Magnification factors were

calibrated at×600,000 and above by imaging gold crystals and determining the gold lattice

parameters via their images’ Fourier transforms. Then, down to ×400,000 by comparison

to the graphite lattice spacing imaged at subsequently lower magnifications, and down

to ×250,000 by comparison of the dimensions of multi-wall carbon nanotubes imaged at

subsequently lower magnifications. In this way, a good gold lattice-based calibration was

established and propagated towards lower magnifications. The calibration at ×250,000

deviated from the factory setting by only 1.5%, and was deemed satisfactory and accurate

to within ±1.5%.
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Homemade software developed by our collaborators from NASA was used to super-

impose circles onto HRTEM images, adjust their diameters and positions until the best

fit was achieved and the diameter was then determined. The accuracy of the fitting was

estimated to be 0.08nm by repeatedly measuring several nanotubes and observing the

spread of the determined diameters. The white circles in figure 4.2(a) are the best fits

for seven SWNTs present in this image. Nanotubes with non-circular cross-sections were

excluded from the analysis. The diameters of 395 different SWNTs were determined in

this fashion, yielding the experimental dt distribution seen in figure 4.2(b), obtained by

binning the measured dt in 0.2nm intervals. Error bars are determined as the standard

deviation of a binomial distribution (SD =
√
Np(1− p)), where N = 395 is the sample

size and p is the probability of finding a SWNT with a dt that falls within the range of

each bin. The experimentally determined diameter distribution was fitted as the sum of

two log-normal distributions [55] defined as:

fi =
Ai
dtσi

exp

(
− ln2(dt/d̄i)

2σ2
i

)
(4.1)

where A1(A2) = 4(28), d̄1(d̄2) = 1.84(3.38)nm, σ1(σ2) = 0.183(0.223) are the parameters

obtained from the fitting.

4.3 Raman spectroscopy

Raman spectra of the sample were obtained with 51 closely spaced laser lines over the

1.28eV to 1.73eV energy range, with a Ti:Sapphire laser and a SPEX triple monochro-

mator Raman spectrometer by collaborators from the Chemistry Division of Los Alamos

National Laboratory, USA. Laser power densities were kept constant and low enough

(25mW with a 10cm focal distance objective) to avoid heating effects.

The Raman spectrum of a standard tylenol sample was measured after each RBM

measurement, under the same laser power and focus conditions, and was used for intensity

calibration of the RBM spectra. For each laser line, the non-resonant, integrated intensity

of the two tylenol Raman peaks at 151cm−1 and 213cm−1 were used as intensity standards

for the SWNT spectrum taken with the same laser excitation energy. In this way, the

Raman intensity dependence on the constant C from equation (3.10), as well as the

instrument response were accounted for, allowing us to accurately track the evolution of

the sample’s Raman signal over the available energy range.
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Figure 4.3: Experimentally obtained intensity-calibrated RBM RRS map. Intensity cal-
ibration was made by measuring a standard tylenol sample at each laser line. Symbols
indicate the transition energies and ωRBM for different SWNTs: diamonds for EM

11, squares
for ES1

22 and triangles for ES2
22 . Brighter colors indicate higher Raman intensity. Transition

energy values were obtained with equation (2.18) and the parameters from [29].

The intensity-calibrated RBM RRS map is shown in figure 4.3, along with symbols

indicating the optical transition energies and ωRBM for experimentally observed SWNTs:

diamonds represent EM
11, squares represent ES1

22 and triangles represent ES2
22 . Transition

energy values were obtained with equation (2.18) and the parameters from [29].
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Chapter 5

Combining HRTEM and Raman

In possession of both the experimental diameter distribution and the intensity-calibrated

RBM RRS map of the sample, we can calibrate the Raman cross-section and use this

information to determine the diameter distribution of other SWNT samples. However, in

order to proceed we must make some assumptions, described in the following section.

