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Space Groups in Real Space

According to the one-electron Hamiltonian for the electronic energy band
structure for solids, we write Schrödinger’s equation as

Hψ(r) =
[
− �

2

2m
∇2 + V (r)

]
ψ(r) = Eψ(r) , (9.1)

where V (r) is a periodic potential. The symmetry group of the one-electron
Hamiltonian and of the periodic potential in (9.1) is the space group of
the crystal lattice, which consists of both translational symmetry opera-
tions and point group symmetry operations. Both the translational and
point group symmetry operations leave the Hamiltonian invariant, and con-
sequently all these symmetry operators will commute with the Hamiltonian,
and provide quantum numbers for labeling the energy eigenvalues and eigen-
functions.

In this chapter we introduce the basic background for space group opera-
tions (Sect. 9.1) and show how these operations form space groups (Sect. 9.2).
In addition to the point group and translation operations, we consider the
compound symmetry operations of glide planes and screw axes (Sect. 9.1.2)
and the nonsymmorphic space groups associated with these compound sym-
metry operations (Sect. 9.2.3). An introduction to a few kinds of 3D space
groups is given in Sect. 9.2. However, for pedagogic purposes we discuss all
17 two-dimensional (2D) space groups in some detail in Sect. 9.3 to famil-
iarize the reader with the notation and the symmetry operations occurring
in both symmorphic and nonsymmorphic 2D-space groups. A brief introduc-
tion to line groups, describing the properties of systems exhibiting trans-
lational properties in one dimension, is given in Sect. 9.4. Finally we dis-
cuss the determination of the crystal structure and space groups in Sect. 9.5,
and the use of standard reference texts, [58, 76] such as the Crystal Struc-
tures, by R.W.G. Wyckoff, and the International Tables for X-Ray Crystal-
lography.
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9.1 Mathematical Background for Space Groups

9.1.1 Space Groups Symmetry Operations

Definition 18. The point group and translation symmetry operations which
carry the crystal into itself form a group called the space group.

A common notation for space group operators is

{Rα|τ} , (9.2)

where Rα denotes point group operations such as rotations, reflections,
improper rotations and inversions, while τ denotes translation operations.
Pure rotations and pure translations are special cases of space group opera-
tions:

{ε|0} = identity

{α|0} = pure rotations or more generally point group operations

{ε|τ} = pure translations by vector τ .

We can relate the operator {α|τ} for the space group to a coordinate trans-
formation

{α|τ}r = r′ =
↔
α ·r + τ , (9.3)

where
↔
α denotes the transformation matrix for rotations and τ denotes

a translational transformation.

Definition 19. The result for the multiplication of two space group opera-
tors is

{β|τ ′} {α|τ} = {βα|βτ + τ ′} , (9.4)

where {α|τ} is the first space group operator and {β|τ ′} is the second.

Proof. Multiplication of two space group operators proceeds from this identi-
fication:

{β|τ ′}{α|τ} =
↔
β ·

[↔
α ·r + τ

]
+ τ ′

=
↔
β · ↔α ·r+

↔
β ·τ + τ ′

= {βα|βτ + τ ′} .

Using the results of this definition of the multiplication of two space group
operations we can write

{α|τ} {β|τ ′} =
↔
α ·

↔
β ·r+

↔
α ·τ ′ + τ (9.5)
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so that commutation of these two space group operators requires that

↔
α ·

↔
β=

↔
β · ↔α and

↔
β ·τ + τ ′ =

↔
α ·τ ′ + τ (9.6)

which is not generally valid. Thus we conclude that although simple transla-
tions commute with each other, general space group operations do not com-
mute. �

Definition 20. The inverse of {α|τ} is given by

{α|τ}−1 = {α−1| − α−1τ} . (9.7)

Proof. Using the proposed definition of {α|τ}−1 we carry out the following
multiplication of two space group symmetry elements to obtain

{α|τ}{α|τ}−1 = {αα−1|α(−α−1τ) + τ} = {ε|0} (9.8)

which verifies the definition for {α|τ}−1. �

Having specified the identity operation {ε|0}, the rules for multiplication, and
the rules for specifying the inverse operation, and noting that the associative
law applies, we see that the elements {α|τ} form a space group.

Definition 21. The matrix representation for the space group operator is

{α|τ} =
(

1 0
τ
↔
α

)
, (9.9)

where 1 is a number, 0 denotes a row of three zeros, τ is a column vector,
and

↔
α is a (3× 3) rotation matrix. Introducing the basis

(
1
r

)
,

where 1 is a number and r is a column vector consisting for example of⎛
⎝x
y
z

⎞
⎠ ,

the action of the space group operation on the coordinate system then is writ-
ten as (

1 0
τ
↔
α

)(
1
r

)
=
(

1
τ+

↔
α ·r

)
=
(

1
r′

)
. (9.10)

Theorem. The matrix (
1 0
τ
↔
α

)

forms a representation for the space group operator {α|τ}.
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Proof. To prove that the matrix of (9.9) is a representation for the space group
operator {α|τ}, we write down the multiplication and inverse transformations.
Multiplication of two matrices yields

(
1 0

τ ′ ↔β

)(
1 0
τ
↔
α

)
=

(
1 0

τ ′+
↔
β ·τ

↔
β · ↔α

)
, (9.11)

which yields another symmetry operation of the space group

{β|τ ′}{α|τ} = {βα|βτ + τ ′} . (9.12)

Using (9.11) we can write the product of the matrix representation of {α|τ}
with that of its inverse operator {α|τ}−1 to obtain

(
1 0

− ↔
α
−1 ·τ ↔

α
−1

)(
1 0
τ
↔
α

)
=
(

1 0
0 ε

)
, (9.13)

thereby showing that
{α|τ}−1{α|τ} = {ε|0} . (9.14)

�

9.1.2 Compound Space Group Operations

In space groups we may find instead of simple translation operations, com-
pound symmetry operations that combine translations and point group oper-
ations. The two types of compound symmetry operations are the glide planes
and the screw axes.

