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Electronic States

of Molecules and Directed Valence

This chapter considers the electronic states of molecules, the formation
of molecular bonds and the simplifications that are introduced through
the use of group theory. We organize our discussion in this chapter in
terms of a general discussion of molecular energy levels; the general con-
cept of equivalence; the concept of directed valence bonding; the appli-
cation of the directed valence bond concept to various molecules, includ-
ing bond strengths in directed valence bonds; and finally σ and π bond-
ing.

7.1 Introduction

The energy levels of molecules are basically more complicated than those of
atoms because there are several centers of positive charge which serve to
attract a given electron, and because these centers are themselves in rel-
ative motion. Since the nuclei are very massive relative to the electrons,
we can utilize the Born–Oppenheimer approximation which separates out
the electronic motion from the nuclear or ionic motion. In this approxima-
tion, the electrons move in a potential generated by the equilibrium po-
sitions of the nuclei. We are thus left with three kinds of molecular mo-
tion, the electronic motion which is most energetic, the vibrational motion
which is less energetic, and the rotational motion which is least energetic.
If these motions are independent they can be decoupled (but this is not
always the case). In this chapter we consider the electronic energy levels
of some typical molecules considering the Born–Oppenheimer approxima-
tion, and in Chap. 8 we consider the vibrational and rotational levels of
molecules.

The effective one-electron potential V (r) for an electron in a molecule
must be invariant under all symmetry operations which leave the molecule
invariant. If we did not exploit the symmetry explicitly through group theory,
we would then solve the Schrödinger equation to find the energy eigenvalues
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and the corresponding eigenfunctions of the molecule taking into account all
the valence electrons for all the atoms in the molecule. This would require
solution of a large secular equation of the form:

|〈ψi|H|ψj〉 − Eδij | = 0 . (7.1)

Utilization of symmetry (as for example using group theoretical methods)
allows us to choose our basis functions wisely, so that many of the matrix
elements in the secular equation vanish through symmetry arguments and the
secular equation breaks up into block diagonal form. Thus by using symmetry,
we have to solve much smaller secular equations, and only those states which
transform according to the same irreducible representations will couple to
each other according to group theory arguments. Group theory is used in yet
another way for solving the electronic problem. Many molecules contain more
than one equivalent atom. Symmetry is used to simplify the secular equation
by forming linear combinations of atomic orbitals that transform according to
the irreducible representations of the group of Schrödinger’s equation. Using
such linear combinations of atomic orbitals, the secular equation can more
readily be brought into block diagonal form. In this chapter we show how
to form linear combinations of atomic orbitals that transform as irreducible
representations of the appropriate symmetry group, and we will show how the
equivalence concept is used in forming these linear combinations.

Fig. 7.1. Electronic wave functions for a diatomic molecule. On the left the free
atomic orbitals are shown for two similar atoms on different sites. On the right,
the formation of bonding and antibonding states is indicated. To find the energy
splitting between the bonding and antibonding states (indicated schematically), the
solution of Schrödinger’s equation is necessary
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In the free atom, the electronic orbitals display the symmetry of a (1/r)
potential, and therefore the free-atom orbitals are eigenfunctions which trans-
form according to irreducible representations of the full rotation group. In
a molecule or in a solid, the electrons tend to spend more time between the
ion cores in the bonding state and the increased probability of finding the elec-
tron between two nuclei (see Fig. 7.1) is called a chemical bond. These bonds
display the known symmetry of the molecule (or the solid). For this reason,
the wavefunctions for the electrons in the molecule (or the solid) transform as
irreducible representations of the appropriate symmetry group, which in gen-
eral will be of lower symmetry than the full rotation group. From elementary
considerations, we know that molecular bonds arise from the exchange inter-
action whose magnitude depends on the extent of the overlap of the charge
clouds between neighboring atoms. Because these orbitals concentrate the
charge along preferred directions, the bonding is called directed valence bond-
ing, and these directed valence bonds exhibit the symmetry of the molecule
(or of the solid). We use the directed valence bonding concepts to identify the
kinds of symmetries needed to make the desired orbitals.

Symmetry enters the electronic problem of molecules in yet another way,
namely through the Pauli principle and the effect of the permutation of the
electrons on the electron wavefunctions. This topic is discussed in Chap. 17
for many-electron states.

7.2 General Concept of Equivalence

Equivalent bonding orbitals for a molecule are required to transform into one
another under all the symmetry operations of the point group with no more
change than a possible change of phase. The equivalence transformation, which
takes one equivalent function into another, generates a representation for the
point group called the equivalence representation. The equivalence representa-
tion will in general be reducible. We denote the representation that generates
the transformation between equivalent atom sites by Γ a.s. and its characters
by χa.s. where a.s. ≡ atomic sites. In this section we present the equivalence
concept, show how to find the irreducible representations contained in the
equivalence representation and then give a few examples.

The matrices Da.s.(R)ji for the equivalence representation Γ a.s. are found
from the general definition in (4.1)

P̂Rψi =
∑

j

Da.s.(R)jiψj (7.2)

or written in matrix form from (4.5)

Da.s.(R)ji = 〈ψj |P̂R|ψi〉 . (7.3)

Explicitly, the Da.s.(R)ji matrices are found by entering unity into the j, i
position in the matrix if P̂ (R) takes site i into an equivalent site j and zero
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otherwise. From this argument we readily see that the characters for the equiv-
alence representation can be found by counting the number of points which
are left unaffected by the symmetry operation, because it is only those points
that will give a contribution to the matrix on diagonal positions and will thus
contribute to the character for that symmetry operator. To obtain the charac-
ters for the equivalence representation χa.s., we take a representative member
of each class and consider the number of points that are left unchanged under
action of the representative symmetry operator.

The representation Γ a.s. is in general reducible. The pertinent symmetry
types for the problem are then found by decomposing Γ a.s. into its irreducible
representations. To illustrate this concept, consider the example of three iden-
tical atoms at the corners of an equilateral triangle as for example the three
hydrogen atoms in the NH3 molecule. The symmetry group is C3v, and the
character table for group C3v is given in Table A.10. Referring to Fig. 4.2,
where the three equivalent sites are labeled by (a, b, c) we obtain Da.s.(R) for
some typical symmetry operators:

D(a.s.)(E) =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ , (7.4)

D(a.s.)(C3) =

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠ , (7.5)

D(a.s.)(σv) =

⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠ , (7.6)

in which the rows and columns correspond to the sequence of atoms (a, b, c)
and the symmetry operations selected are E, D, and A following Fig. 4.2.
From these matrices we can compute the characters for each of the classes for
the Γ a.s. representation in group C3v(3m). The character χa.s.(R) is always
the number of sites that are left unchanged by the operation P̂R so that for
each of the three classes χa.s.(E) = 3, χa.s.(C3) = 0, and χa.s.(σv) = 1. These
results are summarized in Table 7.1. From Table A.10 we see immediately
that χa.s. = χΓ1 + χΓ2 for every class, since Γ a.s. = Γ1 + Γ2, in agreement
with results obtained in Sect. 4.6. The orbitals on the nitrogen atom are then
chosen so that they bond to the atomic orbitals of the three hydrogen atoms,
as discussed in Sect. 7.5.1.

Table 7.1. χa.s. for the group C3v

E 2C3 3σv

χa.s. 3 0 1 ⇒ Γ1 + Γ2 = A1 +E
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7.3 Directed Valence Bonding

For diatomic molecules we know immediately, without recourse to group the-
ory, how to make a bonding orbital out of the free atomic orbitals. In this
case, we need simply to take the symmetrical combination (ψa + ψb) to pile
up charge in the directed valence bond (see Fig. 7.1).

