
6

Application to Selection Rules

and Direct Products

Our second general application of group theory to physical problems will be to
selection rules. In considering selection rules we always involve some interac-
tion Hamiltonian matrix H′ that couples two states ψα and ψβ . Group theory
is often invoked to decide whether or not these states are indeed coupled
and this is done by testing whether or not the matrix element (ψα,H′ψβ)
vanishes by symmetry. The simplest case to consider is the one where the
perturbation H′ does not destroy the symmetry operations and is invariant
under all the symmetry operations of the group of the Schrödinger equation.
Since these matrix elements transform as scalars (numbers), then (ψα,H′ψβ)
must exhibit the full group symmetry, and must therefore transform as the
fully symmetric representation Γ1. Thus, if (ψα,H′ψβ) does not transform as
a number, it vanishes. To exploit these symmetry properties, we thus choose
the wave functions ψ∗α and ψβ to be eigenfunctions for the unperturbed Hamil-
tonian, which are basis functions for irreducible representations of the group
of Schrödinger’s equation. Here H′ψβ transforms according to an irreducible
representation of the group of Schrödinger’s equation. This product involves
the direct product of two representations and the theory behind the direct
product of two representations will be given in this chapter. If H′ψβ is or-
thogonal to ψα, then the matrix element (ψα,H′ψβ) vanishes by symmetry;
otherwise the matrix element need not vanish, and a transition between state
ψα and ψβ may occur.

6.1 The Electromagnetic Interaction as a Perturbation

In considering various selection rules that arise in physical problems, we often
have to consider matrix elements of a perturbation Hamiltonian which lowers
the symmetry of the unperturbed problem. For example, the Hamiltonian in
the presence of electromagnetic fields can be written as

H =
1

2m

(
p− e

c
A
)2

+ V . (6.1)
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Then the proper form of the Hamiltonian for an electron in a solid in the
presence of an electromagnetic field is

H =
(p− e/cA)2

2m
+ V (r) =

p2

2m
+ V (r)− e

mc
p ·A +

e2A2

2mc2
, (6.2)

in which A is the vector potential due to the electromagnetic fields and V (r)
is the periodic potential. Thus, the one-electron Hamiltonian without electro-
magnetic fields is

H0 =
p2

2m
+ V (r) , (6.3)

and the electromagnetic perturbation terms H′
em are

H′
em = − e

mc
p ·A +

e2A2

2mc2
, (6.4)

which is usually approximated by the leading term for the electromagnetic
perturbation Hamiltonian

H′
em
∼= − e

mc
p ·A . (6.5)

Such a perturbation Hamiltonian is generally not invariant under the symme-
try operations of the group of Schrödinger’s equation which are determined
by the symmetry of the unperturbed Hamiltonian H0. Therefore, we must
consider the transformation properties of H′ψβ where the eigenfunction ψβ is
chosen to transform as one of the partners ψ(Γi)

j (denoted by |Γij〉 in Chap. 4)
of an irreducible representation Γi of the unperturbed HamiltonianH0. In gen-
eral, the action of H′ on ψ(Γi)

j will mix all other partners of the representation
Γi since any arbitrary function can be expanded in terms of a complete set
of functions ψ(Γi)

j . In group theory, the transformation properties of H′ψ(Γi)
j

are handled through what is called the direct product. When H′ does not
transform as the totally symmetric representation (e.g., H′

em transforms as
a vector x, y, z), then the matrix element (ψ(Γi)

k ,H′ψ(Γi)
j ) will not in general

vanish.
The discussion of selection rules in this chapter is organized around the

following topics:

(a) summary of important symmetry rules for basis functions,
(b) theory of the Direct Product of Groups and Representations,
(c) the Selection Rule concept in Group Theoretical Terms,
(d) example of Selection Rules for electric dipole transitions in a system with

full cubic point group symmetry.
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6.2 Orthogonality of Basis Functions

The basis functions ψ(i)
α where we here use the superscript i as an abbreviated

notation for the superscript Γi for a given irreducible representation i are
defined by (see (4.1))

P̂Rψ
(i)
α =

�i∑
j=1

D(i)(R)jαψ
(i)
j , (6.6)

where P̂R is the symmetry operator, ψ(i)
α denotes the basis functions for an

li-dimensional irreducible representation (i) andD(i)(R)jα is the matrix repre-
sentation for symmetry element R in irreducible representation (i). To exploit
the symmetry properties of a given problem, we want to find eigenfunctions
which form basis functions for the irreducible representations of the group
of Schrödinger’s equation. We can find such eigenfunctions using the sym-
metry operator and projection operator techniques discussed in Chap. 4. In
this chapter, we will then assume that the eigenfunctions have been chosen to
transform as irreducible representations of the group of Schrödinger’s equa-
tion for H0. The application of group theory to selection rules then depends
on the following orthogonality theorem. This orthogonality theorem can be
considered as the selection rule for the identity operator.