5.1 Model assumptions

5.1.1 Population model assumptions

HRTEM measurements determined the diameter distribution of the studied sample, not

the relative population of each (n,m) species. Therefore, we assumed that SWNTs of

different chiral angles are equally abundant for the “super-growth” process. Though the

assumption of chirality-independent growth should not be rigorously true due to structural

energy considerations, especially towards very small diameter tubes (dt < 1nm) [56, 57],

any under- (over-) estimation of the population of tubes with a certain chiral angle is

compensated by an over- (under-) estimation of the RRS RBM cross-section dependence

on θ. Therefore, its dt dependence and consequent diameter distribution determination

will still be correct.

Accepting this assumption, the relative population of each SWNT species must scale

as the diameter distribution times 1/dt, since the number of different (n,m) species of a
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Figure 5.1: The modeled population of each nanotube species for the “super-growth”
sample. The colorbar represents a species’ chiral angle, in degrees. There is no need to
compute the relative population of tubes with dt greater than 4nm because their RBM
frequencies fall too close to the elastically scattered laser light, below the cutoff value of
our Raman spectrometer.

given diameter scales linearly with dt. Also, chiral SWNTs (0◦ < θ < 30◦) are twice as

populous as achiral ones, since both right-handed and left-handed isomers contribute to

the total Raman intensity of a RBM feature assigned to an (n,m) species. The modeled

(n,m) population for the “super-growth” sample is shown in figure 5.1

5.1.2 Raman cross-section model assumptions

The RBM resonance profiles obtained experimentally showed only one resonance peak,

thus we were unable to separate the contributions from resonances with the incident

and scattered photons. This happened because, as expected from theoretical calculations

[22], the resonance window width was larger than the RBM phonon energy. Therefore,

we considered the resonance window width γ(n,m) to be the same for both intermediate

states.

Another constraint on experimental RRS profiles is our inability to separate the

contributions to the Raman intensity originating from the matter-radiation and exciton-

phonon interaction matrix elements. Therefore, the product of all matrix elements were

combined into a single matrix element value M(n,m) for each (n,m) species.
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Note that, since we cannot know the absolute number of SWNTs of a given species

in the spectrometer’s focal region, we cannot obtain the absolute Raman cross-section,

but rather the relative cross-section, which is related to the absolute cross-section by a

multiplicative constant.

We modeled M(n,m) and γ(n,m) according to the following equations:

M(n,m) =

[
MA +

MB

dt
+
MC cos(3θ)

d2t

]2
γ(n,m) = γA +

γB
dt

+
γC cos(3θ)

d2t

(5.1)

where Mi and γi (i =a,b,c) are adjustable parameters with different values for metallic,

S1 and S2 SWNTs, since theoretical calculations [22, 23] show that the both γ(n,m) and

M(n,m) are very different depending on the SWNT’s type.

These function forms were chosen because they are able to closely reproduce the-

oretical calculations available in the literature [22, 23], while still limiting the fitting

parameters to an acceptably small number.

5.2 Simulating a resonance Raman map

Each SWNT in the sample contributes to the RBM RRS spectra with a Lorentzian line-

shape [16] centered on its RBM frequency, given by:

L(n,m,ω,Elaser) = I(n,m,Elaser)
Γ/2

(ω − ωRBM)2 + (Γ/2)2
(5.2)

where ω is the Raman shift, Γ is the Lorentzian’s full-width at half-maximum – ob-

tained experimentally and originating from both the spectrometer’s resolution and the

uncertainty in the phonon’s energy – and I(n,m,Elaser) is its total integrated intensity at

excitation laser energy Elaser which, once the Raman spectrum has been corrected for the

spectrometer’s response, is proportional to the Raman cross-section. In our study, we set

Γ = 3cm−1, since this was the experimentally observed average for our sample. This value

is in agreement with the natural FWHM for SWNT [58].
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Type MA MB MC γA γB γC

M 1.68 0.52 5.54 23.03 48.84 1.03
S1 -19.62 29.35 4.23 -3.45 65.10 7.22
S2 -1.83 3.72 1.61 -10.12 42.56 -6.84

Table 5.1: Fitted parameters Mi and γi for metallic (M: 2n + m mod 3 = 0), semicon-
ductor type 1 (S1 : 2n + m mod 3 = 1) and type 2 (S2 : 2n + m mod 3 = 2) SWNTs.
These parameters are to be used in equation (5.1) with dt in nm, yielding M(n,m) in
arbitrary units and γ(n,m) in meV.