For the case of the homopolar diatomic molecule, we thus form an occupied
bonding state (ψa +ψb) and an unoccupied antibonding state of higher energy
(ψa −ψb). Suppose that this diatomic molecule only has two symmetry oper-
ations, the identity E and the mirror plane reflections σh or m. These are the
two symmetry elements of the group C1h (see Table 7.2). (In Sect. 7.4 we will
consider the semi-infinite groups D∞h and C∞v which give the full symmetry
of typical homogeneous and heterogeneous diatomic molecules.) Taking ψa as
an arbitrary function, and noting that P̂mψa = ψb, for the mirror plane opera-
tions, the projection operator for one-dimensional irreducible representations
(see (4.38)) can be written as

P̂ (Γn) =
�n
h

∑
R

χ(Γn)(R)∗P̂R . (7.7)

The basic formula (7.7) for finding linear combinations of atomic orbitals when
acting on the wave function ψa yields (see Table 7.2):

P̂ (Γ1)ψa =
1
2
[(1)P̂Eψa + (1)P̂mψa] =

1
2
[ψa + ψb] bonding

P̂ (Γ ′1)ψa =
1
2
[(1)P̂Eψa + (−1)P̂mψa] =

1
2
[ψa − ψb] antibonding (7.8)

for the bonding and antibonding states, so that the bonding orbitals will
have Γ1 symmetry and the antibonding orbitals will have Γ ′1 symmetry. Since
there are only two initial wave functions ψa and ψb, the combinations in (7.8)
are all the independent linear combinations that can be formed, and except
for a normalization factor of

√
2, these functions are proper bonding and

antibonding orbitals.
Our discussion of the use of projection operators (see Sects. 4.5 and 4.6)

illustrates how linear combinations of atomic orbitals could be found such that
the resulting orbitals transform according to irreducible representations of the

Table 7.2. Character table for the group C1h

C1h(m) E σh

x2, y2, z2, xy Rz, x, y A′ (Γ1) 1 1
xz, yz Rx, Ry, z A′′ (Γ ′1) 1 −1

χa.s. 2 0 ⇒ Γ1 + Γ ′1 ≡ A′ + A′′
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point group. Here we used the C1h group that has only two one-dimensional
irreducible representations, and we found the two related electronic states.
However, most of the symmetry groups have many irreducible representations
with different dimensionalities. To find the right symmetries for the electronic
states, one would have to apply the projectors to all of them. This process
is largely simplified by using the directed valence representation ΓD.V. which
introduces two kinds of simplifications:

(a) ΓD.V. gives all the irreducible representations for the molecular orbitals
before the molecular orbitals are found explicitly. This saves time because
the projection operator P̂ (Γn) need not then be applied to irrelevant rep-
resentations, but only to those irreducible representations contained in
ΓD.V..

(b) If we are only interested in finding the number of distinct eigenvalues and
their degeneracies, this follows directly from the characters χD.V. of the
representation ΓD.V.. To obtain this kind of information, it is not necessary
to solve Schrödinger’s equation or even to find the linear combination of
molecular orbitals as in Sect. 4.6.

The directed valence representation ΓD.V. uses the equivalence transformation
to determine the characters of Γ a.s.. In Sect. 7.4 we discuss the directed valence
representation for diatomic molecules and in Sect. 7.5, we extend the concept
to multiatomic molecules with more complicated symmetries.

7.4 Diatomic Molecules

In this section we introduce the semi-infinite groups D∞h and C∞v and we
illustrate the use of the equivalence transformation to form symmetrized lin-
ear combinations of atomic orbitals. We then develop the directed valence
representation for the simplest case of diatomic molecules. Both homonuclear
molecules (like H2) and heteronuclear molecules (like CO) are considered.

7.4.1 Homonuclear Diatomic Molecules

The simplest molecules are the homonuclear diatomic molecules. For homonu-
clear molecules (such as H2) the appropriate symmetry group is D∞h and the
character table for D∞h is shown in Table 7.3 (see also Table A.34). We now
summarize the main points about this character table. Cφ denotes an arbi-
trary rotation about the linear molecular axis (z-axis) and C′2 is a twofold
axis ⊥ to Cφ. In the group D∞h, each of the operations E,Cφ, and C′2 is also
combined with inversion. We further note that σv is a mirror plane through
the molecular axis, so that σv = iC′2. The subscripts g and u refer to the
evenness and oddness of functions under the inversion operation, while the
superscripts + and − refer to the evenness and oddness of functions under
reflection in a mirror plane. The characters for σv in the D∞h group are found
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Table 7.3. Character table for the semi-infinite group D∞h (∞/mn)

D∞h (∞/mm) E 2Cφ C′2 i 2iCφ iC′2

x2 + y2, z2 A1g(Σ
+
g ) 1 1 1 1 1 1

A1u(Σ−
u ) 1 1 1 −1 −1 −1

Rz A2g(Σ
−
g ) 1 1 −1 1 1 −1

z A2u(Σ+
u ) 1 1 −1 −1 −1 1

(xz, yz) (Rx, Ry) E1g(Πg) 2 2 cosφ 0 2 2 cosφ 0
(x, y) E1u(Πu) 2 2 cosφ 0 −2 −2 cosφ 0

(x2 − y2, xy) E2g(Δg) 2 2 cos 2φ 0 2 2 cos 2φ 0
E2u(Δu) 2 2 cos 2φ 0 −2 −2 cos 2φ 0
...

...
...

...
...

...
...

Table 7.4. χa.s. for the group D∞h

E 2Cφ C′2 = iσv i 2iCφ iC′2 = σv

χa.s. 2 2 0 0 0 2
⇒ A1g + A2u

⇒ Σ+
g +Σ+

u

most conveniently by considering the effect of the operation σv on the basis
functions which correspond to a given irreducible representation. For example,
the symmetry operation σv changes (x, y) into (−x, y) yielding a transforma-
tion matrix

D(σv) =
(−1 0

0 1

)
(7.9)

and the corresponding character for σv is χ(σv) = 0 which from the character
table is associated with the E1u irreducible representation.

For a homogeneous diatomic molecule (such as H2) use of the equivalence
transformation on the two sites of the homogeneous diatomic molecule, as
shown in Table 7.4 yields the characters for the equivalence transformation.
When forming a linear combination of atomic orbitals (LCAOs) from s func-
tions on the two equivalent atomic sites (see Sect. 7.3), the normalized bonding
orbital ψS = (ψa + ψb)/

√
2 is symmetric and has Σ+

g or A1g symmetry and
the normalized antibonding orbital ψA = (ψa −ψb)/

√
2 is antisymmetric and

has Σ+
u or A2u symmetry. These two LCAOs correspond to directed valence

orbitals because they result in a rearrangement of the charge on the individual
atomic sites. The bonding LCAO is a directed valence orbital corresponding
to a pile up of charge between the two atoms to produce a lower energy state.
By using the equivalence concept in Sect. 7.2, we have constructed a linear
combination of atomic orbitals which transform as irreducible representations
of the group of Schrödinger’s equation. Thus ψS and ψA form such basis func-
tions and the Hamiltonian for the homogeneous diatomic molecule will not
couple states ψS and ψA to each other. This follows from the argument that
the product (HψS) transforms as A1g, since H transforms as A1g and so does
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ψS. Also ψA transforms as A2u. The selection rules thus tell us that the matrix
element (ψA|H|ψS) must vanish. Thus to bring the secular equation into block
diagonal form, we have to make a unitary transformation on the atomic basis
functions (ψa, ψb) to bring them into the form (ψS, ψA):

(
ψS

ψA

)
= U︸︷︷︸

unitary matrix

(
ψa

ψb

)
=

(
1√
2

1√
2

1√
2
− 1√

2

)(
ψa

ψb

)
. (7.10)

Applying the unitary transformation UHU † to the original matrix (written
in terms of the original ψa and ψb) will bring the secular matrix into block
diagonal form. Bringing the secular equation into block diagonal form greatly
simplifies the solution of the secular equation. In this simple case, the equiva-
lence transformation and group theoretical arguments took a coupled (2× 2)
secular equation and decomposed it into two decoupled (1× 1) secular equa-
tions. The bonding or directed valence state will be the state of lowest energy.

