
4

Basis Functions

In the previous chapters we have discussed symmetry elements, their ma-
trix representations and the properties of the characters of these representa-
tions. In this discussion we saw that the matrix representations are not unique
though their characters are unique. Because of the uniqueness of the characters
of each irreducible representation, the characters for each group are tabulated
in character tables. Also associated with each irreducible representation are
“basis functions” which can be used to generate the matrices that represent
the symmetry elements of a particular irreducible representation. Because of
the importance of basis functions, it is customary to list the most important
basis functions in the character tables.

4.1 Symmetry Operations and Basis Functions

Suppose that we have a group G with symmetry elements R and symmetry
operators P̂R. We denote the irreducible representations by Γn, where n labels
the representation. We can then define a set of basis vectors denoted by |Γnj〉.
Each vector |Γnj〉 of an irreducible representation Γn is called a component
or partner and j labels the component or partner of the representation, so
that if we have a two-dimensional representation, then j = 1, 2. All partners
collectively generate the matrix representation denoted by D(Γn)(R). These
basis vectors relate the symmetry operator P̂R with its matrix representation
D(Γn)(R) through the relation

P̂R|Γnα〉 =
∑

j

D(Γn)(R)jα|Γnj〉 . (4.1)

The basis vectors can be abstract vectors; a very important type of basis vector
is a basis function which we define here as a basis vector expressed explicitly
in coordinate space. Wave functions in quantum mechanics, which are basis
functions for symmetry operators, are a special but important example of such
basis functions.
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In quantum mechanics, each energy eigenvalue of Schrödinger’s equation is
labeled according to its symmetry classification, which is specified according
to an irreducible representation of a symmetry group. If the dimensionality of
the representation is j > 1, the energy eigenvalue will correspond to a j-fold
degenerate state, with j linearly independent wave-functions. The effect of
the symmetry operator P̂R on one of these wave functions (e.g., the αth wave
function) will generally be the formation of a linear combination of the j wave
functions, as is seen in (4.1).

Like the matrix representations and the characters, the basis vectors also
satisfy orthogonality relations

〈Γnj|Γn′j
′〉 = δnn′δjj′ , (4.2)

and this relation is proved in Sect. 6.2 in connection with selection rules. In
quantum (wave) mechanics, this orthogonality relation would be written in
terms of the orthogonality for the wave functions

∫
ψ∗n,j(r)ψn′,j′(r)d3r = δnn′δjj′ , (4.3)

where the wave functions ψn,j and ψn′,j′ correspond to different energy eigen-
values (n, n′) and to different components (j, j′) of a particular degenerate
state, and the integration is usually performed in 3D space. The orthogonality
relation (4.3) allows us to generate matrices for an irreducible representation
from a complete set of basis vectors, as is demonstrated in Sect. 4.2.

4.2 Use of Basis Functions
to Generate Irreducible Representations

In this section we demonstrate how basis functions can be used to generate
the matrices for an irreducible representation.

Multiplying (4.1) on the left by the basis vector 〈Γn′j
′| (corresponding in

wave mechanics to ψ∗n′,j′(r)), we obtain using the orthogonality relation for
basis functions (4.2):

〈Γn′j
′|P̂R|Γnα〉 =

∑
j

D(Γn)(R)jα〈Γn′j
′|Γnj〉 = D(Γn′)(R)j′αδnn′ . (4.4)

From (4.4) we obtain a relation between each matrix element of D(Γn)(R)jα

and the effect of the symmetry operation on the basis functions:

D(Γn)(R)jα = 〈Γnj|P̂R|Γnα〉 . (4.5)

Thus by taking matrix elements of a symmetry operator P̂R between all pos-
sible partners of an irreducible representation as shown by (4.5) the matrix
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Fig. 4.1. Symmetry operations of an equilateral triangle. The notation of this di-
agram defines the symmetry operations in Table 4.1. Each vertex is labeled by the
same number as its axis

representationDΓn(R)jα can be generated. In practice, this turns out to be the
easiest way to obtain these matrix representations for the symmetry elements.

