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Splitting of Atomic Orbitals

in a Crystal Potential

This is the first of several chapters aimed at presenting some general ap-
plications of group theory while further developing theoretical concepts and
amplifying on those given in the first four chapters. The first application of
group theory is made to the splitting of atomic energy levels when the atom
is placed in a crystal potential, because of the relative simplicity of this appli-
cation and because it provides a good example of going from higher to lower
symmetry, a procedure used very frequently in applications of group theory to
solid state physics. In this chapter we also consider irreducible representations
of the full rotation group.

5.1 Introduction

The study of crystal field theory is relevant for physics and engineering appli-
cations in situations where it is desirable to exploit the sharp, discrete energy
levels that are characteristic of atomic systems together with the larger atomic
densities that are typical of solids. As an example, consider the variety of pow-
erful lasers whose operation is based on the population inversion of impurity
levels of rare earth ions in a transparent host crystal. The energy levels of
an electron moving in the field of an ion embedded in such a solid are ap-
proximately the same as for an electron moving in the field of a free ion.
Thus the interaction between the ion and the host crystal can be treated in
perturbation theory. Group theory plays a major role in finding the degen-
eracy and the symmetry types of the electronic levels in the crystalline field.
The topic of crystal field splittings has found many important applications
such as in the use of erbium-doped silica-based optical glass fiber amplifiers
in optical communications systems. Such applications provide motivation for
understanding the splitting of the energy levels of an impurity ion in a crystal
field.

In this chapter the point group symmetry of an impurity ion in a crystal is
presented. The crystal potential Vxtal determines the point group symmetry.
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Following the discussion on the form of the crystal potential, some properties
of the full rotation group are given, most importantly the characters χ(�)(α)
for rotations through an angle α and χ(�)(i) for inversions. Irreducible repre-
sentations of the full

rotation group are generally found to be reducible representations of a
point group of lower symmetry which is a subgroup of the higher symmetry
group. If the representation is reducible, then crystal field splittings of the
energy levels occur. If, however, the representation is irreducible, then no
crystal field splittings occur. Examples of each type of representation are
presented. We focus explicitly on giving examples of going from higher to
lower symmetry. In so doing, we consider the

(a) Splitting of the energy levels,
(b) Symmetry types of the split levels,
(c) Choice of basis functions to bring the Hamiltonian H into block diag-

onal form. Spherical symmetry results in spherical harmonics Y�m(θ, φ)
for basis functions. Proper linear combinations of the spherical harmon-
ics Y�m(θ, φ) are taken to make appropriate basis functions for the point
group of lower symmetry.

In crystal field theory we write down the Hamiltonian for the impurity ion in
a crystalline solid as

H =
∑

i

⎧⎨
⎩
p2

i

2m
− Ze2

riμ
+
∑

j

e2

rij
+
∑

j

ξij�i · sj + γiμji · Iμ

⎫⎬
⎭+ Vxtal , (5.1)

where the first term is the kinetic energy of the electrons associated with the
ion, the second term represents the Coulomb attraction of the electrons of the
ion to their nucleus, the third term represents the mutual Coulomb repulsion
of the electrons associated with the impurity ion, and the sum on j denotes
a sum on pairs of electrons. These three quantities are denoted by H0 the
electronic Hamiltonian of the free atom without spin–orbit interaction. H0

is the dominant term in the total Hamiltonian H. The remaining terms are
treated in perturbation theory in some order. Here ξij�i · sj is the spin–orbit
interaction of electrons on the impurity ion and γiμji · Iμ is the hyperfine
interaction between the electrons on the ion and the nuclear spin. The per-
turbing crystal potential Vxtal of the host ions acts on the impurity ion and
lowers its spherical symmetry.

Because of the various perturbation terms appearing in (5.1), it is impor-
tant to distinguish the two limiting cases of weak and strong crystal fields.

(a) Weak field case. In this case, the perturbing crystal field Vxtal is considered
to be small compared with the spin–orbit interaction. In this limit, we find
the energy levels of the free impurity ion with spin–orbit interaction and
at this point we consider the crystal field as an additional perturbation.
These approximations are appropriate to rare earth ions in ionic host
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crystals. We will deal with the group theoretical aspects of this case in
Chap. 14, after we have learned how to deal with the spin on the electron
in the context of group theory.