From equation (3.10) and our model assumptions, we have:

I(n,m,Elaser) =

∣∣∣∣ M(n,m)

(Elaser − Eii + iγ(n,m))(Elaser − ~ωRBM − Eii + iγ(n,m))

∣∣∣∣2 (5.3)

γ(n,m) and M(n,m) are described by equations (5.1) and are assumed to be constant over

the observed energy range.

Since each spectrum (S(ω,Elaser)) is a sum of the individual contributions of all

SWNTs, it can be written as:

S(ω,Elaser) =
∑
n,m

Pop(n,m)L(n,m,ω) (5.4)

where Pop(n,m) is the population of the (n,m) nanotube species.

5.3 Results

Using our models for Pop(n,m), γ(n,m) and M(n,m), we simulate a RBM RRS map and

adjust the fitting parameters γi and Mi in order to obtain a least squares fit to the

experimental map, shown in figure 5.2(b). The best values for the fitting parameters,

considering the excitonic transitions ES
22 and the lower branch of EM

11 are listed in table

5.1 for dt in nm, γ(n,m) in meV and M(n,m) in arbitrary units.

Figure 5.2(c) shows the absolute value of the subtraction between the experimental

and modeled maps. The overall low intensity of the features in figure 5.2(c) shows that the

functions chosen for M(n,m) and γ(n,m) are representative of their experimental behavior.

The most pronounced differences between the experimental and the modeled maps come

from a region above EM
11 at around 105cm−1, where there is no intensity at all on the
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Figure 5.2: RBM RRS maps. (a) Intensity-calibrated experimental RBM RRS map. (b)
Modeled RBM RRS map, obtained by using equation (5.4) with the fitting parameters in
table 5.1 at the same excitation energies range as (a). (c) Absolute value of the subtraction
of the experimental (a) and modeled (b) maps. Symbols indicate the transition energies
and ωRBM for different SWNTs: diamonds for EM

11, squares for ES1
22 and triangles for ES2

22 .
The color bar scale is the same for all three maps. Transition energy values were obtained
with equation (2.18) and the parameters from [29].

simulated map. This does not reflect the actual expected Raman intensity values, but is

rather an artifact of the simulation: only ES1
22 , ES2

22 and EM
11 resonances were simulated,

while experimentally the ES
33 resonance becomes important in this region.

5.3.1 Comparison of experimental and theoretical M and γ

Figures 5.3(a)–(c) show a comparison of experimental and theoretical [22] values for the

resonance window width γ(n,m). Additional theoretical data for metallic SWNTs with

dt > 1.5nm was kindly supplied by J S Park. Of note is the fact that the dependence

of γ(n,m) on chiral angle is similar for both experimental and theoretical values: γM is

practically independent of chiral angle, while γS1(γS2) decreases (increases) when going

from zig-zag (Z) to armchair (A) SWNTs. There is very good agreement between theo-

retical and experimental γS2 , while there is a slight underestimation (≈ 15meV) on the

theoretical calculations for γS1 . There is a larger underestimation (≈ 40meV) for γM. The

underestimation of γM was already expected [22], since the theoretical calculations from

the reference do not take plasmon scattering into account. One caveat is the fact that

our measurements were made on an ensemble of SWNTs, each of which might be under

the influence of a slightly different environment. This might lead to each SWNT having a

slightly different Eii transition and the sum of the contributions of all these SWNTs can
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Figure 5.3: Experimental (solid circles) and theoretical (open circles) [22, 23] γ(n,m) (left)
and M(n,m) (right), separated by SWNT type (M,S1,S2). Values are for the EM

11 and ES
22

transitions. The letters A and Z indicate armchair-like (θ ≈ 30◦) and zig-zag-like (θ ≈ 0◦)
SWNTs, respectively. The arrow with θ beside it indicates how the chiral angle varies
within a 2n + m = constant family. Additional data for dt > 1.5nm SWNTs was kindly
supplied by J S Park. The chiral angle dependence of γ(n,m) for metallic tubes is too small
to be seen here.
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lead to the appearance of an enlarged γ(n,m).