Fig. 9.1. (a) The glide plane operation that takes A into A′. (b) Right- and left-
hand screw axes (belong to closely related but different space groups)
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A glide plane consists of a translation parallel to a given plane followed
by a reflection in that plane (see Fig. 9.1(a)). There are in fact three different
types of glide planes that are identified: the axial glide along a symmetry
axis (a, b, or c), the diagonal glide or n-glide in two or three directions (e.g.,
(a + b)/2 or (a + b + c)/2) and finally the diamond glide corresponding to
(a + b)/4 or (a + b + c)/4).

A screw axis is a translation along an axis about which a rotation is si-
multaneously occurring. In Fig. 9.1(b) we show a threefold screw axis, where
a is the lattice constant. The tellurium and selenium structures have threefold
screw axes similar to those shown in Fig. 9.1b. A summary of the various pos-
sible screw axes and the crystallographic notation for each is given in Fig. 9.2.
The screw axes shown in Fig. 9.2 are from top to bottom: the first row shows
twofold screw axes, followed by a row of threefold and fourfold screw axes and
the last two rows show sixfold screw axes. An n-fold screw axis has a trans-

Fig. 9.2. A summary of all possible screw axes, including twofold, threefold, fourfold
and sixfold screw axes (see text)
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lation of pτ0/n where τ0 is a unit cell translation of the translation group,
p is an integer p = 1, . . . , n, and the rotation that goes with the translation
is 2πp/n. Thus for the threefold row, the first entry is a 2π or zero rotation
every time there is a translation of τ0/3, while the second entry has a rotation
of 2π/3, for each τ0/3 translation and the last entry has a rotation of 4π/3 or
(−2π/3), for each τ0/3 translation.

9.1.3 Translation Subgroup

Theorem. All the elements of the space group G that are of the form {ε|τ}
constitute the translation group T . Here T is a subgroup of G and defines the
Bravais lattice.

Proof. Symmetry elements of the group T are defined by the translation vec-
tors Rn which leave the Bravais lattice invariant Rn = Σniai, and ai is the
primitive vector of the Bravais lattice. The translation group is a self-conjugate
or invariant or normal subgroup of G since

{Rα|τ}{ε|t}{Rα|τ}−1 = {Rα|τ}{ε|t}{R−1
α | −R−1

α τ}
= {Rα|τ}{R−1

α | −R−1
α τ + t}

= {ε| −RαR
−1
α τ +Rαt+ τ}

= {ε|Rαt} . (9.15)

But Rαt is just another translation vector in group T and therefore the oper-
ation {ε|Rαt} is a symmetry operation of group T , and we have shown that
{ε|τ} forms the translation subgroup of G. �
Although the translation group T is an invariant subgroup of G, we cannot
generally say that the space group G is a direct product of a translation group
with a point group, as discussed in Sect. 9.1.4. It should be noted that since
the individual elements {ε|τ ′} and {Rα|τ} do not commute, as we show below:

{ε|τ ′}{Rα|τ} = {Rα|τ ′ + τ}
{Rα|τ}{ε|τ ′} = {Rα|Rατ

′ + τ} . (9.16)

However, since the translation group is an invariant subgroup of G, it is of
interest to study the cosets of the factor group which it defines. A right coset
of the translation group considered as a subgroup of G is then

Cα = [{ε|τ ′}{Rα|τ}] = [{Rα|τ ′′}] , (9.17)

where the bracket in (9.17) denotes all the terms in the coset that can be
formed using all possible values of τ ′. Although each element {Rα|τ} does
not commute with {ε|τ ′} as seen in (9.16), all {Rα|τ ′′} are contained in the
right coset. Using the same argument as used above for the right coset, we
can show that Cα is also a left coset of the translation group from which we
conclude that T is a self-conjugate (or normal) subgroup of G.
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Theorem. The cosets Cα form a factor group of the space group G.

Proof. Consider the multiplication rule for the cosets:

CαCβ = [{Rα|τ1}{Rβ|τ2}] = [{RαRβ |Rατ2 + τ1}] = [{Rγ |τ3}] = Cγ , (9.18)

where RαRβ = Rγ defines the group property in the point group and τ 3 =
Rατ 2+τ 1 is a translation of the lattice. Since τ 1 and τ 2 range over all possible
translation vectors, the vector τ 3 also spans all possible translations, and Cγ

satisfies the multiplication rule. �

The factor group G/T will be very important in applications of group theory
to space groups, since it factors out the pure translational properties of the
space groups, being isomorphic with the point group which makes up the
rotational parts of the operators of the space groups. For a summary of cosets
and factor group properties, see Sect. 1.5–1.7.

9.1.4 Symmorphic and Nonsymmorphic Space Groups

The space groupG consists of all operations {Rα|τ} which leave a given lattice
invariant. We can write the space group operations in the form

{Rα|τ} = {Rα|Rn + τα} = {ε|Rn}{Rα|τα} , (9.19)

whereRn is a general vector of the Bravais lattice and the vector τα (associated
with each of the point group operators Rα) is either zero or a translation that
is not a primitive translation of the Bravais lattice. The {Rα|τα} for which
Rn = 0 are either simple point group operations, when τα = 0, or one of the
compound operations (glide plane or screw axis discussed in Sect 9.1.2) when
τα �= 0.

Definition 22. If, with a suitable choice of origin in the direct lattice, we find
that all the elements of G are in the form {Rα|τ} = {Rα|Rn} = {ε|Rn}{Rα|0}
(τα = 0 for all symmetry operations), then the space group G is called a simple
or symmorphic group. If, with any suitable choice of origin in the direct lattice,
τα �= 0 for at least one {Rα|τα} operation, then G is called a nonsymmorphic
group.