(b) Strong field case. In this case, the perturbing crystal field Vxtal is strong
compared with the spin–orbit interaction. We now consider Vxtal as the
major perturbation on the energy levels of H0. Examples of the strong
crystal field case are transition metal ions (Fe, Ni, Co, Cr, etc.) in a host
crystal. It is this limit that we will consider first, and is the focus of this
chapter.

We note that the crystal potential Vxtal lowers the full rotational symmetry
of the free atom to cause level splittings relative to those of the free atom.

We now consider in Sect. 5.2 some of the fundamental properties of the
full rotation group. These results are liberally used in later chapters.

5.2 Characters for the Full Rotation Group

The free atom has full rotational symmetry and the number of symmetry
operations which commute with the Hamiltonian is infinite. That is, all Cφ

rotations about any axis are symmetry operations of the full rotation group.
We are not going to discuss infinite or continuous groups in any detail, but
we will adopt results that we use frequently in quantum mechanics without
rigorous proofs.

Let us then recall the form of the spherical harmonics Y�m(θ, φ) which are
the basis functions for the full rotation group:

Y�m(θ, φ) =
[
2�+ 1

4π
(�− |m|)!
(�+ |m|)!

]1/2

Pm
� (cos θ)eimφ , (5.2)

in which
Y�,−m(θ, φ) = (−1)mY�,m(θ, φ)∗ , (5.3)

and the symbol ∗ denotes the complex conjugate. The associated Legendre
polynomial in (5.2) is written as

Pm
� (x) = (1− x2)1/2|m| d|m|

dx|m|P�(x) , (5.4)

in which x = cos θ, while

P−m
� (x) = [(−1)m(� −m)!/(�+m)!]Pm

� (x) ,

and the Legendre polynomial P�(x) is generated by

1/
√

1− 2sx+ s2 =
∞∑

�=0

P�(x)s� . (5.5)
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It is shown above that the spherical harmonics (angular momentum eigen-
functions) can be written in the form

Y�,m(θ, φ) = CPm
� (θ) eimφ , (5.6)

where C is a normalization constant and Pm
� (θ) is an associated Legendre

polynomial given explicitly in (5.4). The coordinate system used to define
the polar and azimuthal angles is shown in Fig. 5.1. The Y�,m(θ, φ) spherical
harmonics generate odd-dimensional representations of the rotation group and
these representations are irreducible representations. For � = 0, we have a one-
dimensional representation; � = 1 (m = 1, 0,−1) gives a three-dimensional
irreducible representation; � = 2 (m = 2, 1, 0,−1,−2) gives a five-dimensional
representation, etc. So for each value of the angular momentum, the spherical
harmonics provide us with a representation of the proper 2�+1 dimensionality.

These irreducible representations are found from the so-called addition
theorem for spherical harmonics which tells us that if we change the polar axis
(i.e., the axis of quantization), then the “old” spherical harmonics Y�,m(θ, φ)
and the “new” Y�′,m′(θ′, φ′) are related by a linear transformation of basis
functions when �′ = �:

P̂RY�,m(θ′, φ′) =
∑
m′

D(�)(R)m′mY�,m′(θ, φ) , (5.7)

where P̂R denotes a rotation operator that changes the polar axis, and the ma-
trix D(�)(R)m′m provides an �-dimensional matrix representation of element
R in the full rotation group. Let us assume that the reader has previously

Fig. 5.1. Polar coordinate system defining the polar angle θ and the azimuthal
angle φ
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seen this expansion for spherical harmonics which is a major point in the
development of the irreducible representations of the rotation group. From
the similarity between (5.7) and (4.1), the reader can see the connection be-
tween the group theory mathematical background given in Chap. 4 and the
application discussed here.