As an example of homonuclear diatomic molecule we discuss the hydrogen
molecule H2. In this case we can put each electron in a (σg1s) orbital and
construct bonding and antibonding orbitals. For H2, the bonding orbital σg

is occupied with electrons having opposite spin states and the antibonding σu

orbital is unoccupied. The (σg1s) state is symmetric under both inversion i
and reflection σv. Hence the symmetry for each of the separated atoms is Σ+

g

so that the symmetry for the molecule is Σ+
g ⊗ Σ+

g = Σ+
g . We write this

state as 1Σ+
g where the superscript 1 denotes a singlet (s = 0) with a total

spin degeneracy of (2s+ 1) = 1. By making spatial bonding orbitals that are
symmetric under exchange of the electrons, the Pauli principle tells us that
the spin state for the directed valence bonding orbital must be antisymmetric:

1√
2

[α(1)β(2)− α(2)β(1)] , (7.11)

where (α, β) give the spin state (up, down), and 1,2 number the electrons
(group theory aspects for spin are treated in Chaps. 14 and 15). In Problem 7.1
we extend the concepts of Sect. 7.4.1 to the hypothetical He2 molecule and
the H−

2 ion.

7.4.2 Heterogeneous Diatomic Molecules

We next illustrate the case of a linear heterogeneous diatomic molecule with
the CO molecule. Since the electronic wave functions on each site are not
equivalent (see Fig. 7.2), there is no inversion symmetry. The appropriate
symmetry group for CO is C∞v which has the Character Table 7.5 (see also
Table A.33). The symmetry operations of C∞v have already been covered
when discussing the symmetry operations of D∞h (see Sect. 7.4.1). Using the
equivalence operation on the carbon and oxygen atoms in CO, we have the
result Γ a.s. = 2A1 (see also χa.s.(E, 2Cφ, σv) for H2 with D∞h symmetry in
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Fig. 7.2. The wave functions for a heteropolar diatomic molecule and their for-
mation of bonding and antibonding states. If 2V3 is the energy separation between
the anion and cation for large interatomic distance, the splitting resulting from an
interaction energy 2V2 is shown

Table 7.5. Character Table for Group C∞v

C ∞v (∞m) E 2Cφ σv

(x2 + y2, z2) z A1(Σ
+) 1 1 1

Rz A2(Σ
−) 1 1 −1

(xz, yz)
(x, y)

(Rx, Ry)

}
E1(Π) 2 2 cosφ 0

(x2 − y2, xy) E2(Δ) 2 2 cos 2φ 0
...

...
...

...

Sect. 7.4.1). Now the C atom in CO has the electronic configuration 2s22p2

while O has the configuration 2s22p4. We will then make bonding and anti-
bonding molecular orbitals from 2s, 2pz, and 2px,y atomic orbitals. From the
basis functions given in the character table for group C∞v we see that the
irreducible representations for these atomic orbitals are

2s→ A1

2pz → A1

2px,y → E1 .

To find the direct products using the character table for C∞v we note that

cos2 φ =
(

1
2

)
(1 + cos 2φ) ,
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which allows us to evaluate the direct product E1 ⊗ E1 to obtain

E1 ⊗ E1 = A1 +A2 + E2 .

state is symmetric, the spin state is antisymmetric by the Pauli principle
(a singlet spin configuration). However, an antisymmetric spatial state (such
as the A2 state) is accompanied by a symmetric spin state (a triplet spin
configuration) and therefore would have a molecular orbital notation 3Σ−

(see character table for D∞h in Sect. 7.4.1). The secular equation implied by
the interactions in Fig. 7.2 (see caption) is

∣∣∣∣∣∣
V3 − E V2

V2 −V3 − E

∣∣∣∣∣∣ = 0 , (7.12)

whose solution gives the splitting between the bonding and antibonding states
of heteropolar diatomic molecules

E = ±
√
V 2

2 + V 2
3 (7.13)

as shown in Fig. 7.2.
Referring to Fig. 7.3 the number of electrons which form bonds in CO

are four from carbon and six from oxygen to give a total of ten electrons.
We note from Fig. 7.3 that the occupied levels include the 2s A1 bonding

Fig. 7.3. Bonding and antibonding molecular levels for the CO molecule
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and antibonding orbitals and the 2p A1 and E1 bonding orbitals. The 2p A1

and E1 antibonding orbitals will remain unoccupied. Since the pz orbitals are
directed along the molecular axis, the bonding–antibonding interaction (and
level splitting) will be largest for the pz orbitals, as shown in Fig. 7.3.

The symmetry of the s-function orbitals for a diatomic molecule are found
directly from the transformation properties of χa.s.. However, since p electrons
have angular momentum l = 1, they transform like the vector (basis functions
x, y, z), so that for p-function orbitals we must take the direct product of
the transformation of the equivalent sites with the transformation proper-
ties of a vector at each site written as χa.s. ⊗ χvector. For the case of the
heterogeneous CO molecule with C∞v symmetry χa.s. = 2A1 = 2Σ+ and
χvector = A1 + E1 = Σ+ +Π . With regard to the pz orbital, both the bond-
ing and antibonding orbitals (see Fig. 7.3) have A1 or Σ+ symmetry. For the
bonding pz orbital, there is a maximum of the charge accumulation between
the C and O atoms which results in the large separation in energy between
the bonding and antibonding orbitals. For the (px, py) orbitals, the bonding
and antibonding levels both have E1 or Π symmetry. The character table for
group C∞v (Table 7.5) relates the notation for the irreducible representations

Fig. 7.4. Schematic diagram of the block structure of the matrix Hamiltonian for
molecular orbitals for the CO molecule arising from the symmetry of the orbitals
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with angular momenta states. The directed valence bonding is along the z-axis
and involves only bonding levels.

The symmetry types of each of the molecular orbitals determines the form
of the secular equation, as shown in Fig. 7.4. The minimum basis for describing
the bonding states is eight, including the 2s, 2px, 2py, and 2pz orbitals for each
atom, since the 1s level is too low in energy to be of importance. The terms on
the diagonals represent the self energy of the electronic orbitals, and the terms
in the off-diagonal positions are the coupling terms. Only electronic states
belonging to the same irreducible representation can couple, and the block
structure of the matrix Hamiltonian of the secular equation then assumes the
form shown in Fig. 7.4.

7.5 Electronic Orbitals for Multiatomic Molecules

In this section, we consider the electronic levels for several multiatomic
molecules, each selected for particular pedagogic purposes.

7.5.1 The NH3 Molecule

To bond to the H atoms, the N atom must make orbitals directed to the three
hydrogens (see Fig. 7.5). We refer to this as the directed valence bonds of
the nitrogen atoms. The directed valence bonds ΓD.V. for the nitrogen must
therefore exhibit the same symmetry as does the LCAO (linear combination of
atomic orbitals) for the hydrogens which transform as Γ a.s.. We have already
seen in Sect. 4.6 how to construct LCAOs for the three equivalent atoms at the

Fig. 7.5. Schematic diagram of the symmetry operations for an NH3 molecule
(group C3v) where the three hydrogen atoms are at the corners of an equilateral
triangle and the N atom is along the normal through the midpoint of this triangle
but not coplanar with the hydrogens
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corners of an equilateral triangle (e.g., the hydrogen atoms in NH3). In this
case we use group C3v (see Fig. 7.5) and obtain the irreducible representations
A1 + E for the linear combination of atomic orbitals for the three hydrogen
atoms discussed in Sects. 4.6 and 7.2. To bond to the nitrogen atom, it is
necessary for the directed valence representation ΓD.V. for the nitrogen atom
to have the same symmetries as Γ a.s. so that ΓD.V. = Γ1 + Γ2 = A1 + E.

We now explore the orbitals that can be made at the nitrogen site. Nitrogen
has the electronic configuration 1s22s22p3. The 1s and 2s electrons will lie low
in energy, and bonding orbitals to the hydrogens will be made with the three
2p electrons [40]. The p electrons transform like the vectors (x, y, z) and the
character table for C3v shows that the px and py functions will transform
as E(Γ2) and the pz as A1(Γ1). The nitrogen atom thus bonds to the linear
combination of atomic orbitals of the three hydrogen atoms with the same
symmetries A1 + E that comes from Γ a.s.. Thus the nitrogen has three p
electrons for bonding and the H3 likewise has three electrons for bonding. The
A1 bonding states will hold two electrons and the E bonding state will hold
four electrons. These bonding states can then accommodate all six valence
electrons, with three coming from the hydrogen atoms and three from the
nitrogen atom. All the antibonding states will be unoccupied. See reference
[40] for a detailed analysis of the molecular orbitals of NH3 and other molecules
discussed in this chapter from a group theory standpoint.