Symmorphic space groups, therefore, contain an entire point group as a sub-
group. The point group g is obtained from the space group G by placing
τ = Rn = 0 for all {Rα|τ} elements in G. The space group is said to be
a semi-direct product of the translation and point groups, where semi is used
since a direct product would give {Rα|Rn} ⊗ {ε|Rn′} = {Rα|Rn + Rn′}. We
will see in the next chapters that, once the wavevector k of the wavefunctions
under study is chosen, we can work the space group problem by considering
the rotational aspects, which reduce the work to a point group gk problem.
We then have h symmetry elements rather than Nh, where N ∼ 1023.
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For nonsymmorphic groups, τα is not zero for at least one Rα. By multi-
plying two space group elements of the type {Rα|τα} (Rn = 0) we get

{Rα|τα}{Rβ|τβ} = {Rγ |τ γ +Rn} (9.20)

and Rn may or may not be zero. Therefore, the entire set of space group
elements {Rα|τα} may fail to form a group if the lattice vector Rn �= 0.
Furthermore, the entire point group g of the crystal, obtained by setting all
translations (including the nonprimitive ones) in G equal to zero is a sub-
group of its Bravais lattice point group (called the holohedral group, which
is defined as the group of the Bravais lattice), but it is not a subgroup of
G. In this case, to work with the rotational aspects of the nonsymmorphic
space group, a procedure to remove the translational effect is needed. Two
alternative procedures are available: (1) One approach is to form the factor
group G/T of G with respect to the translation group T (Sect. 9.1.3). The
G/T factor group will be isomorphic with the point group which makes up
the rotational parts of the operators in the space group. (2) The G/T fac-
tor group representation can be obtained by means of the multiplier algebra,
where all members of a given coset are represented by a single element, and we
work with the multiplier groups or multiplier representation. These concepts
will be discussed briefly in Sect. 10.4.

To fully describe a space group G, it is sufficient to list the elements
{Rα|τα} representing the cosets of G/T and the ai primitive vectors of the
Bravais lattice. It is clear that the applications of group theory to symmor-
phic space groups are simpler when compared to applications to nonsym-
morphic space groups. The operations Rα apply to the translation vectors in
accordance with the definition of the space group operations, and the sym-
metry operations of the factor group G/T for symmorphic space groups are
isomorphic with the point group g. Thus irreducible representations of the
factor group G/T are also irreducible representations of g and are likewise
irreducible representations of G. It can be shown that all irreducible rep-
resentations of G can be compounded from irreducible representations of
g and T , even though G is not a direct product group of g and T [47].
The development of representations for the space groups will be discussed
in Chap. 10.

9.2 Bravais Lattices and Space Groups

Now that we have introduced the mathematical background for working with
space groups, we can introduce the 14 Bravais lattices which denote the
possible crystallographic lattices that can form three-dimensional structures,
and the 230 space groups (73 symmorphic and 157 nonsymmorphic) that
can be formed by placing different atomic structures in the Bravais lattice
sites.
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Fig. 9.3. The fourteen Bravais space lattices illustrated by a unit cell of each: (1) tri-
clinic, simple; (2) monoclinic, simple; (3) monoclinic, base centered; (4) orthorhom-
bic, simple; (5) orthorhombic, base centered; (6) orthorhombic, body centered; (7)
orthorhombic, face centered; (8) hexagonal; (9) rhombohedral; (10) tetragonal, sim-
ple; (11) tetragonal, body centered; (12) cubic, simple; (13) cubic, body centered;
and (14) cubic, face centered

The requirements of translational symmetry limit the possible rotation an-
gles of a Bravais lattice and in particular restrict the possible rotation axes to
onefold, twofold, threefold, fourfold and sixfold. Fivefold axes or axes greater
than six do not occur in crystalline materials because these axes are not
compatible with translational symmetry [7]1 as shown in Problem 9.5. When
rotational symmetry does occur in crystals, then severe restrictions on the
rotation angle are imposed by the simultaneous occurrence of the repetition
of the unit cells through rotations and translations. The 14 Bravais lattices

1See [47], pp. 14 and 178.
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which form 3D space groups are shown in Fig. 9.3. They are also discussed in
solid state physics texts [45] and in crystallography texts [58, 68].

9.2.1 Examples of Symmorphic Space Groups

If all the operations of the space group are simply point group operations
on to which we add translation operations from the Bravais lattice, we have
a simple or symmorphic space group. The 73 symmorphic space groups are
listed in Table 9.1, and they can be found in the “International Crystallo-
graphic Tables”. Symbols that are used for 3D space groups (see Table 9.1)
include A or B for monoclinic groups, and C, A or B, I, F for orthorhombic
groups, and these are defined in Table 9.1. In the case of rectangular lattices,

Table 9.1. The 73 symmorphic space groups

crystal system Bravais lattice space group

triclinic P P1, P 1̄

monoclinic P P2, Pm, P2/m

B or A B2, Bm, B2/m

orthorhombic P P222, Pmm2, Pmmm

C, A, or B C222, Cmm2, Amm2a, Cmmm

I I222, Imm2, Immm

F F222, Fmm2, Fmmm

tetragonal P P4, P 4̄, P4/m, P422, P4mm

P42m, P 4̄m2a, P4/mmm

I I4, I 4̄, I4/m, I422, I4mm

I 4̄2m, I 4̄m2a, I4/mmm

cubic P P23, Pm3, P432, P 4̄3m, Pm3m

I I23, Im3, I432, I 4̄3m, Im3m

F F23, Fm3, F432, F 4̄3m, Fm3m

trigonal P b P3, P 3̄, P312, P321a, P3m1

P31ma, P 3̄1m, P 3̄m1a

(rhombohedral) R R3, R3̄, R32, R3m, R3̄m

hexagonal P b P6, P 6̄, P6/m, P622, P6mm

P 6̄m2, P 6̄m2a, P6/mmm

[P , I , F (A, B or C) and R, respectively, denote primitive, body centered, face
centered, base centered (along the a, b or c crystallographic axis) and rhombohedral
Bravais lattices (see Fig. 9.3)]
a The seven additional space groups that are generated when the orientations of the
point group operations are taken into account with respect to the Bravais unit cell
b Primitive hexagonal and trigonal crystal systems have the same hexagonal Bravais
lattice
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the inequivalent axes are parallel to the sides of the conventional rectangu-
lar unit cell. In the case of square lattices, the first set of axes is parallel to
the sides and the second set is along the diagonals. In the case of hexagonal
lattices, one axis is 30◦ away from a translation vector.