In any system with full rotational symmetry, the choice of the z-axis is
arbitrary. We thus choose the z-axis as the axis about which the operator P̂α

makes the rotation α. Because of the form of the spherical harmonics Y�,m(θ, φ)
[see (5.6)] and the choice of the z-axis, the action of P̂α on the Y�m(θ, φ) basis
functions only affects the φ dependence of the spherical harmonic (not the θ
dependence). The effect of this rotation on the function Y�,m(θ, φ) is equivalent
to a rotation of the axes in the opposite sense by the angle −α

P̂αY�,m(θ, φ) = Y�,m(θ, φ− α) = e−imαY�,m(θ, φ) , (5.8)

in which the second equality results from the explicit form of Y�,m(θ, φ). But
(5.8) gives the linear transformation of Y�,m(θ, φ) resulting from the action by
the operator P̂α. Thus by comparing (5.7) and (5.8), we see that the matrix
D(�)(α)m′m is diagonal in m so that we can write D(�)(α)m′m = e−imαδm′m,
where −� ≤ m ≤ �, yielding

D(�)(α) =

⎛
⎜⎜⎜⎝

e−i�α O
e−i(�−1)α

. . .
O ei�α

⎞
⎟⎟⎟⎠ , (5.9)

where O represents all the zero entries in the off-diagonal positions. The char-
acter of the rotations Cα is thus given by the geometric series

χ(�)(α) = trace D(�)(α) = e−i�α + · · ·+ ei�α

= e−i�α
[
1 + eiα + · · ·+ e2i�α

]

= e−i�α
2�∑

k=0

(eikα)

= e−i�α

[
ei(2�+1)α − 1

eiα − 1

]

=
ei(�+1/2)α − e−i(�+1/2)α

eiα/2 − e−iα/2
=

sin[(�+ 1
2 )α]

sin[(1
2 )α]

. (5.10)

Thus we show that the character for rotations α about the z-axis is

χ(�)(α) =
sin[(� + 1

2 )α]
sin[α/2]

. (5.11)
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To obtain the character for the inversion operator i, we have

iY�m(θ, φ) = Y�m(π − θ, π + φ) = (−1)�Y�m(θ, φ) (5.12)

and therefore

χ(�)(i) =
m=�∑

m=−�

(−1)� = (−1)�(2�+ 1) , (5.13)

where Y�m(θ, φ) are the spherical harmonics, while � and m denote the total
and z-component angular momentum quantum numbers, respectively.

The dimensionalities of the representations for � = 0, 1, 2, . . . are 1, 3, 5, . . ..
In dealing with the symmetry operations of the full rotation group, the in-
version operation frequently occurs. This operation also occurs in the lower
symmetry point groups either as a separate operation i or in conjunction with
other compound operations (e.g., S6 = i⊗C−1

3 ). A compound operation (like
an improper rotation or a mirror plane) can be represented as a product of a
proper rotation followed by inversion. The character for the inversion opera-
tion is +(2�+ 1) for even angular momentum states (� = even in Y�,m(θ, φ))
and −(2� + 1) for odd angular momentum states (see (5.13)). This idea of
compound operations will become clearer after we have discussed in Chap. 6
the direct product groups and direct product representations.

We now give a general result for an improper rotation defined by

Sn = Cn ⊗ σh (5.14)

and S3 = C3 ⊗ σh is an example of (5.14) (for an odd integer n). Also Sn can
be written as a product of Cn/2⊗ i, as for example, S6 = C3⊗ i, for n an even
integer, where ⊗ denotes the direct product of the two symmetry operations
appearing at the left and right of the symbol ⊗, which is discussed in Chap. 6.
If we now apply (5.11) and (5.12), we obtain

χ(�)(Sn) = χ(�)(Cn/2 ⊗ i) = (−1)� sin[(�+ 1
2 )α]

sin[α/2]
. (5.15)

In the case of mirror planes, such as σh, σd, or σv we can make use of relations
such as

σh = C2 ⊗ i (5.16)

to obtain the character for mirror planes in the full rotation group.
Now we are going to place our free ion into a crystal field which does not

have full rotational symmetry operations, but rather has the symmetry oper-
ations of a crystal which may include rotations about finite angles, inversions
and a finite number of reflections. The full rotation group contains all these
symmetry operations. Therefore, the representation D(�)(α) given above is a
representation of the crystal point group if α is a symmetry operation in that
point group. But D(�)(α) is, in general, a reducible representation of the lower
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symmetry group. Therefore the (2�+ 1)-fold degeneracy of each level will in
general be partially lifted.