Figures 5.3(d)–(f) show a comparison of experimental and theoretical [23] values for

the matrix element M(n,m). Theoretical values were obtained by the following equation:

M(n,m) =

√√√√Iref ×

[
γ2ref +

(
~ωRBM

2

)2
]

(5.5)

where Iref is the intensity per unit length, extracted from FIG.14(a) and FIG.14(c) of

reference [23] and γref = 0.06eV is the value assumed in their paper for the resonance

window width of all SWNTs. This is obtained by choosing Elaser = Eii + ~ωRBM/2 in

equation (5.3), which is the laser excitation energy for maximum RRS RBM intensity.

Consistently with the theoretical predictions, our measurements show the largest

values for MS1 , while MS2 and MM are of the same order of magnitude. However, we

find a steeper dependence ofMS1 on tube diameter than predicted by theory [23], as well

as a theoretical overestimation of the chiral angle dependence of MS2 .
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Chapter 6

Applications

6.1 Determining a sample’s diameter distribution from

Raman RBM spectra

In order to determine the diameter distribution of a SWNT sample from RBM RRS

measurements alone, one needs to know the RRS RBM cross-section of each tube in the

sample, which includes knowledge of Eii, ωRBM, M(n,m) and γ(n,m). Eii and ωRBM are

obtained from the literature for a wide variety of samples and a general picture has been

provided for both [20, 30]. The values for M(n,m) and γ(n,m) can be determined by using

the fitting parameters provided in table 5.1 in equations (5.1) for the ES
22 and EM

11 optical

transitions, under the assumptions described in section 5.1. We then compare the pre-

dicted RRS RBM intensities with the relative intensity ratios obtained from experimental

RRS RBM spectra and obtain the diameter distribution of the sample.

The easiest way to compare the experimental intensities with the calculated RRS

RBM cross-sections is to compare the experimental spectra with simulated spectra ob-

tained by assuming a “dummy” constant diameter distribution, a procedure which is

accomplished with the help of the MatLab program SpectraSimulation.m in appendix

A. (Important: this program only simulates resonance with ES
22 and EM

11 ). We

assume that SWNTs with different chiral angles are equally abundant. This means that
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Figure 6.1: The modeled population of each nanotube species for the “dummy” popu-
lation, with a constant diameter distribution. The colorbar represents a species’ chiral
angle, in degrees.

the population of each tube is given by:

Pop(n,m) =

{
1/dt if θ = 0◦ or θ = 30◦

2/dt otherwise
(6.1)

since the density of different (n,m) species scales linearly with dt and chiral tubes have

optical isomers (right-handed and left-handed varieties both of which contribute to the

same RBM feature) while achiral tubes do not. This “dummy” population is shown in

figure 6.1. Using this “dummy” population, we simulate spectra using the same laser

excitation energies that were used experimentally with equation (5.4).

The MatLab program SpectraSimulation.m in appendix A generates a spectrum

using the equations and parameters described here for γ(n,m) and M(n,m), taking only

ES
22 and EM

11 resonances into account. The simulated spectrum is exported as the file

SimSpec[Elaser].txt, where the used excitation energy substitutes the string [Elaser] in

the file name. Parameters adequate for SWNT samples with small bundles or SWNTs

wrapped in surfactants are used for Eii [36] and ωRBM [20]. All one needs to do is to run

the program and state the Elaser that was used and the observed experimental full-width

at half-maximum of RBM features (Γ) in cm−1. Bear in mind that the parameters defined

internally by the program for Eii and ωRBM may need to be changed, depending on the

studied sample.
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Figure 6.2: Experimental (blue) spectrum from an alcohol CVD SWNT sample [36] and
simulated (red) spectrum, obtained by using equation 5.4 and the “dummy” constant
population distribution (see text). The two spectra are normalized by a common RBM
peak. As expected, the spectra do not match, since the sample’s diameter distribution is
not the same as the “dummy” constant diameter distribution.

Now, compare each experimental RBM spectrum with its simulated counterpart by

fitting each of them with the same number of Lorentzians, each centered at the same

wavenumber (allowing a freedom of ±3cm−1, to account for experimental error). The

ratio between the areas under these peaks will be directly proportional to the population

ratio between the real sample’s dt distribution and the constant “dummy” dt distribution.