7.5.2 The CH4 Molecule

In this example we consider generally how carbon atoms can form tetrahedral
bonds. One example of such tetrahedral bonds for carbon is in the diamond
structure. The tetrahedral carbon bonds in diamond have the same point
group symmetry as the directed valence bond of carbon in the CH4 methane
molecule. The methane molecule forms a regular tetrahedron (see Fig. 3.3),
where the carbon atom is at the center of the tetrahedron, and the four H
atoms are at the tetrahedral vertices; this structure has Td point symmetry
(see Table A.32).

The bonding of the CH4 molecule is produced by a directed valence bond
from the carbon atom to the four hydrogen atoms at the corners of a tetra-
hedron. The ground state of the carbon atom is 1s22s22p2. We will see below
that the carbon atom must be promoted to a 1s22s12p3 configuration to make
the directed valence bonds. The four equivalent hydrogen atoms form LCAOs
to make the bonds from the four points labeled a, b, c, d in Fig. 3.3 (where the
four hydrogens are located) to the center of the tetrahedron where the carbon
atom is located.

Let us start with the symmetry of the linear combination of atomic orbitals
of the four hydrogen atoms at the corner of a regular tetrahedron which has
Td symmetry (see Table A.32 and Table 7.6). The 24 symmetry operations of
Td are described in Sect. 3.11 and in Fig. 3.3. If we now consider each of the
symmetry operations the group Td acting on the points a, b, c, d (see Fig. 3.3)
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Table 7.6. Character Table for group Td(43m)

Td(43m) E 8C3 3C2 6σd 6S4

A1 1 1 1 1 1
A2 1 1 1 −1 −1
E 2 −1 2 0 0

(Rx, Ry, Rz) T1 3 0 −1 −1 1
(x, y, z) T2 3 0 −1 1 −1

Γ a.s. 4 1 0 2 0 ⇒ A1 + T2

where the four hydrogens are located, we obtain the equivalence representa-
tion for the hydrogen orbitals Γ a.s.. Some typical matrices for the symmetry
operations of Td in the equivalence representation Γ a.s. for the four hydrogen
atoms are

Da.s.(E) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , (7.14)

Da.s.(C3) =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎠ , (7.15)

etc., where the rows and columns relate to the array (a b c d) of Fig. 3.3.
To find the characters for each class we use the equivalence transformation
principle to find how many sites go into themselves under the symmetry op-
erations of each class of Td. The results for the characters of the equivalence
representation Γ a.s. formed from transforming the atom sites (a.s.) according
to the symmetry operations of group Td are summarized just under the char-
acter table for Td (see Table 7.6). Using the decomposition theorem (3.20)
we then find the irreducible representations of Td that are contained in Γ a.s.

(see Table 7.6). Thus Γ a.s. gives the symmetries for the LCAOs for the equiv-
alence transformation showing that these orbitals are made of an s-function
transforming as A1 and a p-function transforming as T2.

The linear combination of the atomic orbitals of the four hydrogen atoms
transforming as A1 is clearly the symmetric sum of the atomic orbitals.

ψ(A1) =
1
2
(ψa + ψb + ψc + ψd) (7.16)

and the three degenerate partners of the T2 representation are
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Table 7.7. Characters and symmetries for the angular momentum states in Td

symmetry

E 8C3 3C2 6σd 6S4

χ�=0 1 1 1 1 1 A1 A1 → s state

χ�=1 3 0 −1 1 −1 T2 T2 → p state

χ�=2 5 −1 1 1 −1 E + T2

ψ1(T2) =
1
2
(ψa + ψb − ψc − ψd)

ψ2(T2) =
1
2
(ψa − ψb + ψc − ψd)

ψ3(T2) =
1
2
(ψa − ψb − ψc + ψd) . (7.17)

The T2 orbitals must be orthogonal to the A1 orbitals and to each other and
must transform as irreducible representation T2 under symmetry operations
of the group (see Problem 7.6).

The symmetries for the directed valence orbitals for the carbon atom can
be related conveniently to angular momentum states using the full rotation
group and the characters for rotations and inversions (see (5.11) and (5.13)).
To make a directed valence bond from the central carbon atom to the four
hydrogen atoms at locations a, b, c, d in Fig. 3.3, the carbon atom must have
wave functions with the same symmetries for its four valence electrons as the
four LCAOs for the hydrogen atoms (see (7.16) and (7.17)). This tells us that
the electronic states for the carbon directed valence state must have a 2s12p3

configuration and A1 + T2 symmetries for the carbon valence electrons. The
symmetries for the angular momentum states are found from

χ(α) =
sin[(�+ 1

2 )α]
sin(α/2)

for pure rotations

χ(iα) = (−1)� sin[(�+ 1
2 )α]

sin(α/2)
for improper rotations .

We thus obtain the characters for the angular momentum states in the Td

group and list them in Table 7.7, where we have made use of the fact that
{
σd = iC′2
S4 = iC4 ,

in which the C′2 is a (110) twofold axis. We note that the C′2 operation to-
gether with the inversion operation take one of the a, b, c, d vertices in Fig. 3.3
into a vertex occupied by a hydrogen atom. The joint operation iC4 = S4

transforms the a, b, c, d vertices another themselves.
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Table 7.8. Relation between angular momentum states and basis functions for
group Td

basis functions

� = 0 s-state 1

� = 1 p-state (x, y, z)

� = 2 d-state (xy, yz, zx︸ ︷︷ ︸
T2

, x2 − y2, 3z2 − r2)︸ ︷︷ ︸
E

The results in Table 7.7 could equally well have been obtained by look-
ing at the character table for group Td (see Table A.32) and making the
identifications as displayed in Table 7.8, and by associating the various basis
functions of the angular momentum states with the appropriate irreducible
representations for the Td group.

If we now apply this discussion to the CH4 molecule we see that the di-
rected valence orbitals for the carbon contain one 2s (A1) state and three 2p
(T2) states to bond to the four hydrogen atoms. These A1 and T2 states can
accommodate all eight valence electrons for the CH4 molecule. A linear com-
bination of s and px, py, pz functions which transforms at A1 and T2 for the
directed valence orbitals of the carbon atom along the four diagonal directions
of the cube (see Fig. 3.3) is

Ψ(1, 1, 1) =
1
2
(ψs + ψpx + ψpy + ψpz)

Ψ(1,−1,−1) =
1
2
(ψs + ψpx − ψpy − ψpz)

Ψ(−1, 1,−1) =
1
2
(ψs − ψpx + ψpy − ψpz)

Ψ(−1,−1, 1) =
1
2
(ψs − ψpx − ψpy + ψpz) . (7.18)

The linear combination with all “+” signs Ψ(1, 1, 1) transforms as the
A1 irreducible representation. The other three functions with two “+”
and two “−” signs transform as the three partners of the T2 irreducible
representation as can be seen by applying the symmetry operations of
group Td to these directed valence wave functions. Thus (7.18) gives
a set of orthonormal wave functions for the four electrons of the carbon
atom.

Bonding states are made between the A1 carbon orbital and the A1 or-
bital of the four hydrogens and between the corresponding T2 carbon and
hydrogen orbitals following the same type of block diagonal form as is shown
in Fig. 7.4 for the CO molecule. Although the carbon electrons must be pro-
moted to the excited sp3 configuration to satisfy the bonding orbitals in the
molecule, the attractive bonding energy due to the CH4 bonds more than
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compensates for the electronic excitation to form the sp3 excited state for
the carbon atom. It is of interest that the orbitals in (7.18) also represent
normalized functions for tetrahedral bonding orbitals in common semicon-
ductors.