Theorem. Two basis functions which belong either to different irreducible
representations or to different columns (rows) of the same representation are
orthogonal.

Proof. Let φ(i)
α and ψ

(i′)
α′ be two basis functions belonging, respectively, to

irreducible representations (i) and (i′) and corresponding to columns α and
α′ of their respective representations. By definition:

P̂Rφ
(i)
α =

�i∑
j=1

D(i)(R)αjφ
(i)
j ,

P̂Rψ
(i′)
α′ =

�i′∑
j′=1

D(i′)(R)α′j′ψ
(i′)
j′ . (6.7)

Because the scalar product (or the matrix element of unity taken between the
two states) is independent of the coordinate system, we can write the scalar
product as(

φ(i)
α , ψ

(i′)
α′

)
=
(
P̂Rφ

(i)
α , P̂Rψ

(i′)
α′

)

=
∑
j,j′

D(i)(R)∗αjD
(i′)(R)α′j′

(
φ

(i)
j , ψ

(i′)
j′

)

=
1
h

∑
j,j′

∑
R

D(i)(R)∗αjD
(i′)(R)α′j′

(
φ

(i)
j , ψ

(i′)
j′

)
, (6.8)



100 6 Application to Selection Rules and Direct Products

since the left-hand side of (6.8) is independent of R, and h is the order of the
group. Now apply the Wonderful Orthogonality Theorem (Eq. 2.52)

1
h

∑
R

D(i)(R)∗αjD
(i′)(R)α′j′ =

1
�i
δii′δjj′δαα′ (6.9)

to (6.8), which yields:

(
φ(i)

α , ψ
(i′)
α′

)
=

1
�i
δi,i′δα,α′

�i∑
j=1

(
φ

(i)
j , ψ

(i)
j

)
. (6.10)

Thus, according to (6.10), if the basis functions φ(i)
α and ψ

(i′)
α′ correspond to

two different irreducible representations i �= i′ they are orthogonal. If they
correspond to the same representation (i = i′), they are still orthogonal if
they correspond to different columns (or rows) of the matrix – i.e., if they
correspond to different partners of representation i. We further note that the
right-hand side of (6.10) is independent of α so that the scalar product is the
same for all components α, thereby completing the proof of the orthogonality
theorem. �

In the context of selection rules, the orthogonality theorem discussed above
applies directly to the identity operator. Clearly, if a symmetry operator is
invariant under all of the symmetry operations of the group of Schrödinger’s
equation then it transforms like the identity operator. For example, if

H0ψ
(i′)
α′ = E

(i′)
α′ ψ

(i′)
α′ (6.11)

then E(i′)
α′ is a number (or eigenvalues) which is independent of any coordinate

system.
If ψ(i′)

α′ and φ
(i)
α are both eigenfunctions of the Hamiltonian H0 and are

also basis functions for irreducible representations (i′) and (i), then the matrix
element (φ(i)

α ,H0ψ
(i′)
α′ ) vanishes unless i = i′ and α = α′, which is a result

familiar to us from quantum mechanics.
In general, selection rules deal with the matrix elements of an operator

different from the identity operator. In the more general case when we have
a perturbation H′, the perturbation need not have the full symmetry of H0.
In general H′ψ transforms differently from ψ.