In order to transform the axis from Raman shift (cm−1) into dt (nm), all one needs

is the correct ωRBM → dt relation. By default, the program uses equation (2.20) with

C = 0.05786nm−2, which is a constant that fits the data for most of the samples in the

literature [20], but may need to be changed depending on your sample. Equation (2.20)

can be easily inverted to yield:

dt =

[
ω2

A2
− C

]−1/2
(6.2)

where A = 227nm·cm−1 [20].

Plotting the area ratios versus dt (obtained from the Raman shift by inverting)

yields the diameter distribution. Figures 6.2 and 6.3 show an illustrative example of this

procedure done with a single laser line for an alcohol CVD SWNT sample [36]. Notice,
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Figure 6.3: Black squares represent the integrated area ratios between the Lorentzian
peaks used to fit the experimental and simulated spectra in figure 6.2. The red curve is
a lognormal [55] fit to the data points. The horizontal axis was transformed from Raman
shift (cm−1) to diameter (nm) by using equation (6.2).

however, that only SWNTs which are resonant at the used laser excitation energy can be

probed, so the use of multiple excitation energies can dramatically increase the accuracy

of this procedure.
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Chapter 7

Final remarks

In summary, we have combined the diameter distribution of a SWNT sample, obtained

by high resolution transmission electron microscopy, and a RBM resonance Raman map

in order to determine the RBM Raman cross-section of a wide variety of SWNTs. This

result allows us to use a sample’s RBM signal in the inverse process, that is, to determine

its diameter distribution using only resonance Raman scattering. Due to the very special

nature of the “super-growth” sample, the values displayed here are representative of nearly

ideal SWNTs, such that the results of this study are useful as experimental data for

theorists, as well as a tool which we hope will be useful to experimentalists.

While the procedure described in 6 remains assumption-dependent for a determina-

tion of the relative population of an individual (n,m) species, it is assumption-independent

for obtaining the diameter distribution. Notice also that the fitting parametersMi and γi

were obtained with excitation energies between 1.26eV and 1.73eV for the water-assisted

CVD “super-growth” SWNT sample, so that diameter distributions determined from RRS

RBM measurements within this energy range are expected to be more accurate. It is also

important to notice that the values for γ(n,m) andM(n,m) may vary depending on the kind

of sample [59] one has, so the most accurate results will be obtained for samples similar

to the “super-growth” sample. This is especially true for the value of γ(n,m) for bundled

SWNTs, which can be significantly larger than those of the “super-growth” sample [59],

so an adequate rescaling might be necessary. An underestimation of γ(n,m) will lead to an

overestimation of the population of SWNTs which are not fully resonant at the used Elaser

(due to a decreased estimated resonance window width) and an underestimation of the
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population for those SWNT which are fully resonant at Elaser (due to an overall increase

of the estimated RRS RBM cross-section).

Despite these caveats, this procedure is an important quantitative step towards the

accurate characterization of SWNT samples, facilitating their commercial use. Brazil’s

National Metrology Institute (INMETRO - Instituto Nacional de Metrologia, Qualidade e

Tecnologia) used the methodology presented here on measurements for a recent project by

the USA National Institute of Standards and Technology (NIST VAMAS TWA 34, project

#1) [60], which hopes to establish the chirality distribution of a metrological reference

material (RM) SWNT sample, as measured by several different laboratories, with different

techniques. It is hoped that further comparison of the results of different methodologies

will help refine and expand the parameters used in the population assessment of SWNT

samples by resonance Raman scattering.
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Appendix A

SpectraSimulation.m MatLab
program

%IMPORTANT! This program requires a clean workspace and thus begins with a

%"clear" command. Please take the appropriate measures is you wish to save

%your workspace before running this program.

%

%This program simulates the Raman RBM spectrum of a SWNT with a constant

%diameter distribution, as explained previously. The simulated

%spectrum is exported to the file SimSpec[E_L].txt , where the actual

%excitation energy used replaces [E_L] in the file name.