We now illustrate the idea of symmorphic space groups using an example
based on the D2d point group (see character Table A.8) embedded in a tetrag-
onal Bravais lattice (no. 11 in Fig. 9.3). Suppose that we have a molecule
with atoms arranged in a D2d point group configuration as shown in Fig. 9.4.
We see that the D2d point group has classes E, C2 rotations about the z-
axis, 2S4 improper rotations about the z-axis, 2σd passing through the z axis
and through the center of each of the dumbbell axes, and 2C′2 axes in (110)
directions in the median plane. The top view of this molecule is shown in
Fig. 9.4(b).

We could put such X4 molecules into a solid in many ways and still retain
the point group symmetry of the molecule. To illustrate how different space

z

C2′ C2′

Fig. 9.4. (a) Schematic diagram of an X4 molecule with point group D2d (42m)
symmetry. (b) Top view of a molecule X4 with D2d symmetry. The symmetry axes
are indicated
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Fig. 9.5. Tetragonal Bravais lattice with two possible orientations of a molecule
with D2d symmetry resulting in two different three-dimensional space groups. The
maximum symmetry that the tetragonal Bravais lattice can support is D4h = D4⊗ i
(4/mmm)

groups can be produced with a single molecular configuration, we will put the
X4 molecule with D2d symmetry into two different symmorphic space groups,
as shown in Fig. 9.5.

We note that with either of the placements of the molecule in Fig. 9.5,
all the point group operations of the molecule are also operations of the space
lattice. However, if the symmetry axes of the molecule do not coincide with the
symmetry axes of the lattice in which they are embedded, the combined space
group symmetry is lowered. Particular point group operations are appropriate
to specific Bravais lattices, but the connection is homomorphic rather than
isomorphic. For example, the point group operations T , Td, Th, O and Oh

leave each of the simple cubic, face-centered cubic and body-centered cubic
Bravais lattices invariant. Even though a given Bravais lattice is capable of
supporting a high symmetry point group (e.g., the FCC structure), if we have
a lower symmetry structure at each of the lattice sites (e.g., the structure in
Fig. 9.4), then the point symmetry is lowered to correspond to that structure.
On the other hand, the highest point group symmetry that is possible in
a crystal lattice is that which has all the symmetry operations of the Bravais
lattice, so that the group Oh will be the appropriate point group for an FCC
structure with spherical balls at each lattice site (see Problem 9.1).

9.2.2 Cubic Space Groups and the Equivalence Transformation

We now introduce the cubic groups that will be frequently discussed for il-
lustrative purposes in subsequent chapters. The use of the equivalence trans-
formation to obtain the characters χa.s. for this transformation is also dis-
cussed. Figure 9.6 illustrates several different kinds of cubic space groups com-
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Fig. 9.6. Example of cubic lattices. Here (a), (b), (c) pertain to space group #225;
(d) pertains to #221 and (e) to #229; while (f) and (g) are for #227; and (h) is
for #223

monly occurring in solid state physics, including FCC, BCC, diamond and
zinc blende structures. The diamond structure is nonsymmorphic and will be
discussed in Sect. 9.2.3. First we show that a given space can support sev-
eral different crystal structures. We illustrate this with Fig. 9.7 which shows
three different crystal structures all having the same space group symmetry
operations of O1

h(Pm3m). This space group will support full Oh point symme-
try. The different crystal structures are obtained by occupying different sites
as listed in the “International Crystallographic Tables” (see Table C.2). The
space group is specified in terms of an origin at the center which has the full



196 9 Space Groups in Real Space

Fig. 9.7. Example of three cubic lattices with the space group #221 O1
h (Pm3m)

(see Table C.2). (a) Simple cubic (SC), (b) body centered cubic (BCC), and (c)
perovskite structure

symmetry of the Bravais lattice (P4/m(3̄)2/m). Inspection of space group
221 yields the structure shown in Fig. 9.7(a) where only site b is occupied,
while Fig. 9.7(b) has site occupation of both sites a and b, each having site
symmetry m3m (see Table C.2). For the perovskite structure in Fig. 9.7(c)
we have occupation of Ba atoms on b sites, Ti atoms on a sites and three
oxygens on c sites. We note in Table C.2 that the site symmetry 4/mmm is
different on the c sites than for the a or b sites which have m3m site symme-
tries.

Important for many applications of group theory is the number of atoms
within the primitive cell (for example for calculation of χa.s.). For example,
in Fig. 9.7(a) there is one atom per unit cell. This can be obtained from
Fig. 9.7(a) by considering that only one eighth of each of the eight atoms shown
in the figure is inside the cubic primitive cell. In Fig. 9.7(b) there are two dis-
tinct atoms per unit cell but for each Γ a.s. = Γ1 to give a total Γ a.s. = 2Γ1.
In Fig. 9.7(c), there are one Ti, six half O, and eight 1/8 parts of Ba inside
the primitive cell, giving altogether five atoms, i.e., one unit of BaTiO3 per
unit cell. Here Γ a.s. for each of the Ba and Ti sublattices we have Γ a.s. = Γ1

but for the three oxygens Γ a.s. = Γ1 + Γ12 to give a total of Γ a.s. = 3Γ1 +Γ12

for the whole BaTiO3 molecule (see Sect. 11.3.2).
Concerning more general cubic groups, the structures for Fig. 9.6(a–c) are

all group #225 based on a FCC Bravais lattice, while (d) has the CsCl struc-
ture (group #221) as in Fig. 9.7(b) which has two atoms per unit cell. The
structure for iron (group #229) is based on the full BCC Bravais lattice where
the central atom and the corner atoms are the same. Figures 9.6(f) and (g)
are for the nonsymmorphic diamond lattice, discussed in detail in Sect. 9.2.3,
which has two atoms/unit cell. The zinc blende structure shown in Fig. 9.6(h)
is similar to that of Fig. 9.6(f) except that the atoms on the two sublattices
are of a different species and therefore the zinc blende structure has a different
symmetry group #203, and this group is a symmorphic group.