6.3 Direct Product of Two Groups

We now define the direct product of two groups. Let GA = E,A2, . . ., Aha and
GB = E,B2, . . . , Bhb

be two groups such that all operators AR commute with
all operators BS . Then the direct product group is
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GA ⊗GB = E,A2, . . . , Aha , B2, A2B2, . . . , AhaB2, . . . , AhaBhb
(6.12)

and has (ha × hb) elements. It is easily shown that if GA and GB are groups,
then the direct product groupGA⊗GB is a group. Examples of direct product
groups that are frequently encountered involve products of groups with the
group of inversions (group Ci(S2) with two elements E, i) and the group of
reflections (group Cσ(C1h) with two elements E, σh). For example, we can
make a direct product group D3d from the group D3 by compounding all the
operations ofD3 with (E, i) (to obtainD3d = D3⊗Ci), where i is the inversion
operation (see Table A.13). An example of the group D3d is a triangle with
finite thickness. In general, we simply write the direct product group

D3d = D3 ⊗ i , (6.13)

when compounding the initial group D3 with the inversion operation or with
the mirror reflection in a horizontal plane (see Table A.14):

D3h = D3 ⊗ σh . (6.14)

Likewise, the full cubic group Oh is a direct product group of O ⊗ i.

6.4 Direct Product of Two Irreducible Representations

In addition to direct product groups we have the direct product of two rep-
resentations which is conveniently defined in terms of the direct product of
two matrices. From algebra, we have the definition of the direct product of
two matrices A ⊗ B = C, whereby every element of A is multiplied by every
element of B. Thus, the direct product matrix C has a double set of indices

AijBk� = Cik,j� . (6.15)

Thus, if A is a (2 × 2) matrix and B is a (3 × 3) matrix, then C is a (6 × 6)
matrix.

Theorem. The direct product of the representations of the groups A and B
forms a representation of the direct product group.

Proof. We need to prove that

D
(a)
ij (Ai)D(b)

pq (Bj) = (D(a⊗b)(AiBj))ip,jq . (6.16)

To prove this theorem we need to show that

D(a⊗b)(AkB�) D(a⊗b)(Ak′B�′) = D(a⊗b)(AiBj) , (6.17)

where
Ai = AkAk′ , Bj = B�B�′ . (6.18)
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Since the elements of groupA commute with those of groupB by the definition
of the direct product group, the multiplication property of elements in the
direct product group is

AkB�Ak′B�′ = AkAk′ B�B�′ = AiBj , (6.19)

where AkB� is a typical element of the direct product group. We must now
show that the representations reproduce this multiplication property. By def-
inition:

D(a⊗b)(AkB�)D(a⊗b)(Ak′B�′)

= [D(a)(Ak)⊗D(b)(B�)][D(a)(Ak′ )⊗D(b)(B�′)] . (6.20)

To proceed with the proof, we write (6.20) in terms of components and carry
out the matrix multiplication:

[
D(a⊗b)(AkB�)D(a⊗b)(Ak′B�′)

]
ip,jq

=
∑
sr

(D(a)(Ak)⊗D(b)(B�))ip,sr(D(a)(Ak′)⊗D(b)(B�′))sr,jq

=
∑

s

D
(a)
is (Ak)D(a)

sj (Ak′ )
∑

r

D(b)
pr (B�)D(b)

rq (B�′)

= D
(a)
ij (Ai)D(b)

pq (Bj) = (D(a⊗b)(AiBj))ip,jq . (6.21)

This completes the proof. �

It can be further shown that the direct product of two irreducible representa-
tions of groups GA and GB yields an irreducible representation of the direct
product group so that all irreducible representations of the direct product
group can be generated from the irreducible representations of the original
groups before they are joined. We can also take direct products between two
representations of the same group. Essentially the same proof as given in
this section shows that the direct product of two representations of the same
group is also a representation of that group, though in general, it is a reducible
representation. The proof proceeds by showing

[
D(�1⊗�2)(A)D(�1⊗�2)(B)

]
ip,jq

= D(�1⊗�2)(AB)ip,jq , (6.22)

where we use the short-hand notation �1 and �2 to denote irreducible represen-
tations with the corresponding dimensionalities. The direct product represen-
tationD(�1⊗�2)(R) will in general be reducible even though the representations
�1 and �2 are irreducible.
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6.5 Characters for the Direct Product

In this section we find the characters for the direct product of groups and for
the direct product of representations of the same group.