We can find out how the degeneracy of each level is lifted by asking what
are the irreducible representations contained in D(�)(α) in terms of the group
of lower symmetry for the crystal. The actual calculation of the crystal field
splittings depends on setting up a suitable Hamiltonian and solving it, usually
in some approximation scheme. But the energy level degeneracy does not
depend on the detailed Hamiltonian, but only on its symmetry. Thus, the
decomposition of the level degeneracies in a crystal field is a consequence of
the symmetry of the crystal field.

5.3 Cubic Crystal Field Environment
for a Paramagnetic Transition Metal Ion

As an example of a crystal field environment, suppose that we place our
paramagnetic ion (e.g., an iron impurity) in a cubic host crystal. Assume

further that this impurity goes into a substitutional lattice site, and is sur-
rounded by a regular octahedron of negative ions (see Fig. 5.2). A regular
octahedron has Oh symmetry, but since we have not yet discussed the inver-
sion operation and direct product groups (see Chap. 6), we will simplify the
symmetry operations and work with the point group O. The character table
for O is shown in Table 5.1 (see also Table A.30). From all possible rotations
on a sphere, only 24 symmetry operations of the full rotation group remain
in the group O.

Reviewing the notation in Table 5.1, the Γ notations for the irreducible
representations are the usual ones used in solid-state physics and are due to
Bouckaert, Smoluchowski and Wigner [1].

The second column in Table 5.1 follows the notation usually found
in molecular physics and chemistry applications, which are two research
fields that also make lots of use of symmetry and group theory. The key

Fig. 5.2. A regular octahedron inscribed in a cube, illustrating the symmetry op-
erations of group O
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Table 5.1. Character table for O and decomposition of the angular momenta rep-
resentations into the irreducible representations of group O

O E 8C3 3C2 = 3C2
4 6C′2 6C4

Γ1 A1 1 1 1 1 1

Γ2 A2 1 1 1 −1 −1

Γ12 E 2 −1 2 0 0

Γ15′ T1 3 0 −1 −1 1

Γ25′ T2 3 0 −1 1 −1

Γ�=0 A1 1 1 1 1 1

Γ�=1 T1 3 0 −1 1 −1

Γ�=2 E + T2 5 −1 1 1 −1

Γ�=3 A2 + T1 + T2 7 1 −1 −1 −1

Γ�=4 A1 +E + T1 + T2 9 0 1 1 1

Γ�=5 E + 2T1 + T2 11 −1 −1 −1 1

to the notation is that A denotes one-dimensional representations, E de-
notes two-dimensional representations, and T denotes three-dimensional
representations. Papers on lattice dynamics of solids often use the A,E, T
symmetry notation to make contact with the molecular analog. The sub-
scripts in Table 5.1 refer to the conventional indexing of the representations
of the group O (see Table A.30). The pertinent symmetry operations can
be found from Fig. 5.2, and the classes associated with these symmetry
operations label the various columns where the characters in Table 5.1
appear.

The various types of rotational symmetry operations are listed as

• the 8C3 rotations are about the axes through the triangular face centroids
of the octahedron,

• the 6C4 rotations are about the corners of the octahedron,
• the 3C2 rotations are also about the corners of the octahedron, with

C2 = C2
4 ,

• the 6C′2 rotations are twofold rotations about a (110) axis passing through
the midpoint of the edges (along the 110 directions of the cube).

To be specific, suppose that we have a magnetic impurity atom with an-
gular momentum � = 2. We first find the characters for all the symmetry
operations which occur in the O group for an irreducible representation of
the full rotation group. The representation of the full rotation group will
be a representation of group O, but in general this representation will be
reducible.

Since the character for a general rotation α in the full rotation group is
found using (5.11), the identity class (or α = 0) yields the characters

χ(�)(0) =
�+ 1

2

1/2
= 2�+ 1 . (5.17)
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Table 5.2. Classes and characters for the group O

class α χ(2)(α)

8C3 2π/3
sin(5/2) · (2π/3)
sin((2π)/(2 · 3)) = (−

√
3/2)/(

√
3/2) = −1

6C4 2π/4
sin(5/2) · (π/2)

sin(π/4)
= (−1/

√
2)/(1/

√
2) = −1

3C2 and 6C2 2π/2
sin(5/2)π

sin(π/2)
= 1

Table 5.3. Characters found in Table 5.2 for the Γ
(2)
rot of the full rotation group

(� = 2)

E 8C3 3C2 6C′2 6C4

Γ
(2)
rot 5 −1 1 1 −1

For our case � = 2 (χ(2)(E) = 5), and by applying (5.11) to the symmetry
operations in each class we obtain the results summarized in Table 5.2. To
compare with the character table for group O (Table 5.1), we list in Table 5.3
the characters found in Table 5.2 for the Γ (2)

rot of the full rotation group (� =
2) according to the classes listed in the character table for gr oup O (see
Tables 5.1 and A.30).