9.2.3 Examples of Nonsymmorphic Space Groups

A familiar example of a non-symmorphic space group is the diamond struc-
ture shown in Fig. 9.6(f), where we note that there are two atoms per unit cell
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Fig. 9.8. Examples of space groups with screw axes. The three examples are (a)
P41 (C2

4 ) #76, (b) P42 (C3
4 ) #77 and (c) P43 (C4

4 ) #78. See Sect. 9.1.2 and Fig. 9.2
for notation
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Fig. 9.9. Example of a space group with a screw axis in the plane of the figure:
P421m (D3

2d) (#113)

(the atoms on the cube corner positions and those in the centered positions).
The symmetry operations of Td represent all the point group operations that
take one type of atom into another. In addition, each of the operations of
Td can be compounded with a translation along (a/4)(111) which takes one
inequivalent atom into another. Because of these additional symmetry oper-
ations, which are not point group operations of Td, the diamond structure is
not a Bravais lattice and is nonsymmorphic. The screw axis pertinent to the
diamond structure is shown in Fig. 9.6(g).

Another example of space groups with screw axes is given in Fig. 9.8 for
space groups P41 (C2

4 ) #76, P42 (C3
4 ) #77 and P43 (C4

4 ) #78. The space
group P4 #75 is a symmorphic space group with a similar arrangement of
the four atom cluster but without a screw axis. The group numbers #75
to #78 come from the International Tables of X-ray Crystallography [58]
(see Appendix C for a few examples of such tables). Each space group in
Fig. 9.8 has point group C4 symmetry, but has a different fourfold screw axis
(41, 42, 43). The atom locations are given in the left hand diagrams and the
symmetry operations which include screw axes are shown in the right hand
diagrams. Some twofold screw axes are also present.

Screw axes may also occur normal to the c-axis, as is shown in Fig. 9.9 for
space group P421m (D3

2d) #113. Diamond glide planes along 〈110〉 directions
also occur for this space group. The D2d operations result in the occurrence
of equivalent sites (x, y, z), (−y, x,−z), (−x,−y, z) and (y,−x,−z).

Three-dimensional space groups will be discussed further in the next chap-
ters. The reader is referred to texts such as Burns and Glazer [16] who give
a detailed treatment of space group symmetries. In the next section we dis-
cuss the 2D space groups in more depth, first because they are simpler, and
because they provide an instructive pedagogic introduction to space groups.

9.3 Two-Dimensional Space Groups

In this section we use the 17 two-dimensional space groups to illustrate in some
detail the concepts introduced in this chapter from a pedagogic standpoint.
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Table 9.2. Summary of the 17 two-dimensional space groups, their properties and
notations

point lattice type internationala notation type notation

group table number full short

1 oblique 1 p1 symmorphic p1

2 a �= b, φ �= 90◦ 2 p211 symmorphic p2

m rectangular 3 p1m1 symmorphic pm

(p or c) 4 p1g1 nonsymmorphic pg

a �= b, φ = 90◦ 5 c1m1 symmorphic cm

2mm rectangular 6 p2mm symmorphic pmm

a �= b, φ = 90◦ 7 p2mg nonsymmorphic pmg

8 p2gg nonsymmorphic pgg

9 c2mm symmorphic cmm

4 square p 10 p4 symmorphic p4

4mm a = b, φ = 90◦ 11 p4mm symmorphic p4m

12 p4gm nonsymmorphic p4g

3 hexagonal 13 p3 symmorphic p3

3m a = b, φ = 120◦ 14 p3m1 symmorphic p3m1

15 p31m symmorphic p31m

6 16 p6 symmorphic p6

6mm 17 p6mm symmorphic p6m

a International Tables for X-Ray Crystallography, published by the International
Union of Crystallography, Kynoch Press, [58] Birmingham, England (1952). See also
G. Burns and A.M. Glazer, [16] “Space Groups for Solid State Scientists”, Academic
Press, Inc., 2nd Edition 1978

There are five distinct Bravais lattices in two-dimensions. If we consider
a, b to be the two primitive translation vectors and φ to be the angle between
a and b, then the five lattice types are summarized in Table 9.2, where the
17 two-dimensional space groups are listed.

If we add two-dimensional objects, e.g., a set of atoms, to each cell of
a Bravais lattice, we can change the symmetry of the lattice. If the object,
sometimes called a motif, lowers the symmetry to that of another group, then
the resulting symmetry space group for the structure is identified with the
lower symmetry space group.

We give in this table the symmetries of each of these space groups, classified
in terms of the five Bravais lattices in two dimensions. Listings from the
“International Tables for X-Ray Crystallography” are given in TablesB.2–
B.17 of Appendix B [58].

The notation used to designate the two-dimensional space groups is illus-
trated by the example p4gm (see Table 9.2). The initial symbol (“p” in this
example) indicates that the unit cell is either a primitive (p) unit cell or a cen-
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Fig. 9.10. Space group symbols used at lattice points for twofold (an American
football), threefold (a triangle), fourfold (a square), and sixfold (a hexagon) rotations
(x = n to denote an n-fold rotation)

tered (c) unit cell. The next symbol “4” indicates rotational symmetry about
an axis perpendicular to the plane of the two-dimensional crystal. The possible
n-fold rotations for a space group are 1, 2, 3, 4, and 6, and the symbols used
to denote such axes are shown in Fig. 9.10. The last two symbols in p4gm,
when present, indicate either additional symmetries for the two inequivalent
in-plane axes, or they refer to a glide plane (denoted by “g”) through the
primary axis, or to a mirror plane denoted by “m” through the primary axis,
and “1” indicates that there is no additional symmetry.

In the following sections we discuss the space groups associated with each
of the five 2D Bravais lattices.

9.3.1 2D Oblique Space Groups

The symmetries of the two 2 oblique space groups are shown in TablesB.1
and B.2 of Appendix B. The lowest symmetry two-dimensional space group
(#1) only has translational symmetry (p1) and no additional point group
operations. We use the lower case notation p1 to denote 2D space groups
and P1 with a capital letter to denote the corresponding 3D space groups.
The diagram for p1 shows only one general point (x, y) with translations by
lattice vectors (1,0), (0,1), and (1,1). Open circles on the left hand diagram
in Table B.1 are used to denote the three open circles obtained from the first
open circle by these three translations.