Finally we consider the bond strengths along a directed valence orbital
to show that the bond strength is a maximum along the directed valence
orbital. To illustrate bond strengths, consider the (1, 1, 1) directed valence
bond 1

2 (ψs + ψpx + ψpy + ψpz ) with A1 symmetry for CH4 (see (7.18)). We
express each of the terms of this equation in terms of spherical harmonics,
using polar coordinates. For angular momentum � = 0 and � = 1 the spherical
harmonics yield

ψs = 1 , ψpy =
√

3 sin θ sinφ ,

ψpx =
√

3 sin θ cosφ , ψpz =
√

3 cos θ . (7.19)

We can thus write the angular dependence of the directed valence bond along
(111) as

Ψ(1, 1, 1)|(θ,φ) =
f(r)

2

[
1 +

√
3 sin θ(cosφ+ sinφ) +

√
3 cos θ

]
. (7.20)

Differentiation with respect to θ and φ determines the values of θ and φ
which give a maximum bond strength. It is found that this wavefunction
is a maximum along the (111) direction, but not along another one of the
diagonal axes (see Problem 7.6).

7.5.3 The Hypothetical SH6 Molecule

As another illustrative example, consider a hypothetical molecule SH6 where
the six identical H atoms are arranged on a regular hexagon (e.g., the ben-
zene ring has this basic symmetry) and the sulfur is at the center. For the
hydrogens, we have six distinct atomic orbitals. To simplify the secular equa-
tion we use group theory to make appropriate linear combinations of atomic
orbitals: ⎛

⎜⎜⎜⎜⎜⎜⎝

ψa

ψb

ψc

ψd

ψe

ψf

⎞
⎟⎟⎟⎟⎟⎟⎠
, (7.21)

so that the transformed linear combinations are proper basis functions for
irreducible representations of the point symmetry group D6h which applies to
this problem. We see that the largest dimension for an irreducible representa-
tion in D6h is n = 2. We show below that the use of symmetry will result in
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Fig. 7.6. Geometry of the hypothetical SH6 planar molecule with six hydrogens at
the corners of a hexagon and the sulfur atom at the center (D6h symmetry)

a secular equation with block diagonal form, having blocks with dimensions
no greater than (2× 2).

To find the proper linear combination of atomic orbitals, we find the char-
acters for the equivalence transformation Γ a.s.(R) for the six hydrogen atoms
in D6h symmetry (see Fig. 7.6) by considering how many atom sites go into
each other under the various symmetry operations of the group. The results
for Γ a.s. for each class are given at the bottom of the Character Table 7.9 for
D6 where D6h = D6⊗ i. We now set up the appropriate linear combinations of
atomic orbitals for the six hydrogen atoms. This can be done most easily by
utilizing the correspondence of this problem with the sixth roots of unity. We
will denote the sixth roots of unity by 1, Ω, ω,−1, ω2, Ω5, where ω = e2πi/3

and Ω = e2πi/6. For simplicity we will denote the atomic orbitals at a site
α by ψα and use the abbreviated notation α. In terms of the site notation
(a, b, c, d, e, f), the sixth orthogonal linear combinations formed by taking the
sixth roots of unity are

ψ1 a+ b+ c+ d+ e+ f transforms as Γ1 ,

ψ2 a+Ωb+ ωc− d+ ω2e+Ω5f ,

ψ3 a+ ωb+ ω2c+ d+ ωe+ ω2f ,

ψ4 a− b+ c− d+ e− f transforms as Γ3 ,

ψ5 a+ ω2b+ ωc+ d+ ω2e+ ωf ,

ψ6 a+Ω5b+ ω2c− d+ ωe+Ωf .

To obtain the symmetries of the functions ψ1, . . . , ψ6 we examine P̂Rψi

where P̂R is a symmetry operation in group D6. Clearly ψ2 and ψ6 are part-
ners since ψ∗2 = ψ6, and similarly ψ3 and ψ5 are partners since ψ∗3 = ψ5,
so these provide good candidates for representing the Γ5 and Γ6 irreducible
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Table 7.9. Character table for point group D6

D6 E C2 2C3 2C6 3C′2 3C′′2

x2 + y2, z2 Γ1(A1) 1 1 1 1 1 1
z Γ2(A2) 1 1 1 1 −1 −1

Γ3(B1) 1 −1 1 −1 1 −1
Γ4(B2) 1 −1 1 −1 −1 1

(x2 − y2, xy) Γ5(E2) 2 2 −1 −1 0 0
(xz, yz), (x, y) Γ6(E1) 2 −2 −1 1 0 0

Γ a.s. 6 0 0 0 2 0 ⇒ Γ1 + Γ3 + Γ5 + Γ6

Fig. 7.7. Schematic of the secular equation for six hydrogen orbitals at the corners
of a regular hexagon. Outside of the block structure, all entries are zeros. The Γ1

and Γ3 are one-dimensional representations and the Γ5 and Γ6 are two-dimensional
representations

representations. By inspection, ψ1 is invariant under all the symmetry oper-
ations of the group and thus ψ1 transforms as Γ1. As for ψ4, application of
C6(ψ4) = −ψ4, and C3ψ4 = ψ4, etc. verifies that ψ4 transforms as Γ3. In-
spection of the character table shows differences between Γ5 and Γ6 under the
operations in classes C2 and 2C6. It is clear that the basis formed by ψ2 and
ψ6 transforms under C6 as

C6(ψ2, ψ6) =
(
Ω5 0
0 Ω

)(
ψ2

ψ6

)
(7.22)

since a→ b, b→ c, c→ d, etc. Thus the trace of the matrix is

Ω +Ω5 = e2πi/6 + e−2πi/6 = 2 cos
2π
6

= 1 , (7.23)
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which is the proper character for Γ6. As a check, we see that C2(ψ2, ψ6)
results in a trace = Ω3 +Ω15 = Ω3 +Ω3 = 2 cosπ = −2, and this also checks.
Similarly we see that the transformation matrix for

C6(ψ3, ψ5) = DΓ5(C6)
(
ψ3

ψ5

)

again sends a → b, b → c, c → d, etc. and yields a trace of ω + ω2 = −1
while C2(ψ3, ψ5) yields a trace of ω3 +ω6 = 2. The unitary transformation U
which takes the original basis a, b, c, d, e, f into a basis that exhibits D6

symmetry

U

⎛
⎜⎜⎜⎜⎜⎜⎝

a
b
c
d
e
f

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

ψ1

ψ4

ψ2

ψ6

ψ3

ψ5

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.24)

brings the one-electron molecular secular matrix into the block diagonal form
shown in Fig. 7.7, and zeros in all the off-diagonal positions coupling these
blocks.

Just as we used some intuition to write down the appropriate basis func-
tions, we can use physical arguments to suggest the ordering of the energy
levels. The fully symmetric state yields a maximum charge density between the
atom sites and therefore results in maximum bonding. On the other hand, the
totally antisymmetric state yields a minimum bonding and therefore should be
the highest energy state. The doubly degenerate levels have an intermediate
amount of wave function overlap.

The six symmetric orbitals that we make can be populated by 12 electrons.
But we only have six electrons at our disposal and these will go into the lowest
energy states. Figure 7.8 shows a schematic view of the pile up of charge for

Fig. 7.8. Energies of the LCAOs formed by six hydrogen atoms at the corners of
a hexagon. Also shown is a schematic summary of the wave functions for the various
orbitals
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the states of various symmetry. The Γ1 state has the strongest bonding and
the Γ6 state has the next strongest binding, and therefore we can expect
the six electrons to populate these states preferentially. For this reason, the
molecular bonding produces a lower energy state than the free atoms.

Let us now consider making directed valence orbitals from the S atom
at the center of the hexagon to the six hydrogens. An isolated S atom is in
a 1s22s22p63s23p4 configuration. Thus to bond to the hydrogen atoms in the
six LCAOs, given by ψ1, . . . , ψ6, would require all the bonding states and
all the antibonding states to be occupied. This implies that the sulfur atom
would have to be promoted to a high energy state to bond in a planar config-
uration (see Problem 7.3). The sulfur atom in the ground state configuration
would only bond to the Γ1 and Γ6 blocks of the secular equation for SH6 in
Fig. 7.7.