We note that Γ (2)
rot is a reducible representation of groupO because groupO

has no irreducible representations with dimensions �n > 3. To find the irre-
ducible representations contained in Γ

(2)
rot we use the decomposition formula

for reducible representations (3.20):

aj =
1
h

∑
k

Nkχ
(Γj)(Ck)∗χreducible(Ck) , (5.18)

where we have used (3.16)

χreducible(Ck) =
∑
Γj

ajχ
(Γj)(Ck) , (5.19)

in which χ(Γj) is an irreducible representation and the characters for the re-
ducible representation Γ (2)

rot are written as χreducible(Ck) ≡ χΓ
(2)
rot (Ck). We now

ask how many times is A1 contained in Γ (2)
rot ? Using (5.18) we obtain

aA1 =
1
24

[5− 8 + 3 + 6− 6] = 0 , (5.20)
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Fig. 5.3. The splitting of the d-Levels (fivefold) in an octahedral crystal field

which shows that the irreducible representation A1 is not contained in Γ
(2)
rot .

We then apply (5.18) to the other irreducible representations of group O:

A2 : aA2 =
1
24

[5− 8 + 3− 6 + 6] = 0

E : aE =
1
24

[10 + 8 + 6 + 0− 0] = 1

T1 : aT1 =
1
24

[15 + 0− 3− 6− 6] = 0

T2 : aT2 =
1
24

[15 + 0− 3 + 6 + 6] = 1 ,

so that finally we write

Γ
(2)
rot = E + T2 ,

which means that the reducible representation Γ (2)
rot breaks into the irreducible

representations E and T2 in cubic symmetry. In other words, an atomic d-level
in a cubic O crystal field splits into an E and a T2 level. Similarly, an atomic
d-level in a cubic Oh crystal field splits into an Eg and a T2g level, where
the g denotes evenness under inversion. Group theory does not provide any
information about the ordering of the levels (see Fig. 5.3). For general utility,
we have included in Table 5.1 the characters for the angular momentum states
� = 0, 1, 2, 3, 4, 5 for the full rotation group expressed as reducible represen-
tations of the group O. The splittings of these angular momentum states in
cubic group O symmetry are also included in Table 5.1.

We can now carry out the passage from higher to lower symmetry by going
one step further. Suppose that the presence of the impurity strains the crystal.
Let us further imagine (for the sake of argument) that the new local symmetry
of the impurity site is D4 (see Table 5.4 and Table A.18), which is a proper
subgroup of the full rotation group. Then the levels E and T2 given above may
be split further in D4 (tetragonal) symmetry (for example by stretching the
molecule along the fourfold axis). We now apply the same technique to inves-
tigate this tetragonal field splitting. We start again by writing the character
table for the group D4 which is of order 8. We then consider the represen-
tations E and T2 of the group O as reducible representations of group D4
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Fig. 5.4. d-Level splitting in octahedral and D4 crystal fields

Table 5.4. Character table for D4 and the decomposition of the irreducible repre-
sentations of group O into representations for group D4

character table for D4 E C2 = C2
4 2C4 2C′2 2C′′2

Γ1 A1 1 1 1 1 1

Γ1′ A2 1 1 1 −1 −1

Γ2 B1 1 1 −1 1 −1

Γ2′ B2 1 1 −1 −1 1

Γ3 E 2 −2 0 0 0

reducible representations from O group

E 2 2 0 2 0 ≡ A1 +B1

T2 3 −1 −1 −1 1 ≡ E +B2

Table 5.5. Decomposition of the � = 2 angular momentum level into the irreducible
representations of group D4

E C2 2C4 2C′2 2C′′2

Γ
(2)
rot 5 1 −1 1 1 A1 +B1 +B2 + E

and write down the characters for the E, C4, C2
4 , C′2 and C′′2 operations from

the character table for O given above, noting that the C′′2 in the group D4

refers to three of the (110) axes 6C′2 of the cubic group O (Table 5.4). Using
the decomposition theorem, (3.20), we find that E splits into the irreducible
representations A1 + B1 in the group D4 while T2 splits into the irreducible
representations E +B2 in the group D4, as summarized in Fig. 5.4.