However, by placing a motif with twofold rotational symmetry normal
to the plane, the p211 space group (#2) is obtained, as shown in the
symmetry diagram from the International Tables for X-Ray Crystallogra-
phy. The twofold axis through the center of the rhombus (indicated by an
American-football-shaped symbol on the right of Table B.2) denotes the
symmetry operation that takes a general point (x, y) into (−x,−y), shown
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as point symmetry type e on the crystallographic table for space group
#2(p211). Points obtained by rotations are indicated by open circles in Ta-
ble B.2. For the four special points (1/2, 1/2), (1/2, 0), (0, 1/2), (0, 0), la-
beled d, c, b, a, respectively, the twofold rotation takes the point into itself
or into an equivalent point separated by a lattice vector. The site symme-
try for these four special points is listed in the table for group p2 as having
a twofold axis. A general point (such as e) under the action of the twofold
axis and translation by (1,0), (0,1), and (1,1) yields the eight open points
in the figure for group p2, two of which are within the unit cell shown in
Table B.2.

These special points d, c, b, a are examples of what is generally called Wyck-
off positions [76]. The concept of Wyckoff positions and their site symmetries
is fundamental for the determination and description of crystal structures,
since it is important to establish the reference point for the symmetry op-
erations of an overall consistent coordinate system. The group of all sym-
metry operations that leaves a point P invariant is called the site-symmetry
group. A point P is called the point of special position with respect to the
space group G if there is at least one symmetry operation of G, in addi-
tion to the identity, that leaves P invariant (otherwise, P is called a point of
general position). A Wyckoff position consists of all points P for which the
site-symmetry groups are conjugate subgroups of G, and each Wyckoff posi-
tion of a space group is labeled by a letter which is called the Wyckoff letter,
and the site symmetries are indicated in the International Crystallography
Tables [58].

9.3.2 2D Rectangular Space Groups

Primitive lattices. Of the seven rectangular 2D space groups, five are primitive
and two are centered (see Table 9.2). We consider these together as is done in
the International Tables for X-Ray Crystallography [58]. Of the five primitive
rectangular space groups only two are symmorphic, and three are nonsymmor-
phic. In general, the full rectangular point symmetry is 2mm (C2v). The point
group 2mm has elements E, C2z , σx, σy : the identity; a twofold axis C2z per-
pendicular to the plane; and mirror planes parallel to the x and y axes through
C2z . The corresponding space group listed as space group #6 is p2mm (see
Table B.6). When introducing a lower symmetry motif, the resulting group
must be a subgroup of the original group. The lower symmetry rectangular
space group p1m1 has point group operations (E, σx) and is listed as space
group #3 (see Table B.4). We note that (E, σy) is equivalent to (E, σx) by an
interchange of axes and each corresponds to point group m (C1h).

The symbol ©, containing a comma inside the circle provides a sense of ori-
entation that is preserved under translations. Under a mirror plane operation
(see Table B.4), the symbols ©, and © are interchanged; the mirror plane is
represented on the right by a solid horizontal line. The three kinds of Wyckoff
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positions [76] and site symmetries (the general point c and the points a and b
on the mirror planes) are also listed in Table B.4 for space group #3.

So far we have dealt with space groups where the point group operations
are separable from the translation group operations. Such groups are sym-
morphic space groups.

In the case of the rectangular primitive lattice, mirror operations can be
replaced by glide reflections. The glide planes are denoted by dashed lines (see
diagram for space group #4 (p1g1) in Table B.4). No distinct screw opera-
tions are possible in two-dimensions. A glide reflection symmetry operation
is a compound operation consisting of a reflection combined with a fractional
unit cell translation, not a primitive unit cell translation. The resulting space
group is nonsymmorphic because of the glide plane operation. Replacing m by
g in p1m1 (space group #3) gives p1g1 (space group #4) where the transla-
tion τ 1/2 is compounded with the reflection operation; this translation can be
followed by comparing the©, symbols for space groups #3 and #4 (Tables B.3
and B.4).

For the case of space group #6 (p2mm), replacing one of the mirror planes
by a glide plane gives the nonsymmorphic group p2mg (#7) as shown in Ta-
ble B.7. When both mirror planes of space group #6 are replaced by glide
planes, we get space group #8 (p2gg) which has the fractional translation
(1/2)τ1 + (1/2)τ2, but a mirror plane reflection σx or σy as shown in Ta-
ble B.8. The compound mirror plane translation operations can be denoted
by {σx|(1/2)τ1 + (1/2)τ 2}, {σy|(1/2)τ 1 + (1/2)τ 2}.
Centered Rectangular Lattices. The centered rectangular lattice with the full
centered rectangular symmetry (see Table B.9) is the space group c2mm (#9)
which is a centering of space group #6 (p2mm). The lower symmetry centered
rectangular subgroup, related to space group #3 (p1m1) is space group #5
(c1m1) (shown in Table B.5). We note that the centering is equivalent to
introducing a (1/2)τ 1 + (1/2)τ2 translation as indicated in Table B.5 for
space group c1m1 (#5). All the centered rectangular lattices are considered
to be symmorphic even though they have the translation (1/2)τ 1 + (1/2)τ2

to do the centering operation. As a more interesting example of a centered
rectangular space group, let us look at space group #9 which is denoted
by c2mm (Table B.9). This space group has two equivalent positions (0,0)
and (1/2, 1/2). The symmetry operations include a twofold axis along the
z-direction and two sets of intersecting mirror planes. Four of the symme-
try operations shown in Table B.9 are connected with the 2mm operations,
and the other four symmetry operations are related to compounding these
point group operations with the simple translation (1/2)τ1 + (1/2)τ 2 tak-
ing (0, 0) to (1/2, 1/2). The table shows that c2mm can be realized through
six different kinds of Wyckoff positions and their corresponding site sym-
metries. It should be noted that the various 2D space group tables pro-
vide special relations for the crystallographic h and k Miller indices that
are used to distinguish diffraction patterns associated with each of the space
groups.
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9.3.3 2D Square Space Group

There are three 2D square space groups. The square lattice space with the
full 4mm point group symmetry is p4mm (space group #11), which is shown
in Table B.11. The point group symmetry elements are E, C+

4z, C
−
4z , C2z , σy ,

σx, σda, σdb corresponding to C4v. The only distinct subgroup of C4v is C4

which has symmetry elements E, C+
4z, C

−
4z, C2z . In this case, the space group

is p4 (space group #10 in International Tables for X-Ray Crystallography).
The fourfold axis is clearly seen on the left hand diagram in Table B.10. The
©, points in space group #11 are obtained by adding mirror planes to space
group #10. In the diagram on the right we see lattice locations with fourfold
and with twofold axes, a feature found in all three 2D square lattices (see
Tables B.10–B.12).