7.5.4 The Octahedral SF6 Molecule

We next give an example of SF6 with a molecular configuration that involves
octahedral bonding (see Fig. 7.9). The octahedral configuration is very com-
mon in solid state physics.

If we now use the symmetry operations of Oh (Table A.30) we get the
characters for the equivalence representation Γ a.s. for the six atoms which sit
at the corners of the octahedron (see Fig. 7.9 and Table 7.10). The decomposi-
tion of the reducible representation Γ a.s. for the six equivalent fluorine atoms
gives

Γ a.s. = A1g + Eg + T1u . (7.25)

If we (hypothetically) were to put s-functions on each of the six fluorine sites,
then Γ a.s. given by (7.25) would be appropriate to make the linear com-
bination of atomic orbitals for the six fluorine atoms. However, if we put

Fig. 7.9. Schematic diagram of the SF6 molecule which exhibits octahedral bonding
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p-functions on each fluorine site then the appropriate equivalence transfor-
mation for p-electrons would be Γ a.s. ⊗ Γ (T1u), where we note that for Oh

symmetry the vector transforms as T1u. This general concept of taking the
direct product of the transformation of the atom sites with the symmetry of
the orbital on each site is frequently used in applications of the equivalence
principle.

Let us now look at the orbitals for electrons on the sulfur site to make the
directed valence bonds as shown in Fig. 7.9. Bonding orbitals are found by
setting the directed valence representation equal to the symmetries found from
the equivalence transformation for the fluorine electrons bonding to the sulfur.
For simplicity let us assume that Γ a.s. = ΓD.V. to fully exploit the bonding of
the cation and anions. We then need to identify the irreducible representations
contained in χD.V. with angular momentum states. The characters for the
angular momentum states in Oh symmetry are then found from

χ(α) =
sin(� + 1

2 )α
sin(α/2)

(7.26)

and using the character table for Oh (see Table A.30). The results for the
angular momentum states are tabulated in Table 7.11. As an example, let us
suppose for simplicity that we have s functions on each of the six fluorine sites.
Then to produce ΓD.V. = A1g + Eg + T1u as in (7.25) we can use an s state
� = 0 for the A1g symmetry, a p state (� = 1) for the T1u symmetry, and a d
state (� = 2) for the Eg symmetry in (7.25). Thus sp3d2 orbitals are required
for the directed valence of the sulfur ion, which ordinarily has an atomic
ground state configuration 3s23p4. Thus to make the necessary bonding, we
must promote the S atom to an excited state, namely to a 3s13p33d2 state.
This type of excitation is called configuration mixing. In Problem 7.2, a more
realistic version of the octahedral SF6 molecule is considered, with p-function
wave functions for each of the six fluorine sites.

7.6 σ- and π-Bonds

We now discuss the difference between σ- and π-bonds which are defined in
the diagram in Fig. 7.10. The situation which we have considered until now is
bonding by s-functions or by p-functions in the direction of the bond and this is
denoted by σ-bonding, as shown in Fig. 7.10. Because of their asymmetry, the

Table 7.10. Characters for the 6 atoms sitting at the corners of an octahedron,
e.g., for the F sites of the SF6 molecule

E 8C3 3C2 6C′2 6C4 i 8iC3 3iC2 6iC′2 6iC4

Γ a.s. 6 0 2 0 2 0 0 4 2 0
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Table 7.11. Characters for angular momentum states and their irreducible repre-
sentations in Oh symmetry

E 8C3 3C2 6C′2 6C4 i 8iC3 3iC2 6iC′2 6iC4

� = 0 1 1 1 1 1 1 1 1 1 1 ⇒ A1g

� = 1 3 0 −1 −1 1 −3 0 1 1 −1 ⇒ T1u

� = 2 5 −1 1 1 −1 5 −1 1 1 −1 ⇒ Eg + T2g

� = 3 7 1 −1 −1 −1 −7 −1 1 1 1 ⇒ A2u + T1u + T2u

� = 4 9 0 1 1 1 −9 0 −1 −1 −1 ⇒ A1g + Eg + T1g + T2g

σ bonds with p-functions (Vppσ in Fig. 7.10) play an important role in making
directed valence bonding orbitals. We can also obtain some degree of bonding
by directing our p-functions⊥ to the bond direction, as also shown in Fig. 7.10,
and this is called π-bonding. We note that there are two equivalent mutually
perpendicular directions that are involved in π-bonding. From considerations
of overlapping wavefunctions, we would expect π-bonding to be much weaker
than σ-bonding.

Just as group theory tells us which LCAOs are needed to form σ-bonds,
group theory also provides the corresponding information about the linear
combination of atomic orbitals that form π-bonds. We now describe in this
section a procedure for finding the symmetry for both σ-bonds and π-bonds.

Let us first review the situation for the σ-bonds. To find a σ-bond, we con-
sider the atomic wave function at each equivalent site to be degenerate with
the corresponding wave functions on the other sites and we find the transfor-
mation matrices that transform equivalent sites into one another according to
the symmetry operations of the group. To find out if an entry in this matrix is
1 or 0 we ask the question whether or not a site goes into itself under a partic-
ular symmetry operation. If it goes into itself we produce a 1 on the diagonal,
otherwise a 0. Therefore by asking how many sites go into themselves, we
obtain the character for each symmetry operation. This is the procedure we
have used throughout the chapter to find Γ a.s. which denotes the equivalence
transformation. This gives the symmetry designations for Vssσ bonds.

To find the characters for a π-bond, we have to consider how many vectors
normal to the bond direction remain invariant under the symmetry operations
of the group. The simplest way to obtain the characters for the σ-bonds and
π-bonds is to consider the transformation as the product of two operations:
the transformation of one equivalent site into another, followed by the trans-
formation of the vector on a site. Thus we write

Γ (a.s.) ⊗ Γgeneral vector = Γ (a.s.) ⊗ Γvector⊥ to σ−bonds

+Γ (a.s.) ⊗ Γvector ‖ to σ−bonds . (7.27)

But

ΓD.V. σ-bonds ≡ Γ (a.s.) ⊗ Γ(vector ‖ to σ-bonds) .
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Fig. 7.10. Schematic diagram of: σ-bonding (Vssσ) by s-functions and (Vppσ) by lon-
gitudinally oriented p-functions. Directed valence Vspσ are also indicated. π-bonding
(Vppπ) with transverse p-functions shown for two orientations

Thus
ΓD.V. π-bonds = Γ (a.s.) ⊗ Γgeneral vector − ΓD.V. σ-bonds , (7.28)

and we thus obtain the desired result

ΓD.V.π-bonds = Γ (a.s.) ⊗ Γvector ⊥ to σ-bonds . (7.29)

As an example of σ-bonds and π-bonds let us consider the problem of trigonal
bonding of a hypothetical C4 cluster, where one carbon atom is at the center
of an equilateral triangle and the other three carbon atoms are at the corners
of the triangle, as shown in Fig. 7.11. The pertinent character table is D3h

which is given in Table 7.12. For this group σh denotes an x–y reflection
plane and σv denotes a reflection plane containing the threefold axis and one
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of the twofold axes. Consider the linear combination of atomic orbitals made
out of the three carbon atoms at the corners of the equilateral triangle. From
the equivalence transformation for these three carbons, we obtain Γ (a.s.) (see
Table 7.13). Clearly if each of the orbitals at the corners of the equilateral
triangle were s-functions, then the appropriate linear combination of atomic
orbitals would transform as A′1 + E′

A′1 : ψ1 + ψ2 + ψ3 , (7.30)

E′ :

{
ψ1 + ωψ2 + ω2ψ3

ψ1 + ω2ψ2 + ωψ3

, (7.31)

where

ω = exp
(

2πi
3

)
. (7.32)

In transforming wavefunctions corresponding to higher angular momentum
states, we must include the transformation of a tensor (vector) on each of
the equivalent sites. This is done formally by considering the direct product
of Γ (a.s.) with Γtensor, where Γtensor gives the transformation properties of
the orbital: a scalar for s-functions, a vector for p-functions, a tensor for d-
functions, etc.