%

%The parameters we use to define the RBM frequency and transition energies

%should be valid for SWNT sample with small bundles or of SWNTs wrapped in

%surfactancts. If your sample is very different, the parameters defined in

%the program should be changed. All of the values that might need to be

%changed are commented as such.

%

%We define the basic properties of SWNTs based on their (n,m)

%indices. MatLab conventions demand the use of indices that start with 1,

%so througout the programs the variable k=m+1 will be used whenever needed.
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clear

nmin=3; %Tubes from (nmin,0) up to (nmax,nmax) will be considered

nmax=40;

C=0.05786; %This constant is used to determine the RBM of the tubes.

%PRB 77, 241403 (2008).

%This value is adequate for bundled or wrapped SWNTs and might need to be

%changed depending on the sample you are studying.

%First we determine the basic structural properties of the tubes.

%Pre-allocating some variables, for better speed

tamn=nmin:nmax;

tamk=1:nmax+1;

d(tamn,tamk)=0;

cosa(tamn,tamk)=0;

cos3angle(tamn,tamk)=0;

fam(tamn,tamk)=NaN;

rbm(tamn,tamk)=0;

Eph(tamn,tamk)=0;

popconst(tamn,tamk)=0;

for n=nmin:nmax

for k=1:n+1 %m starts from 0 and goes to n

m=k-1;

d(n,k)=0.142*(3*(n.^2+n*m+m.^2))^0.5/3.141593;

%tube diameter in nm, using a c-c distance of 0.142 nm

cosa(n,k)=(2*n+m)./(2*((n.^2+n*m+m.^2)^0.5));

cos3angle(n,k)=cos(3*acos(cosa(n,k))); %cos(3*theta)

fam(n,k)=mod((2*n+m),3);

%tube type. 0=> metallic ; 1=> S_1 ; 2=> S_2
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rbm(n,k)=227/d(n,k)*sqrt(1+C*d(n,k)^2);

%SWNT’s RBM frequency, in cm^-1.PRB 77, 241403 (2008).

Eph(n,k)=(1.239842E-4)*rbm(n,k);

%hbar*wRBM. Energy of the RBM phonon in eV

if k==1 || k==n+1 %if the tube is achiral

popconst(n,k)=1/d(n,k);

%This population is for the "dummy" diameter distribution

else %if the tube is chiral

popconst(n,k)=2/d(n,k);

%If the tube is chiral, then left- and right-handed isomers

%contribute

end

end

end

%Now we determine their transition energies. These values were taken from

%PRL 98, 067401 (2007) and should be valid for samples consisting of small

%bundles or of SWNTs wrapped with surfactants. For freestanding

%individualized SWNTs (such as those in the "super-growth" sample), the

%values of Phys. Stat. Sol. (b) 245, No. 10, 2201-2204 (2008)

%/ DOI 10.1002/pssb.200879625 should be used.

%These values might need to be changed depending on your sample. Please see

%PRL 103, 146802 (2009) for a discussion on how the environment can change

%the transition energies of tubes.

%The following values are for Eii in units of eV and d(n,k) in nm.

Elin=1.049;

Elog=0.456;

lambda=0.812;

g=0.305;
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%Eii S1

betas(1,1)= 0.05; %E11

betas(1,2)=-0.19; %E22

betas(1,4)= 0.42; %E33

betas(1,5)=-0.4; %E44

%Eii S2

betas(2,1)=-0.07; %E11

betas(2,2)= 0.14; %E22

betas(2,4)=-0.42; %E33

betas(2,5)= 0.4; %E44

%Eii M

betam(1,1)=0.19; %E11M upper branch. Not usually observed in Raman

betam(1,2)=-0.19; %E11M lower branch

%Now we calculate the transition energies in units of eV

%First we pre-allocate for speed

tamp=1:4;

TE(tamp,tamn,tamk)=0;

for n=nmin:nmax

for k=1:n+1

%S2 semiconducting nanotubes transition energies

if fam(n,k)==2

TE(1,n,k)= Elin*1/d(n,k).*(1+Elog*log10(lambda*d(n,k)./1))+...