Theorem. The simplest imaginable formulas are assumed by the characters
in direct product groups or in taking the direct product of two representations:

(a) If the direct product occurs between two groups, then the characters for
the irreducible representations in the direct product group are obtained by
multiplication of the characters of the irreducible representations of the
original groups according to

χ(a⊗b)(AkB�) = χ(a)(Ak) χ(b)(B�) . (6.23)

(b) If the direct product is taken between two representations of the same
group, then the character for the direct product representation is writ-
ten as

χ(�1⊗�2)(R) = χ(�1)(R) χ(�2)(R) . (6.24)

Proof. Consider the diagonal matrix element of an element in the direct prod-
uct group. From the definition of the direct product of two groups, we write

D(a⊗b)(AkB�)ip,jq = D
(a)
ij (Ak)D(b)

pq (B�) . (6.25)

Taking the diagonal matrix elements of (6.25) and summing over these matrix
elements, we obtain

∑
ip

D(a⊗b)(AkB�)ip,ip =
∑

i

D
(a)
ii (Ak)

∑
p

D(b)
pp (B�) , (6.26)

which can be written in terms of the traces:

χ(a⊗b)(AkB�) = χ(a)(Ak)χ(b)(B�) . (6.27)

This completes the proof of the theorem for the direct product of two groups.
�

The result of (6.27) holds equally well for classes (i.e., R→ C), and thus can
be used to find the character tables for direct product groups as is explained
below.

Exactly the same proof as given above can be applied to find the character
for the direct product of two representations of the same group

χ(�1⊗�2)(R) = χ(�1)(R)χ(�2)(R) (6.28)

for each symmetry element R. The direct product representation is irreducible
only if χ(�1⊗�2)(R) for all R is identical to the corresponding characters for
one of the irreducible representations of the group �1 ⊗ �2.
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In general, if we take the direct product between two irreducible repre-
sentations of a group, then the resulting direct product representation will be
reducible. If it is reducible, the character for the direct product can then be
written as a linear combination of the characters for irreducible representa-
tions of the group (see Sect. 3.4):

χ(λ)(R)χ(μ)(R) =
∑

ν

aλμνχ
(ν)(R) , (6.29)

where from (3.20) we can write the coefficients aλμν as

aλμν =
1
h

∑
Cα

NCαχ
(ν)(Cα)∗

[
χ(λ)(Cα)χ(μ)(Cα)

]
, (6.30)

where Cα denotes classes and NCα denotes the number of elements in class
Cα. In applications of group theory to selection rules, constant use is made of
(6.29) and (6.30).

Finally, we use the result of (6.27) to show how the character tables for
the original groups GA and GB are used to form the character table for the
direct product group. First, we form the elements and classes of the direct
product group and then we use the character tables of GA and GB to form
the character table for GA⊗GB. In many important cases, one of the groups
(e.g., GB) has only two elements (such as the group Ci with elements E, i)
and two irreducible representations Γ1 with characters (1,1) and Γ1′ with
characters (1,−1). We illustrate such a case below for the direct product
group C4h = C4 ⊗ i, a table that is not listed explicitly in Chap. 3 or in
Appendix A. In the character table for group C4h (Table 6.1) we use the
notation g to denote representations that are even (German, gerade) under
inversion, and u to denote representations that are odd (German, ungerade)
under inversion.

We note that the upper left-hand quadrant of Table 6.1 contains the char-
acter table for the group C4. The four classes obtained by multiplication of

Table 6.1. Character table for point group C4h

C4h ≡ C4 ⊗ i (4/m)

E C2 C4 C3
4 i iC2 iC4 iC3

4

Ag 1 1 1 1 1 1 1 1
Bg 1 1 −1 −1 1 1 −1 −1 even under

Eg

{
1
1

−1
−1

i
−i

−i
i

1
1

−1
−1

i
−i

−i
i

inversion (g)

Au 1 1 1 1 −1 −1 −1 −1
Bu 1 1 −1 −1 −1 −1 1 1 odd under

Eu

{
1
1

−1
−1

i
−i

−i
i

−1
−1

1
1

−i
i

i
−i inversion (u)
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the classes of C4 by i are listed on top of the upper right columns. The char-
acters in the upper right-hand and lower left-hand quadrants are the same as
in the upper left hand quadrant, while the characters in the lower right-hand
quadrant are all multiplied by (−1) to produce the odd (ungerade) irreducible
representations of group C4h.

6.6 Selection Rule Concept in Group Theoretical Terms

Having considered the background for taking direct products, we are now
ready to consider the selection rules for the matrix element

(ψ(i)
α ,H′φ(i′)

α′ ) . (6.31)

This matrix element can be computed by integrating the indicated scalar
product over all space. Group theory then tells us that when any or all the
symmetry operations of the group are applied, this matrix element must trans-
form as a constant. Conversely, if the matrix element is not invariant under
the symmetry operations which form the group of Schrödinger’s equation,
then the matrix element must vanish. We will now express the same physical
concepts in terms of the direct product formalism.