We note that the C2 operations in D4 is a π rotation about the z-axis and
the 2C′2 are π rotations about the x- and y-axes. The C2 and the 2C′2 come
from the 3C2 = 3C2

4 in group O. The 2C′′2 are π rotations about (110) axes
and come from the 6C′2 in group O. To check the decomposition of the � = 2
level in D4 symmetry, we add up the characters for A1 + B1 + B2 + E for
group D4 (see Table 5.5), which are the characters for the spherical harmonics
considered as a reducible representation of groupD4, so that this result checks.
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Fig. 5.5. d-Level splitting in various crystal fields

Suppose now that instead of applying a stress along a (001) direction, we
apply a stress along a (110) direction (see Problem 5.4). You will see that
the crystal field pattern is somewhat altered, so that the crystal field pattern
provides symmetry information about the crystal field. Figure 5.5 shows the
splitting of the � = 2 level in going from full rotational symmetry to various
lower symmetries, including D∞h, Td, Oh, and D2h, showing in agreement
with the above discussion, the lifting of all the degeneracy of the � = 2 level
in D2h symmetry.

5.4 Comments on Basis Functions

Although group theory tells us how the impurity ion energy levels are split
by the crystal field, it does not tell us the ordering of these levels. Often a
simple physical argument can be given to decide which levels ought to lie
lower. Consider the case of a d-electron in a cubic field, where the host ions
are at x = ±a, y = ±a, z = ±a. Assume that the impurity ion enters the
lattice substitutionally, so that it is replacing one of the cations. Then the
nearest neighbor host ions are all anions. The charge distributions for the d-
states are shown in Fig. 5.6. Referring to the basis functions for O, which can
be obtained from Table A.30, we see that for the irreducible representation E
we have basis functions (x2− y2, 3z2− r2) and for T2 we have basis functions
(xy, yz, zx). For the basis functions which transform as the T2 representation,
the charge distributions do not point to the host ions and hence the crystal
field interaction is relatively weak.

However, for the d-functions which transform as E, the interaction will be
stronger since the charge distributions now do point to the host ion sites. If,
however, the interaction is repulsive, then the E level will lie higher than the
T2 level. A more quantitative way to determine the ordering of the levels is to
solve the eigenvalue problem explicitly. In carrying out this solution it is con-
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Fig. 5.6. The angular parts of d-wave functions in cubic crystals are shown as
labeled by the basis functions for the partners of their irreducible representations.
(a) xy/r2 ⇒ (T2), (b) yz/r2 ⇒ (T2), (c) (x2−y2)/r2 ⇒ (E), (d) (3z2−r2)/r2 ⇒ (E)

venient to use basis functions that transform as the irreducible representations
of the crystal field group.

We now look at the basis functions which provide irreducible represen-
tations for these cases of lower symmetry. In going from the full rotation
group to the cubic group O, we obtain the irreducible representations E
and T2 shown in Fig. 5.3, which can be expressed in terms of the basis func-
tions for these irreducible representations. The basis functions for the twofold
level are (x2 − y2) and (3z2 − r2), while the basis functions for the three-
fold level are (xy), (yz), and (zx). We note that these basis functions bring
the crystal field potential into block form, but need not completely diago-
nalize the Hamiltonian. There are various forms of the crystal field poten-
tial that have Oh symmetry (e.g., octahedral sites, cubic sites, etc.), and
in each case the appropriate set of basis functions that transform as irre-
ducible representations of the group will bring the secular equation into block
form.