We now illustrate the construction of LCAOs from s- and p-functions,
noting that from the character table for the group D3h, s-functions transform

Fig. 7.11. Schematic diagram of a carbon atom forming bonds to three other carbon
atoms at the corners of an equilateral triangle

Table 7.12. Character Table for Group D3h(6m2)

D3h(6m2) ≡ D3 ⊗ σh E σh 2C3 2S3 3C′2 3σv

x2 + y2, z2 A′1 1 1 1 1 1 1

Rz A′2 1 1 1 1 −1 −1

A′′1 1 −1 1 −1 1 −1

z A′′2 1 −1 1 −1 −1 1

(x2 − y2, xy) (x, y) E′ 2 2 −1 −1 0 0

(xz, yz) (Rx, Ry) E′′ 2 –2 −1 1 0 0
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Fig. 7.12. Schematic diagram for the σ-bonds and the in-plane π-bonds for car-
bon atoms at the corners of a triangle to a carbon atom at the center of the
triangle

as A′1, pz functions as A′′2 and (px, py) functions as E′. We thus obtain for
the transformation properties of the three s-functions at the corners of an
equilateral triangle as

Γ a.s. ⊗ Γs = (A′1 + E′)⊗A′1 = A′1 + E′ . (7.33)

For the pz functions which transform as A′′2 we have for the direct product:

Γ a.s. ⊗ Γpz = (A′1 + E′)⊗A′′2 = A′′2 + E′′ . (7.34)

Finally for the px,y functions which transform as E′ we obtain

Γ a.s. ⊗ Γpx,py = (A′1 + E′)⊗ E′ = A′1 +A′2 + 2E′ . (7.35)

We will see below that the A′1 + E′ symmetries correspond to σ-bonds and
the remaining (A′2 + E′) + (A′′2 + E′′) correspond to π-bonds, as shown in
Fig. 7.12.

For the carbon atom at the center of the equilateral triangle (see Fig. 7.11)
we make directed valence orbitals to the carbon atoms at sites (1), (2), and (3)
from states with A′1 and E′ symmetry (see Sect. 7.5.1), which in accordance
with the character table for D3h, transform as the ψs and ψpx , ψpy wave
functions. The directed orbitals from the central carbon atom are thus

Table 7.13. Characters for the Γ a.s. representation of three carbon atoms sitting
at the corners of an equilateral triangle (D3h symmetry)

E σh 2C3 2S3 3C′2 3σv

Γ (a.s.) 3 3 0 0 1 1 ⇒ A′1 + E′
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ψ1 = αψs + βψpx

ψ2 = αψs + β

[
−1

2
ψpx +

√
3

2
ψpy

]

ψ3 = αψs + β

[
−1

2
ψpx −

√
3

2
ψpy

]
. (7.36)

The orthonormality condition on the three waves functions in (7.36), gives

α2 + β2 = 1 , β2 = 2α2 , (7.37)

or

α =
1√
3
, β =

√
2
3
, (7.38)

so that

ψ1 =

√
1
3
ψs +

√
2
3
ψpx

ψ2 =

√
1
3
ψs −

√
1
6
ψpx +

√
1
2
ψpy

ψ3 =

√
1
3
ψs −

√
1
6
ψpx −

√
1
2
ψpy . (7.39)

Using the basis functions in the character table for D3h and the classification
of angular momentum states in Table 7.14, we can make σ-bonding orbitals
with the following orbitals for the central carbon atom, neglecting for the
moment the energetic constraints on the problem:

2s2p2 s+ (px, py)

2s3d2 s+ (dxy, dx2−y2)

3d2p2 d3z2−r2 + (px, py)

3d3 d3z2−r2 + (dxy, dx2−y2) .

It is clear from Table 7.14 that the lowest energy σ-bond is made with the
2s2p2 configuration. The carbon atom has four valence electrons, three of
which make the in-plane trigonal σ-bonds. The fourth electron is free to bond
in the z-direction. This electron is involved in π-bonds, frequently discussed
in organic chemistry.

To obtain π-bonds from the central carbon atom to the atoms at the
corners of the triangle, we look at the character table to see how the vector
(x, y, z) transforms:

Γvector = E′ +A′′2 . (7.40)
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Table 7.14. Characters for the angular momentum states and their irreducible
representations for the group D3h

(a)

E σh 2C3 2S3 3C′2 3σv

� = 0 1 1 1 1 1 1 A′1
� = 1 3 1 0 −2 −1 1 A′′2 +E′

� = 2 5 1 −1 1 1 1 A′1 +E′ +E′′

� = 3 7 1 1 1 −1 1 A′1 +A′2 +A′′2 +E′ +E′′

(a)In this character table, the characters for the various entries are found using the
relations σh = iC2, 2S3 = 2iC6 and 3σv = 3iC2

We then take the direct product:

Γ a.s. ⊗ Γvector =

Γ a.s.︷ ︸︸ ︷
(A′1 + E′)⊗ (E′ +A′′2)︸ ︷︷ ︸

χvector

= (A′1 ⊗ E′) + (A′1 ⊗A′′2 ) + (E′ ⊗ E′) + (E′ ⊗A′′2)

= (E′) + (A′′2 ) + (E′ +A′1 + A′2) + (E′′)

= (A′1 + E′) + (E′ +A′′2 +A′2 + E′′) . (7.41)

Since the irreducible representations for the σ-bonds are A′1 and E′, we have
the desired result that the irreducible representations for the π-bonds are

E′ +A′′2 +A′2 + E′′ .

We can now go one step further by considering the polarization of the π-bonds
in terms of the irreducible representations that are even and odd under the
horizontal mirror plane operation σh:

χD.V. π-bonds =

Even under σh︷ ︸︸ ︷
A′2 + E′ + A′′2 + E′′︸ ︷︷ ︸

Odd under σh

. (7.42)

This polarization analysis identifies the bonds in (7.33)–(7.35).
To find the irreducible representations contained in the directed valence

π-bonds, we have to go to rather high angular momentum states: � = 2 for
an E′′ state and � = 3 for an A′2 state. Such high angular momentum states
correspond to much higher energy. Therefore π-bonding will be much weaker
than σ-bonding. The irreducible representations A′′2 + E′′ correspond to π-
bonding in the z-direction while the A′2 + E′ representations correspond to
π-bonding in the plane of the triangle, but ⊥ to the σ-bonding directions.
We further note that the symmetries A′′2 + E′′ correspond to pz and dxz, dyz

orbitals for angular momentum 1 and 2, respectively. On the other hand, the
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symmetries A′2 + E′ require � = 3 states, and therefore correspond to higher
energies than the A′′2 + E′′ orbitals. A diagram showing the orbitals for the
σ-bonds and π-bonds for the various carbon atoms is given in Fig. 7.12.

7.7 Jahn–Teller Effect

The Jahn–Teller (JT) effect was discovered in 1937 [42] and it represents one of
the earliest applications of group theory to solid-state physics [9]. The Jahn–
Teller Theorem states that “any nonlinear molecular system in a degenerate
electronic state will be unstable and will undergo a distortion to form a system
of lower symmetry and lower energy, thereby removing the degeneracy.” The
spontaneous geometrical distortion in an electronically excited state results in
a lowering of the symmetry and a splitting of energy levels.

Both static and dynamic JT effects must be considered. In the static JT
effect, a structural distortion lowers the symmetry of the system and lifts
the degeneracy of the state. For a partially filled band, such a distortion
thus leads to a lowering of the total energy of the system as the lower en-
ergy states of the multiplet are occupied and the higher-lying states remain
empty.

The dynamic JT effect [44] can occur when there is more than one possible
distortion that could lead to a lowering of the symmetry (and consequently
also the lowering of the energy) of the system. If the potential minima of
the adiabatic potential are degenerate for some symmetry-lowered states of
a molecule, the electrons will jump from one potential minimum to another,
utilizing their vibrational energy, and if this hopping occurs on the same
time scale as atomic or molecular vibrations, then no static distortion will
be observed by most experimental probes. Those vibrational modes which
induce the dynamic JT effect contribute strongly to the electron–phonon cou-
pling.