As an example of how basis vectors or basis functions can generate the
matrices for an irreducible representation, consider a planar molecule with
threefold symmetry such that the symmetry operations are isomorphic to
those of an equilateral triangle and also isomorphic to P (3) (see Chap. 1). Thus
there are six symmetry operations and six operators P̂R (see Sect. 1.2). The
proper point group to describe all the symmetry operations of a regular planar
triangle could be D3h = D3 ⊗ σh. However, since the triangle is a 2D object,
the horizontal mirror plane may not be an important symmetry operation
and we can here simplify the algebra by using the group D3 which has six
symmetry elements. Group theory tells us that the energy levels can never be
more than twofold degenerate. Thus no threefold or sixfold degenerate levels
can occur because the largest dimensionality of an irreducible representation
of P (3) is 2 (see Problem 2.2). For the one-dimensional representation Γ1, the
operator P̂R leaves every basis vector invariant. Thus any constant such as
the number one forms a suitable basis function. For many practical problems
we like to express our basis functions in terms of functions of the coordinates
(x, y, z). Some explanation is needed here about the meaning of (x, y, z) as
a basis function. To satisfy the orthonormality requirement, the basis functions
are vectors with unit length and the matrices which represent the symmetry
operations are unitary matrices. The transformation properties of the x, y,
and z components of an arbitrary vector under the symmetry operations of
the group are the same as those for the unit vectors x, y, and z.

In this connection it is convenient to write out a basis function table such
as Table 4.1. On the top row we list the functions to be investigated; in the
first column we list all the symmetry operations of the group (see Fig. 4.1 for
notation). If we denote the entries in the table by f ′(x, y, z), then Table 4.1
can be summarized as

P̂Rf(x, y, z) = f ′(x, y, z) , (4.6)
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where the symmetry operations P̂R label the rows. From Table 4.1 we can
then write down the matrix representations for entries on each irreducible
representation. In the trivial case of the identity representation, the (1 × 1)
matrix 1 satisfies P̂R1 = 1 for all P̂R so that this homomorphic representation
always applies, i.e., |Γ1〉 = 1.

To find the basis functions for the Γ1′ representation (i.e., the representa-
tion of the factor group for P (3)), we note that (E,D, F ) leaves z invariant
while (A,B,C) takes z into −z, so that z forms a suitable basis function for
Γ1′ , which we write as |Γ1′〉 = z. Then application of (4.5) yields the matrices
for the irreducible representation Γ1′

〈z|(E,D, F )|z〉 = 1 , 〈z|(A,B,C)|z〉 = −1 . (4.7)

Thus the characters (1) and (−1) for the (1 × 1) irreducible representations
are obtained for Γ1′ . We note that in the case of (1× 1) representations, the
characters and the representations are identical.

To find the two-dimensional representation Γ2 we note that all the group
operations take (x, y) into (x′, y′). Table 4.1 shows the results of each P̂R

operator acting on x, y, z to yield x′, y′, z′ and P̂R acting on x2, y2, z2 to yield
x′2, y′2, z′2. Table 4.1 thus can be used to find the matrix representation for Γ2

by taking as basis functions |Γ2, 1〉 = |x〉 and |Γ2, 2〉 = |y〉. We now illustrate
the use of Table 4.1 to generate the matrix D(Γ2)(C−1

3 = D) where D is
a clockwise rotation of 2π/3 about the z-axis:

D|x〉 = −1/2(x+
√

3y) yields first column of matrix representation

D|y〉 = 1/2(
√

3x− y) yields second column of matrix representation

so that

D(Γ2)(C−1
3 = D) =

(
− 1

2

√
3

2

−
√

3
2 − 1

2

)
. (4.8)

To clarify how we obtain all the matrices for the irreducible representations
with Γ2 symmetry, we repeat the operations leading to (4.8) for each of the
symmetry operations P̂R. We thus obtain for the other five symmetry opera-
tions of the group P̂R using the same basis functions (x, y) and the notation
of Fig. 4.1:

D(Γ2)(E) =

(
1 0
0 1

)
, (4.9)

D(Γ2)(C2(2) = B) =

(
1
2 −

√
3

2

−
√

3
2 − 1

2

)
, (4.10)
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D(Γ2)(C3 = F ) =
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D(Γ2)(C2(1) = A) =

(
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)
, (4.12)

D(Γ2)(C2(3) = C) =

(
1
2

√
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2√
3
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2

)
. (4.13)

As mentioned before, x and y are both basis functions for representa-
tion Γ2 and are called the partners of this irreducible representation.
The number of partners is equal to the dimensionality of the representa-
tion.