Let the wave functions φ(i)
α and ψ

(i′)
α′ transform, respectively, as partners

α and α′ of irreducible representations Γi and Γi′ , and let H′ transform as
representation Γj . Then if the direct product Γj ⊗Γi′ is orthogonal to Γi, the
matrix element vanishes, or equivalently if Γi ⊗ Γj ⊗ Γi′ does not contain the
fully symmetrical representation Γ1, the matrix element vanishes. In particu-
lar, if H′ transforms as Γ1 (i.e., the perturbation does not lower the symmetry
of the system), then, because of the orthogonality theorem for basis functions,
either φ(i′)

α and ψ
(i)
α′ must correspond to the same irreducible representation

and to the same partners of that representation or they are orthogonal to one
another.

To illustrate the meaning of these statements for a more general case, we
will apply these selection rule concepts to the case of electric dipole transitions
in Sect. 6.7 below. First, we express the perturbation H′ (in this case due to
the electromagnetic field) in terms of the irreducible representations that H′

contains in the group of Schrödinger’s equation:

H′ =
∑
j,β

f
(j)
β H′(j)

β , (6.32)

where j denotes the irreducible representations Γj of the Hamiltonian H′, and
β denotes the partners of Γj . Then H′φ(i)

α , where (i) denotes irreducible repre-
sentation Γi, transforms as the direct product representation formed by taking
the direct product H′(j)

β ⊗φ(i)
α which in symmetry notation is Γj,β⊗Γi,α. The

matrix element (ψ(i′)
α′ ,H′φ(i)

α ) vanishes if and only if ψ(i′)
α′ is orthogonal to all
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the basis functions that occur in the decomposition of H′φ(i)
α into irreducible

representations. An equivalent expression of the same concept is obtained by
considering the triple direct product ψ(i′)

α′ ⊗H′(j)
β ⊗ φ

(i)
α . In order for the ma-

trix element in (6.31) to be nonzero, this triple direct product must contain
a term that transforms as a scalar or a constant number, or according to the
irreducible representation Γ1.

6.7 Example of Selection Rules

We now illustrate the group theory of Sect. 6.6 by considering electric dipole
transitions in a system with Oh symmetry. The electromagnetic interaction
giving rise to electric dipole transitions is

H′
em = − e

mc
p ·A , (6.33)

in which p is the momentum of the electron and A is the vector potential
of an external electromagnetic field. The momentum operator is part of the
physical electronic “system” under consideration, while the vector A for the
electromagnetic field acts like an external system or like a “bath” or “reser-
voir” in a thermodynamic sense. Thus p acts like an operator with respect to
the group of Schrödinger’s equation but A is invariant and does not trans-
form under the symmetry operations of the group of Schrödinger’s equation.
Therefore, in terms of group theory, H′

em for the electromagnetic interaction
transforms like a vector, just as p transforms as a vector, in the context of
the group of Schrödinger’s equation for the unperturbed system H0ψ = Eψ.
If we have unpolarized radiation, we must then consider all three compo-
nents of the vector p (i.e., px, py, pz). In cubic symmetry, all three compo-
nents of the vector transform as the same irreducible representation. If in-
stead, we had a system which exhibits tetragonal symmetry, then px and
py would transform as one of the two-dimensional irreducible representations
and pz would transform as one of the one-dimensional irreducible representa-
tions.

To find the particular irreducible representations that are involved in cubic
symmetry, we consult the character table for Oh = O⊗ i (see Table A.30). In
the cubic group Oh the vector (x, y, z) transforms according to the irreducible
representation T1u and so does (px, py, pz), because both are radial vectors
and both are odd under inversion. We note that the character table for Oh

(Table A.30) gives the irreducible representation for vectors, and the same
is true for most of the other character tables in Appendix A. To obtain the
character table for the direct product group Oh = O ⊗ i we note that each
symmetry operation in O is also compounded with the symmetry operations
E and i of group Ci = S2 (see Table A.2) to yield 48 symmetry operations
and ten classes.
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Table 6.2. Characters for the direct product of the characters for the T1u and T2g

irreducible representations of group Oh

E 8C3 3C2 6C2 6C4 i 8iC3 3iC2 6iC2 6iC4

9 0 1 −1 −1 –9 0 −1 1 1

For the Oh group there will then be ten irreducible representations, five
of which are even and five are odd. For the even irreducible representations,
the same characters are obtained for class C and class iC. For the odd rep-
resentations, the characters for classes C and iC have opposite signs. Even
representations are denoted by the subscript g (gerade) and odd representa-
tions by the subscript u (ungerade). The radial vector p transforms as an odd
irreducible representation T1u since p goes into −p under inversion.