Upon lowering the symmetry further to D4 symmetry, the T2 and E levels
split further according to T2 → E +B2 and E → A1 +B1 (see Fig. 5.4). The
appropriate basis functions for these levels can be identified with the help of
the character table for group D4 in Table A.18:

E

{
yz
zx

, B2{xy , B1{x2 − y2 , A1{z2 . (5.21)

In Sects. 5.3 and 5.4 we consider the spherical harmonics for � = 2 as reducible
representations of the point groups Oh, O, and D4. In this connection, Ta-
ble 5.6 gives the decomposition of the various spherical harmonics for angular
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Table 5.6. Splitting of angular momentum in cubic symmetry Oh

� A1g A2g Eg T1g T2g A1u A2u Eu T1u T2u

0 1
1 1
2 1 1
3 1 1 1
4 1 1 1 1
5 1 2 1
6 1 1 1 1 2
7 1 1 2 2
8 1 2 2 2
9 1 1 1 3 2
10 1 1 2 2 3
11 1 2 3 3
12 2 1 2 3 3
13 1 1 2 4 3
14 1 1 3 3 4
15 1 2 2 4 4

momentum � ≤ 15 into irreducible representations of the full cubic group Oh,
which will be further discussed in Chap. 6 when direct product groups are
discussed.

5.5 Comments on the Form of Crystal Fields

Any function (e.g., any arbitrary Vxtal) can be written in terms of a com-
plete set of basis functions, such as the spherical harmonics. In the case of
the crystal field problem, group theory can greatly simplify the search for
the spherical harmonics Y�,m(θ, φ) pertaining to Vxtal. Consider, for example,
Vcubic and Table 5.6. The spherical harmonics in Vxtal must exhibit all the
symmetry operations of the physical system. We note that the lowest angular
momentum state to contain the totally symmetric A1g irreducible represen-
tation of Oh is � = 4, and must, therefore be the lowest angular momentum
state in the crystal field for a cubic crystal Vcubic when written in terms of
spherical harmonics.

We can check the predictions from group theory by obtaining the crystal
field analytically. To construct the crystal field, we consider the electrostatic
interaction of the neighboring host ions at the impurity site. To illustrate how
this is done, consider the highly symmetric case of an impurity ion in a cubic
environment provided by ions at x = ±a, y = ±a, z = ±a. The contribution
from an ion at x = −a at the field point r denoted by (x, y, z) is

Vx=−a =
e

|r| =
e

a
√

(1 + x/a)2 + (y/a)2 + (z/a)2
=

e

a
√

1 + ε
, (5.22)



5.5 Comments on the Form of Crystal Fields 93

where e is the charge on the electron and ε is a small dimensionless quantity
if considering (x, y, z) in the neighborhood of the origin 0. Then using the
binomial expansion:

(1 + ε)−1/2 = 1− 1
2
ε+

3
8
ε2 − 5

16
ε3 +

35
128

ε4 + · · · , (5.23)

we obtain the contribution to the potential for charges e at x = a and x = −a:

Vx=−a + Vx=a =
2e
a

[
1− 1

2
(r2/a2) +

3
2
(x2/a2) +

3
8
(r4/a4)

− 15
4

(x2/a2)(r2/a2) +
35
8

(x4/a4) + · · ·
]
. (5.24)

For a cubic field with charges e at x = ±a, y = ±a, z = ±a we get for
Vtotal = Vxtal:

Vtotal =
2e
a

[
3 +

35
8a4

(x4 + y4 + z4)− 21
8

(r4/a4) + · · ·
]
, (5.25)

so that the perturbation that will lift the degeneracy of the free atom is of
the form

Vcubic =
35e
4a5

[
(x4 + y4 + z4)− 3

5
r4
]
. (5.26)

From these expressions it also follows that for a orthorhombic field where the
charges are at x = ±a, y = ±b, z = ±c (and a �= b �= c). The crystal potential
becomes

Vtotal =
2e
a

+
2e
b

+
2e
c

+ ex2

[
2
a3
− 1
b3
− 1
c3

]

+ey2

[
2
b3
− 1
a3
− 1
c3

]
+ ez2

[
2
c3
− 1
a3
− 1
b3

]
, (5.27)

so that the orthorhombic perturbation Vortho that will lift the degeneracy of
the free atom is of the form