By combining the translation (1/2)τ 1 + (1/2)τ2, where 1/2τ1 and
(1/2)τ 2 are translation vectors, with the mirror planes σx, σy, σda, σdb we
obtain the glide reflections {σx|(1/2)τ1 + (1/2)τ2}, {σy|(1/2)τ1 + (1/2)τ 2},
{σda|(1/2)τ1 + (1/2)τ2}, {σdb|(1/2)τ 1 + (1/2)τ 2}. These glide reflections
are used to form the nonsymmorphic square lattice of space group #12
(p4gm). We note there are mirror planes along the square diagonals and
also mirror planes through the x- and y-axes. Space group #12 (p4gm) is
obtained from space group #11 (p4mm) by translation of the comma points
by (1/2)τ1 + (1/2)τ2, taking the open points into comma points.

9.3.4 2D Hexagonal Space Groups

There are five 2D hexagonal space groups, and all are symmorphic. The
—)hexagonal space group #17 with the full hexagonal point group sym-

metry is p6mm. The point group symmetry elements are E, C+
6 , C−6 , C+

3 ,
C−3 , C2, σd1, σd2, σd3, σv1, σv2, σv3. The diagram for p6mm (#17) is shown in
Table B.17.

The four subgroups of C6v are C6, C3v, C3d, C3, giving rise, respectively,
to space groups p6 (#16), p3m1 (#14), p31m (#15), and p3 (#13), as sum-
marized in Table 9.3. The symmetry diagrams for the five 2D hexagonal space
groups are shown in Tables B.13–B.17.

Table 9.3. Summary of the symmetry operations of two-dimensional hexagonal
space groups that are subgroups of #17 (p6mm)

space group point group elements

p3 E, C+
3 , C−3

p3m1 E, C+
3 , C−3 , σv1, σv2, σv3

p31m E, C+
3 , C−3 , σd1, σd2, σd3

p6 E, C+
6 , C−6 , C+

3 , C−3 , C2
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9.4 Line Groups

Line groups describe the symmetry of systems exhibiting translational pe-
riodicity in one dimension [71]. Examples of quasi-one-dimensional systems,
are stereoregular polymers and carbon nanotubes. In addition, some three-
dimensional crystals can be highly anisotropic, as for example chain-type crys-
tals which have line groups as subgroups of their space group. Whenever only
one direction is relevant for some physical properties of a three-dimensional
system, one can expect to derive useful information by applying suitable line
group approaches. The advantage of using line groups is their simplicity.

Generally, quasi-1D systems exhibit, besides translational symmetry, point
group and compound operations. As explained further below, line groups gen-
erally involve a generalized translation group Z and an axial point group P
giving the internal symmetries [22]. By a generalized translation group we
mean that Z denotes an infinite cyclic group composed of general translational
operations along the line axis, that may include screw axes or glide planes.
The line group symmetry elements are represented by {Cr

n|α}, where Cr
n is

a rotation of 2πr/n, and n and r are non-negative integers and where r < n,
and 0 < α < 1 represent a translation along the line axis by αa, where a is the
translational period of the system. For a given choice for r, any multiple of
q/n, where q is a divisor of n, may be added to r with no effect on the resulting
line group L, so that the minimum value of r is used to avoid nonuniqueness.
There are three different types of generalized translation groups:

• Those formed by simple translations, T = {E|α} and the translational
period is αa;

• Those with the occurrence of a screw axis, T r
n = {Cr

n|α} and in this case
the translational period is nαa;

• Those with the occurrence of a glide plane, Tc = {σv|α} and in this case
the translational period is 2αa.

The axial point groups P are: Cn, S2n, Cnh, Cnv, Dn, Dnh and Dnd, where
n = 1, 2, 3, . . . is the order of the principal rotational axis.

The line groups are formed by taking the weak direct product L = Z · P .
The product between Z and P must be a weak direct product2 (indicated
here by “·”) because all elements of Z, except for the identity, have a nonzero
translational part, while no point group element on P has translations. The
intersection between groups Z and P is, therefore, only the identity operation.
However, the product Z · P forms a group only if Z and P commute (this is

2The general concept of a weak direct product is defined in the following way:
A Group G is said to be the weak direct product of its subgroups H and K when
(i) the identity element is the only intersection of H and K and (ii) each element of
G is the product of one element in H with one element in K. Semi-direct and direct
products are special cases of the weak-direct product. When H and K are invariant
subgroups, the result is a direct product. When only H is an invariant subgroup,
the result is a semidirect product.
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Fig. 9.11. Schematic theoretical model for the three different types of single-wall
carbon nanotubes: (a) the “armchair” nanotube, (b) the “zigzag” nanotube, and
(c) the “chiral” nanotube [63]

always the case only for Z = T ). Furthermore, some products with different
factors are identical. There are an infinite number of line groups, and they
are classified into 13 families [22]. In Problem 9.7 we use carbon nanotubes to
exemplify the use of line groups.

Carbon nanotubes can be viewed as a graphene sheet (a single layer
from a 3D graphite crystal) rolled up into a cylinder, one atomic layer in
thickness. Their physical properties depend on how the graphene sheet is
rolled up, and from a symmetry point of view, two types of tubes can
be formed, namely the achiral tubes, as shown in Fig. 9.11(a) and (b), or
the chiral tubes, illustrated in Fig. 9.11(c). Because of the small diame-
ter of a carbon nanotube (∼10 Å) and the large length-to-diameter ra-
tio (> 104), a carbon nanotube from a symmetry standpoint is a one-
dimensional crystal with a translation vector T along the cylinder axis
and a small number of carbon hexagons associated with the circumferen-
tial direction. For this reason, this structure is a very appropriate system
to study line groups. The relation between carbon atoms on a carbon nan-
otube and the symmetry operations on the respective line groups is one-to-
one, and nanotubes are, therefore, a prototype system for illustrating line
groups [23, 24].