The Jahn–Teller effect applies to some simple polyatomic molecules, such
as H3, and to complex organic molecules including carbon nanotubes as well
as defect centers. The effect has also been discussed for different symmetry
structures, such as cubic, tetrahedral, tetragonal, trigonal [60], and even icosa-
hedral systems, such as C60 [32].

For nonlinear molecules in a geometry described by a point symmetry
group possessing degenerate irreducible representations there always exists
at least one nontotally symmetric vibration that makes such electronically
degenerate states unstable. Under this symmetry-lowering vibration, the nu-
clei are displaced to new equilibrium positions of lower symmetry causing
a splitting of the originally degenerate state. The Jahn–Teller effect describes
the geometrical distortion of the electron cloud in the nonlinear molecule un-
der certain situations. Consider a molecule that is in a degenerate state ΨΓi

μ ,
belonging to the irreducible representation Γi, with partners μ. Then the com-
plex conjugate wave function KΨΓi

ν is necessarily a state with the same energy
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where K is the complex conjugation operator (see Chapter 16). If the nuclear
coordinates are displaced from the high-symmetry configuration by a normal
mode vibration QΓj

r , the electronic potential deviates from its equilibrium sit-
uation. The electronic potential can, therefore, be expanded in terms of the
vibrational symmetry coordinates:

V (r, Q) = V0 +
∑
Γj ,r

V Γj
r QΓj

r +
∑

Γjk,r,s

V ΓjΓk
rs QΓj

r QΓk
s + · · · . (7.43)

For small displacements only the first sum can be considered, and we have
the “linear” Jahn–Teller effect. A first-order perturbation approach to the
electronic levels involves the matrix elements:

M = 〈ΨΓi
μ |V (r, Q)|ΨΓi

ν 〉 . (7.44)

The argument of Jahn and Teller is that, since M reverses its sign if Q is
replaced by −Q, each perturbation ΔE of an electronic energy level should
also reverse its sign. Consequently, if M �= 0 due to any term related to a QΓi

belonging to Γi �= Γ1, i.e., the lattice mode vibration does not belong to the
totally symmetric representation, the symmetry of the unperturbed molecular
configuration also becomes unstable.

An interesting and instructive example of the Jahn–Teller effect occurs in
the C60 molecule which has 60 carbon atoms at the 60 vertices of a truncated
regular icosahedron. Although each carbon atom is in an equivalent site to
every other carbon atom on the icosahedron, two of the nearest neighbor C–C
bonds are single bonds while one is a double bond to satisfy the valence
requirements of the carbon atom which is in column IV of the periodic table.
Since the length of the double bond (0.140 nm) is shorter that that of the single
bond (0.146 nm), the icosahedron becomes slightly distorted. This distortion
does not affect the energy of the neutral atom in the ground state (HOMO),
but does affect the filling of the excited states as charge is added to the
fullerene [32]. The Jahn–Teller effect often involves spins and time reversal
symmetry (see Chap. 16), as illustrated in Fig. 16.5 and the associated text.

We also comment on the Renner–Teller effect, that is a splitting on the
vibrational levels of molecules due to even terms in the vibronic perturbation
expansion (7.43). This effect is usually smaller than the linear Jahn–Teller
effect, which is due to the odd terms in the expansion in (7.43), but it becomes
important for linear diatomic molecules where the Jahn–Teller effect is absent.
More details about the Jahn–Teller effect can be found in the literature, for
example in [60].

Selected Problems

7.1. This problem is on diatomic molecules and considers the helium molecule
He2 and the hydrogen molecular ion with an extra electron H−

2 .
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(a) Suppose that we could make a bound diatomic molecule containing four
electrons out of two helium atoms. What would you expect the ground
state electronic configuration to be, what would its symmetry state be,
and what would be its total electronic spin? Since the He2 molecule is not
formed under ordinary circumstances we know that the antibonding state
lies too high in energy to form a bound state.

(b) H−
2 however involves occupation of an antibonding state and does indeed

form a bound state. What is the symmetry configuration of the three
electrons in H−

2 ? Why is it possible for H−
2 to form a stable bound state

but not for He2? Group Theory gives us the symmetry designation for each
molecular electronic state, but does not by itself give definitive information
as to whether or not a bound state is formed.

7.2. Consider a hypothetical SF6 molecule with octahedral symmetry (see
Sect. 7.5.4 and Fig. 7.9).

(a) Using Γ a.s., construct the linear combination of atomic orbitals for the
six holes on the six fluorine atoms which transform according to the three
irreducible representations A1g + Eg + T1u contained in Γ a.s., assuming
that wave functions with p symmetry (� = 1) are used to describe the
valence states for the fluorine wave functions. Note that it is easier to
consider a single hole rather than all the electrons in the nearly filled shell
of the fluorine atom.

(b) What are the angular momentum states required to bond the sulfur to
the six fluorine atoms in p states.

(c) What are the irreducible representations corresponding to σ-bonds and
π-bonds for the central sulfur atom to the six fluorine atoms? Sketch the
orientation of these bonding orbitals.

7.3. Why would the octahedral configuration of Fig. 7.9 be more stable for
a hypothetical SH6 molecule than the planar configuration in Fig. 7.6? Con-
sider the angular momentum states required for the S atom to make the
appropriate directed valence bonds to the six hydrogens in the planar SH6

hypothetical molecule.

7.4. C2H4 (ethylene) is a planar molecule which has the configuration shown
in Fig. 7.13.

Fig. 7.13. Symmetry of the ethylene C2H4 molecule
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Fig. 7.14. Symmetry of the B12H12 icosahedral molecule

(a) Identify the appropriate point group for C2H4.
(b) Find the equivalence representation Γ a.s. for the two carbon atoms and

for the four hydrogen atoms in the C2H4 molecule.
(c) Considering the directed valence orbitals, how do the carbon atoms satisfy

their bonding requirements? Which angular momentum states are needed
to form bonding orbitals from each carbon atom?

(d) Give the block diagonal structure for the secular equation for the electronic
energy levels of ethylene.

7.5. Consider the B12H12 molecule shown in Fig. 7.14 where the 12 hydrogen
atoms (small balls) and the 12 boron atoms (large balls) are at vertices of
a regular icosahedron.

(a) What are the symmetry operations associated with the ten classes of the
full icosahedral group Ih (see Table A.28).

(b) What are the symmetries and degeneracies of the 12 linear combinations
of atomic orbitals (LCAOs) associated with the 12 equivalent hydrogen
atoms?

(c) Write the linear combinations of the 12 atomic orbitals (LCAOs) for the
12 hydrogen atoms in B12H12 in Ih symmetry.

(d) What are the angular momentum states involved with each of the directed
valence σ orbitals from a boron atom to a hydrogen atom?

7.6. This problem further develops the symmetry properties of the CH4

molecule introduced in Sect. 7.5.2.

(a) Using one symmetry operation from each class of the point group Td, show
that the linear combination of atomic orbitals ψ1(T2) in (7.17) transforms
as one of the partners of the irreducible representation T2.

(b) Using the symmetrized linear combination of atomic orbitals for the four
hydrogen atoms in (7.16) and (7.17) and the wave functions for the four
valence electrons for the carbon atom, construct the matrix Hamiltonian
for the secular equation for the CH4 molecule in block form showing the
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nonzero entries and their symmetries, analogous to the corresponding ma-
trix Hamiltonian for finding the electronic states for the CO molecule in
Fig. 7.4.

(c) Show that the directed valence bond wave function for CH4 given by (7.20)
has its maximum value along the (111) direction. What is the value of this
bond along a (1̄1̄1̄) direction? Along what direction does this bond have
its minimum value?

(d) What are the symmetries for the two lowest energy antibonding levels
for the four hydrogen atoms and the four electrons on the carbon atom
yielding the antibonding excited states of the CH4 molecule? Why do you
expect these excited states to have higher energies than the bonding states
discussed in Sect. 7.5.2?