betas(2,1)*cos3angle(n,k)./(d(n,k).^2); %E11 S2

TE(2,n,k)= Elin*2/d(n,k).*(1+Elog*log10(lambda*d(n,k)./2))+...

betas(2,2)*cos3angle(n,k)./(d(n,k).^2); %E22 S2

TE(3,n,k)= Elin*4/d(n,k).*(1+Elog*log10(lambda*d(n,k)./4))+...

betas(2,4)*cos3angle(n,k)./(d(n,k).^2)+g/(d(n,k));

%E33 S2
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TE(4,n,k)= Elin*5/d(n,k).*(1+Elog*log10(lambda*d(n,k)./5))+...

betas(2,5)*cos3angle(n,k)./(d(n,k).^2)+5/4*...

g/(d(n,k)); %E44 S2

end

%S1 semiconducting nanotubes transition energies

if fam(n,k)==1

TE(1,n,k)= Elin*1/d(n,k).*(1+Elog*log10(lambda*d(n,k)./1))+...

betas(1,1)*cos3angle(n,k)./(d(n,k).^2); %E11 S1

TE(2,n,k)= Elin*2/d(n,k).*(1+Elog*log10(lambda*d(n,k)./2))+...

betas(1,2)*cos3angle(n,k)./(d(n,k).^2); %E22 S1

TE(3,n,k)= Elin*4/d(n,k).*(1+Elog*log10(lambda*d(n,k)./4))+...

betas(1,4)*cos3angle(n,k)./(d(n,k).^2)+g/(d(n,k));

%E33 S1

TE(4,n,k)= Elin*5/d(n,k).*(1+Elog*log10(lambda*d(n,k)./5))+...

betas(1,5)*cos3angle(n,k)./(d(n,k).^2)+5/4*...

g/(d(n,k)); %E44 S1

end

%M metallic nanotubes

if fam(n,k)==0

TE(1,n,k)= Elin*3./d(n,k).*(1+Elog*log10(lambda*d(n,k)./3))...

+betam(1,1)*cos3angle(n,k)./d(n,k).^2;

%E11M upper branch

TE(2,n,k)= Elin*3./d(n,k).*(1+Elog*log10(lambda*d(n,k)./3))...

+betam(1,2)*cos3angle(n,k)./d(n,k).^2;

%E11M lower branch

end

end

end
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%Now we determine the Raman properties of the tubes, based on the values

%from our paper. These are only valid for E22^S and E11^M (lower branch).

%Parameters for the matrix element

aMS1=[-19.62 29.35 4.23]’;

aMS2=[ -1.83 3.72 1.61]’;

aMM =[ 1.68 0.52 5.54]’;

%Parameters for the resonance window width gamma

aGS1=[ -3.45 65.10 7.22]’;

aGS2=[-10.12 42.56 -6.84]’;

aGM =[ 23.03 48.84 1.03]’;

%First we pre-allocate for speed

M(tamn,tamk)=0;

G(tamn,tamk)=0;

for n=nmin:nmax

for k=1:n+1

if fam(n,k)==1 %For S1 tubes

M(n,k)=([1 1/d(n,k) cos3angle(n,k)/d(n,k)^2]*aMS1)^2;

G(n,k)=[1 1/d(n,k) cos3angle(n,k)/d(n,k)^2]*aGS1*10^-3;

%the 10^-3 factor is so the values are in eV, not in meV

elseif fam(n,k)==2 %For S2 tubes

M(n,k)=([1 1/d(n,k) cos3angle(n,k)/d(n,k)^2]*aMS2)^2;

G(n,k)=[1 1/d(n,k) cos3angle(n,k)/d(n,k)^2]*aGS2*10^-3;

%the 10^-3 factor is so the values are in eV, not in meV

elseif fam(n,k)==0 %For metallic tubes

M(n,k)=([1 1/d(n,k) cos3angle(n,k)/d(n,k)^2]*aMM)^2;

G(n,k)=[1 1/d(n,k) cos3angle(n,k)/d(n,k)^2]*aGM*10^-3;

%the 10^-3 factor is so the values are in eV, not in meV

end

end
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end

%Now all we need is to calculate the expected spectrum of this "dummy" SWNT

%population

w=10:550; %this is the frequency range of the Raman spectrum in cm^-1.