9.5 The Determination of Crystal Structure
and Space Group

In many research situations, the researcher must first identify the crystal
structure and the space group, as summarized below.
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9.5.1 Determination of the Crystal Structure

The standard determinations of crystal structures are carried out using diffrac-
tion techniques, either X-ray or neutron diffraction. The elastically scattered
beams give rise to a series of diffraction peaks which can be indexed according
to the points in reciprocal lattice. The results of many such structural determi-
nations for specific materials are listed in the series of books by Wyckoff [76].

We illustrate the use of Wyckoff’s books to find the crystal structure of
a particular material in Problem 9.6. The information to be extracted from
Wyckoff’s book concerns the number of allotropic structures of a given chem-
ical species, the Wyckoff positions of the atoms within the unit cell, the site
symmetries of the atoms in each of the structures and the space group des-
ignations. Such information is also available from websites [58]. Appendix C
shows some illustrative crystal structures.

9.5.2 Determination of the Space Group

The International Tables for X-Ray Crystallography [58] helps with the de-
termination of the space group and the symmetry operations of the space
group3 [58]. These volumes deal with space groups in general but do not refer
to specific materials, which is the central theme of Wyckoff’s books. In some
cases Wyckoff’s books give the space group designation, and then the listing
of the Wyckoff positions needs to match up with the proper Wyckoff positions
in the International Tables for X-Ray Crystallography under the appropriate
space group. If the space group is not given explicitly in Wyckoff’s books [76],
then the space group must be found from the Crystallographic information
and the Wyckoff positions. The procedure that is used to find the space group
is to first find the Wyckoff positions and site symmetries as illustrated in
Problems 9.4 and 9.6. Information about space groups is also available from
websites [54, 58, 76].

Selected Problems

9.1. (a) For the crystal structure shown in Fig. 9.5(a) list the symmetry ele-
ments and identify the space group and give the space group number and
symmetry designations for this symmorphic space group (see Table 9.1).

(b) Find the Wyckoff positions for the four atoms per unit cell and find the
site symmetries for the structure shown in Fig. 9.5(a).

(c) Find χequiv for the space group in Fig. 9.5(a) and find the irreducible
representations contained in Γ equiv.

(d) Repeat (a), (b) and (c) for the space group in Fig. 9.5(b).

3International Tables for X-ray Crystallography.
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Fig. 9.12. Translation–rotation symmetry for a fourfold axis (a), and a threefold
axis (b)

9.2. (a) List the real space symmetry operations of the nonsymmorphic two-
dimensional square space group p4gm (#12).

(b) Explain all the open and filled points, and the solid and dashed lines
in the diagram for the 2D space group p4gm (#12). Explain the point
symmetry entries for each of the site symmetries a, b, c, d on the table for
space group #12 (p4gm) in Table B.12 in Appendix B which was taken
from the International Crystallography Tables.

(c) Explain the differences in the symmetry operations between the 2D space
group #12 and the 2D space group #11. Why does the figure for group
#11 have dashed lines? Why is group #12 not classified as a centered
space group? Why are there no centered square 2D space groups?

9.3. Show that in the diamond structure, the product of two symmetry opera-
tions involving translations τ yields a symmetry element with no translations

{α|τ}{β|τ} = {γ|0},

where τ = (1, 1, 1)a/4. What is the physical significance of this result?

9.4. Consulting Wyckoff’s book “Crystal Structures” 2nd edn., Krieger (1981)
for the crystal structure of Nb3Sn, a prototype superconductor with the A–15
(or β–W) structure used for high field superconducting magnet applications:

(a) List the site locations of each atom within the unit cell of Nb3Sn as ob-
tained from Wyckoff’s book or from another source.

(b) Identify the proper space group for Nb3Sn and give the Wyckoff positions
for each atom and its site symmetry.

9.5. To understand why fivefold symmetry does not form a Bravais lattice,
consider the interplay of a fourfold or threefold axes and their translations,
shown in Fig. 9.12. In general, the only acceptable values of α are those that
cause BB′ in Fig. 9.12 to be an integer multiple of the original translation, τ
(that is we require BB′ = mτ , where m is an integer).

(a) By relating BB′ to τ and α, show that the only values of α satisfying the
restriction BB′ = mτ are 0, π/3, π/2, 2π/3 and π.



208 9 Space Groups in Real Space

(b) Show schematically that in the case of fivefold symmetry, BB′ gives rise
to a new translation τ ′ in the same direction as τ , but inconsistent with
the original lattice vectors coming from A. This inconsistency can also be
expressed by stating that BB′ violates the initial hypothesis that τ is the
shortest translation in the direction BB′.

9.6. This problem provides experience with finding the Wyckoff positions for
3D graphite in the hexagonal crystal structure (see Fig. C.1 in Appendix C)
and in the rhombohedral crystal structure (see Fig. C.2)

(a) From the crystal structure model, find the coordinates for the four distinct
atoms per unit cell in 3D graphite and give their site symmetries.

(b) Using space group #194 (Table C.3 in Appendix C) find the Wyckoff
positions and their symmetries.

(c) Explain the diagrams appearing at the top of Table C.3, especially the
notation. Why are space groups #191, #192, and #193 not appropriate
for describing the structure for 3D graphite (Fig. C.1)?

(d) Repeat (a) for rhombohedral graphite (Table C.4) with 6 atoms/unit cell
in the hexagonal system and two atoms/unit cell in the rhombohedral
system (space group #166).

9.7. Consider single wall carbon nanotubes, as presented in Sect. 9.4 and dis-
cussed in Appendix E.

(a) Find the space groups with the appropriate symmetries for the semicon-
ducting (6,5) and the metallic (6,6) carbon nanotubes.

(b) The physical properties of carbon nanotubes can be obtained from those–
of a graphene sheet by the zone-folding procedure. Using the linear-helical
construction (see Appendix E), show how the allowed k vectors of a car-
bon nanotube can be mapped into the Brillouin zone of two-dimensional
graphite, and discuss the conservation of the linear and helical quantum
numbers. The diagram on the cover to this book can be very helpful for
solving this problem.

(c) Find the appropriate line groups for chiral and achiral carbon nanotubes.