Vortho = Ax2 +By2 − (A+B)z2 , (5.28)

where the values for the coefficients A and B can be found from (5.27).
We note that Vcubic contains no terms of order x2, whereas Vortho does. Let

us now express the crystal field potential in terms of spherical harmonics since
the unperturbed states for the free impurity ion are expressed in that way.
Here we make use of the fact that the crystal field potential is generated by a
collection of point sources and in the intervening space we are “outside” the
field sources so that the potential must satisfy the Laplace equation ∇2V = 0.
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Solutions to Laplace’s equation [5] are of the form r�Y�m(θ, φ). From the
definitions for the spherical harmonics (5.2) it is clear that for a cubic field
(5.26), the only spherical harmonics that will enter Vcubic are Y4,0, Y4,4 and
Y4,−4 since (z/4)4 involves only Y4,0 while [(x/4)4 + (y/4)4] involves only Y4,4

and Y4,−4.
The crystal field potential Vxtal can therefore be written in terms of spher-

ical harmonics, the basis functions normally used to describe the potential of
the free ion which has full spherical symmetry. One important role of group
theory in the solution of quantum mechanical problems is to determine the
degeneracy of the eigenvalues and which choice of basis functions yields the
eigenvalues most directly. This information is available without the explicit
diagonalization of the Hamiltonian. In the case of the crystal field problem,
we determine Vxtal for a specific crystal symmetry using the appropriate basis
functions for the relevant point group.

Selected Problems

5.1. Consider the hydrogen atom, described by the Schrödinger equation

HΨn�m =
{
− �

2

2m
∇2

r −
L2

r2
+ V (r)

}
Ψn�m = En�Ψn�m .

(a) Does H commute with any arbitrary rotation about the origin? Explain
your answer.

(b) If the electron is in a d-orbital (� = 2) described by the eigenfunction

Ψn2m(r, θ, φ) = Rn(r)Y2,m(θ, φ) ,

where Y2,m(θ, φ) is a spherical harmonic for � = 2, what is the effect on
Ψn2m(r, θ, φ) of rotating the coordinate system by a polar angle α. Is the
new wave function still an eigenfunction of the Hamiltonian with the same
eigenvalue? Explain.

5.2. Suppose that an iron (Fe) impurity is introduced into a two-dimensional
honeycomb lattice of an insulating host material. A honeycomb lattice is a
hexagonal lattice with atoms at the hexagon corners but not at the center.
Suppose that the Fe impurity is placed first in a substitutional location and
second in an interstitial location at the center of the hexagon.
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(a) What is the difference in crystal potential (include only nearest neighbors)
between the substitutional and interstitial locations?

(b) For the interstitial case, express your result in part (a) in terms of spherical
harmonics for the lowest order terms with angular dependencies.

(c) What is the proper point group symmetry and character table in each
case?

(d) Give the crystal field splitting of the fivefold d-levels of the Fe impurity
in the crystal fields for the two locations of the Fe ion in part (a).

(e) Identify the basis functions associated with each of the levels in part (d).
(f) Since the bonding orbitals lie lower in energy than the antibonding or-

bitals, indicate how the ordering of the levels might indicate whether the
Fe impurity is located substitutionally or interstitially in the honeycomb
lattice.

5.3. Show (by finding the characters of the rotation group) that the d-level
for a transition metal impurity in a metal cluster with Ih point symmetry is
not split by the icosahedral crystal field.

5.4. Suppose that a stress is applied along a (110) axis of a cubic crystal,
thereby lowering its symmetry from O to D2.

(a) What are the symmetry operations of D2? Identify each symmetry axis
of D2 with a particular (xyz) direction of the high symmetry group O.

(b) Considering the irreducible representation Γ (2)
rot for the full rotation group

as a reducible representation of D2, find the irreducible representations of
D2 contained in Γ (2)

rot .
(c) How do the T2 and E levels corresponding to Γ

(2)
rot in the cubic group

split by the application of a force along the (110) direction, giving the
irreducible representations of the group D2 contained in the T2 and E
levels.

(d) What is the physical interpretation of the occurrence of a particular irre-
ducible representation Γj of group D2 more than once when the fivefold
degeneracy of Γ (2)

rot is lifted by applying a force in the (110) direction?

5.5. What is the form of the crystal field of a hexagonal semiconductor like
ZnO? Which are the lowest order Y�,m(θ, φ) spherical harmonics that describe
the crystal field potential?