To find selection rules, we must also specify the initial and final states. For
example, if the system is initially in a state with symmetry T2g then the direct
product H′

em ⊗ ψT2g contains the irreducible representations found by taking
the direct product χT1u ⊗ χT2g . The characters for χT1u ⊗ χT2g are given in
Table 6.2, and the direct product χT1u ⊗ χT2g is a reducible representation of
the group Oh. Then using the decomposition formula (6.30) we obtain:

T1u ⊗ T2g = A2u + Eu + T1u + T2u . (6.34)

Thus we obtain the selection rules that electric dipole transitions from a state
T2g can only be made to states with A2u, Eu, T1u, and T2u symmetry. Fur-
thermore, since H′

em is an odd function, electric dipole transitions will couple
only states with opposite parity. The same arguments as given above can be
used to find selection rules between any initial and final states for the case
of cubic symmetry. For example, from Table A.30, we can write the following
direct products as

Eg ⊗ T1u = T1u + T2u

T1u ⊗ T1u = A1g + Eg + T1g + T2g

}
.

Suppose that we now consider the situation where we lower the symmetry
from Oh to D4h. Referring to the character table for D4 in Tables A.18 and
6.3, we can form the direct product group D4h by taking the direct product
between groupsD4h = D4⊗i where i here refers to group S2 = Ci (Table A.2).

We note here the important result that the vector in D4h = D4 ⊗ i sym-
metry does not transform as a single irreducible representation but rather as
the irreducible representations:

z → A2u

(x, y) → Eu

}
,

so that T1u in Oh symmetry goes into: A2u + Eu in D4h symmetry.
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Table 6.3. Character table for the pint group D4 (422)

D4 (422) E C2 = C2
4 2C4 2C′2 2C′′2

x2 + y2, z2 A1 1 1 1 1 1
Rz, z A2 1 1 1 −1 −1

x2 − y2 B1 1 1 −1 1 −1
xy B2 1 1 −1 −1 1

(xz, yz)
(x, y)
(Rx, Ry)

}
E 2 −2 0 0 0

Table 6.4. Initial and final states of groupD4h that are connected by a perturbation
Hamiltonian which transform like z

initial state final state

A1g A2u

A2g A1u

B1g B2u

B2g B1u

Eg Eu

A1u A2g

A2u A1g

B1u B2g

B2u B1g

Eu Eg

Furthermore a state with symmetry T2g in the Oh group goes into states
with Eg+B2g symmetries inD4h (see discussion in Sect. 5.3). Thus for the case
of the D4h group, electric dipole transitions will only couple an A1g state to
states with Eu and A2u symmetries. For a state with Eg symmetry according
to group D4h the direct product with the vector yields

Eg⊗(A2u+Eu) = Eg⊗A2u+Eg⊗Eu = Eu+(A1u+A2u+B1u+B2u) , (6.35)

so that for the D4h group, electric dipole transitions from an Eg state can
be made to any odd parity state. This analysis points out that as we reduce
the amount of symmetry, the selection rules are less restrictive, and more
transitions become allowed.

Polarization effects also are significant when considering selection rules.
For example, if the electromagnetic radiation is polarized along the z-direction
in the case of the D4h group, then the electromagnetic interaction involves
only pz which transforms according to A2u. With the pz polarization, the
states listed in Table 6.4 are coupled by electric dipole radiation (i.e., by
matrix elements of pz).

If, on the other hand, the radiation is polarized in the x-direction, then
the basis function is a single partner x of the Eu representation. Then if the
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initial state has A1g symmetry, the electric dipole transition will be to a state
which transforms as the x partner of the Eu representation. If the initial state
has A2u symmetry (transforms as z), then the general selection rule gives
A2u ⊗ Eu = Eg while polarization considerations indicate that the transition
couples the A2u level with the xz partner of the Eg representation. If the
initial state has Eu symmetry, the general selection rule gives

(Eu ⊗ Eu) = A1g +A2g +B1g +B2g . (6.36)

The polarization x couples the partner Ex
u to Ax2+y2

1g and Bx2−y2

1g while the
partner Ey

u couples to Axy−yx
2g and Bxy

2g . We note that in the character ta-
ble for group D4h the quantity xy–yx transforms as the axial vector Rz or
the irreducible representation A2u and xy transforms as the irreducible rep-
resentation B2g. Thus polarization effects further restrict the states that are
coupled in electric dipole transitions. If the polarization direction is not along
one of the (x, y, z) directions, H′

em will transform as a linear combination of
the irreducible representations A2u + Eu even though the incident radiation
is polarized.