%Feel free to change this according to your preference

EL=input(’Excitation energy in eV = ’); %This is the laser excitation

%energy used in eV. This should be changed acording to the laser

%excitation energy you used for the experimental spectrum.

FW=input(’FWHM for the RBM Lorentzian in cm^-1 = ’); %This is the

%Full-Width at Half-Maximum intensity (in cm^-1) for the tube’s RBM

%lorentzian. This should be changed to match the values you get for your

%sample.

S(1:max(size(w)))=0; %The spectrum starts as a baseline, at 0 intensity.

%First we pre-allocate for speed

I(tamn,tamk)=0;

for n=nmin:nmax

for k=1:n+1

I(n,k)= (abs(M(n,k)/((EL-TE(2,n,k)+1i*G(n,k))*(EL-TE(2,n,k)-...

Eph(n,k)+1i*G(n,k)))))^2;

for cont=1:max(size(w))

S(cont)=S(cont) + popconst(n,k)*I(n,k)*(FW/2)/((w(cont)-...

rbm(n,k))^2+(FW/2)^2);

end

end

end
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dlmwrite([’SimSpec’ num2str(EL) ’.txt’], [w’ S’],’ ’)

figure(1)

plot(w,S,’k-’)

title([’Simulated spectrum at ’ num2str(EL) ’eV’])

xlabel(’Raman shift (cm^-^1)’)

ylabel(’Raman intensity (arb. units)’)
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B, 71:075401, 2005.

46



[22] JS Park, Y. Oyama, R. Saito, W. Izumida, J. Jiang, K. Sato, C. Fantini, A. Jorio,

G. Dresselhaus, and MS Dresselhaus. Raman resonance window of single-wall carbon

nanotubes. Physical Review B, 74(16):165414, 2006.

[23] J. Jiang, R. Saito, K. Sato, JS Park, G.G. Samsonidze, A. Jorio, G. Dresselhaus, and

MS Dresselhaus. Exciton-photon, exciton-phonon matrix elements, and resonant

raman intensity of single-wall carbon nanotubes. Physical Review B, 75(3):035405,

2007.

[24] M. Machón, S. Reich, H. Telg, J. Maultzsch, P. Ordejon, C. Thomsen. Physical

Review B, 71:035416, 2005.

[25] T. Okazaki, T. Saito, K. Matsuura, S. Ohshima, M. Yumura, Y. Oyama, R. Saito,

and S. Iijima. Photoluminescence and population analysis of single-walled carbon

nanotubes produced by cvd and pulsed-laser vaporization methods. Chemical physics

letters, 420(4-6):286–290, 2006.

[26] A. Jorio, AP Santos, HB Ribeiro, C. Fantini, M. Souza, JPM Vieira, CA Furtado,

J. Jiang, R. Saito, L. Balzano, et al. Quantifying carbon-nanotube species with

resonance raman scattering. Physical Review B, 72(7):075207, 2005.

[27] H. Telg, J. Maultzsch, S. Reich, and C. Thomsen. Resonant-raman intensities and

transition energies of the e {11} transition in carbon nanotubes. Physical Review B,

74(11):115415, 2006.

[28] S. K. Doorn, P. T. Araujo, K. Hata, A. Jorio. Physical Review B, 78:165408, 2008.

[29] P. T. Araujo and A. Jorio. Physica Status Solid (b), 245:2201, 2008.

[30] P. T. Araujo, A. Jorio, M. S. Dresselhaus, K. Sato, R. Saito. Physical Review Letters,

103:146802, 2009.

[31] K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima,. Science,

306:1362, 2004.

[32] E.B. Barros, A. Jorio, G.G. Samsonidze, R.B. Capaz, A.G. Souza Filho,

J. Mendes Filho, G. Dresselhaus, and M.S. Dresselhaus. Review on the symmetry-

related properties of carbon nanotubes. Physics reports, 431(6):261–302, 2006.

47



[33] C. F. Leite. Estudo de Propriedades Eletrônicas e Vibracionais de Nanotubos de
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