Selection rules can be applied to a variety of perturbations H′ other than
the electric dipole interactions, such as uniaxial stress, hydrostatic pressure
and the magnetic dipole interaction. In these cases, the special symmetry of
H′ in the group of Schrödinger’s equation must be considered.

Selected Problems

6.1. Find the 4 × 4 matrix A that is the direct product A = B ⊗ C of the
(2× 2) matrices B and C given by

B =
(
b11 b12
b21 b22

)
and C =

(
c11 c12
c21 c22

)
.

6.2. (a) Show that if GA with elements E,A2, . . . , Aha and GB with elements
E,B2, . . . , Bhb

are groups, then the direct product group GA⊗GB is also
a group. Use the notation BijCkl = (B ⊗ C)ik,jl to label the rows and
columns of the direct product matrix.

(b) In going from higher to lower symmetry, if the inversion operation is pre-
served, show that even representations remain even and odd representa-
tions remain odd.

6.3. (a) Consider electric dipole transitions in full cubic Oh symmetry for
transitions between an initial state with A1g symmetry (s-state in quan-
tum mechanics notation) and a final state with T1u symmetry (p-state
in quantum mechanics notation). [Note that one of these electric dipole
matrix elements is proportional to a term (1|px|x), where |1) denotes the
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s-state and |x) denotes the x partner of the p-state.] Of the nine possi-
ble matrix elements that can be formed, how many are nonvanishing? Of
those that are nonvanishing, how many are equivalent, meaning partners
of the same irreducible representation?

(b) If the initial state has Eg symmetry (rather than A1g symmetry), repeat
part (a). In this case, there are more than nine possible matrix elements.
In solving this problem you will find it convenient to use as basis functions
for the Eg level the two partners x2 + ωy2 + ω2z2 and x2 + ω2y2 + ωz2,
where ω = exp(2πi/3).

(c) Repeat part (a) for the case of electric dipole transitions from an s-state
to a p-state in tetragonal D4h symmetry. Consider the light polarized
first along the z-direction and then in the x–y plane. Note that as the
symmetry is lowered, the selection rules become less stringent.

6.4. (a) Consider the character table for group C4h (see Sect. 6.5). Note that
the irreducible representations for group C4 correspond to the fourth roots
of unity. Note that the two one-dimensional representations labeled E are
complex conjugates of each other. Why must they be considered as one-
dimensional irreducible representations?

(b) Even though the character table of the direct product of the groupsC4⊗Ci

is written out in Sect. 6.5, the notations C4h and (4/m) are used to label
the direct product group. Clarify the meaning of C4h and (4/m).

(c) Relate the elements of the direct product groups C4 ⊗ Ci and C4 ⊗ C1h

(see Table A.3) and use this result to clarify why the notation C4h and
(4/m) is used to denote the group C4⊗i in Sect. 6.5. How do groups C4⊗i
and C4 ⊗ σh differ?

6.5. Suppose that a molecule with full cubic symmetry is initially in a T2g

state and is then exposed to a perturbation H′ inducing a magnetic dipole
transition.

(a) Since H′ in this case transforms as an axial vector (with the same point
symmetry as angular momentum), what are the symmetries of the final
states to which magnetic dipole transitions can be made?

(b) If the molecule is exposed to stress along a (111) direction, what is the
new symmetry group? What is the splitting under (111) stress of the T2g

state in Oh symmetry? Use the irreducible representations of the lower
symmetry group to denote these states. Which final states in the lower
symmetry group would then be reached by magnetic dipole transitions?

(c) What are the polarization effects for polarization along the highest sym-
metry axes in the case of Oh symmetry and for the lower symmetry group?

6.6. Show that the factor group of the invariant subgroup (E, σh) of group
C3h is isomorphic to the group C3. This is an example of how the C3 group
properties can be recovered from the C3h = C3 ⊗ σh group by factoring out
the (E, σh) group.