In Table 4.1 we have included entries for P̂Rx
2, P̂Ry

2, P̂Rz
2 and these

entries are obtained as illustrated below by the operation D = C−1
3 :
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D(x2 + y2) = x2 + y2 , (4.16)
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D(yz) =

(
−y

2
+
√

3
2
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)
z . (4.20)

Using (4.1) we see that P̂R(x2 +y2) = (x2 +y2) for all P̂R so that (x2 +y2)
is a basis function for Γ1 or as we often say transforms according to the irre-
ducible representation Γ1. Correspondingly z(x2+y2) transforms as Γ1′ and z2



4.2 Basis Functions for Irreducible Representations 63

transforms as Γ1. These transformation properties will be used extensively for
many applications of group theory. It is found that many important basis
functions are given directly in the published character tables. Like the matrix
representations, the basis functions are not unique. However, corresponding
to a given set of basis functions, the matrix representation which is generated
by these basis functions will be unique.

As before, the characters for a given representation are found by tak-
ing the sum of the diagonal elements of each matrix in a given representa-
tion:

χ(Γn)(R) ≡ tr D(Γn)(R) =
∑

j

D(Γn)(R)jj =
∑

j

〈Γnj|P̂R|Γnj〉 . (4.21)

Since the trace is invariant under a similarity transformation, the character
is independent of the particular choice of basis functions or matrix represen-
tations.

If instead of a basis function (which generates irreducible representations)
we use an arbitrary function f , then a reducible representation will result, in
general. We can express an arbitrary function as a linear combination of the
basis functions. For example, any linear function of x, y, z such as f(x, y, z) can
be expressed in terms of linear combinations of basis vectors x, y, z and likewise
any quadratic function is expressed in terms of quadratic basis functions which
transform as irreducible representations of the group. For example for the
group P (3) (see Table 4.1), quadratic forms which serve as basis functions are
(x2 + y2) and z2 which both transform as Γ1; z transforms as Γ1′ ; (xz, yz)
and (xy, x2 − y2) both transform as Γ2.

If we now inspect the character table D3(32) found in Table A.12 (and
reproduced below in Table 4.2), we find that these basis functions are listed
in this character table. The basis functions labeled Rα represent the angular
momentum component around axis α (e.g., Rx = ypz − zpy). For the two
dimensional irreducible representations both partners of the basis functions
are listed, for example (xz, xy) and (x2−y2, xy), etc. The reason why (x, y, z)
and (Rx, Ry, Rz) often transform as different irreducible representations (not
the case for the groupD3(32)) is that x, y, z transforms as a radial vector (such
as coordinate, momentum) while Rx, Ry, Rz transforms as an axial vector
(such as angular momentum r × p).

Table 4.2. Character Table for Group D3 (rhombohedral)

D3(32) E 2C3 3C′2

x2 + y2, z2 A1 1 1 1

Rz, z A2 1 1 −1

(xz, yz)

(x2 − y2, xy)

}
(x, y)

(Rx, Ry)

}
E 2 −1 0
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4.3 Projection Operators P̂
(Γn)
kl

The previous discussion of basis vectors assumed that we already knew how
to write down the basis vectors. In many cases, representative basis functions
are tabulated in the character tables. However, suppose that we have to find
basis functions for the following cases:

(a) An irreducible representation for which no basis functions are listed in
the character table; or

(b) An arbitrary function.

In such cases the basis functions can often be found using projection opera-
tors P̂k�, not to be confused with the symmetry operators P̂R. We define the
projection operator P̂ (Γn)

k� as transforming one basis vector |Γn�〉 into another
basis vector |Γnk〉 of the same irreducible representation Γn:

P̂
(Γn)
k� |Γn�〉 ≡ |Γnk〉 . (4.22)

The utility of projection operators is mainly to project out basis functions
for a given partner of a given irreducible representation from an arbitrary
function. The discussion of this topic focuses on the following issues:

(a) The relation of the projection operator to symmetry operators of the
group and to the matrix representation of these symmetry operators for
an irreducible representation (see Sect. 4.4).

(b) The effect of projection operators on an arbitrary function (see Sect. 4.5).

As an example, we illustrate in Sect. 4.6 how to find basis functions from an
arbitrary function for the case of the group of the equilateral triangle (see
Sect. 4.2).

4.4 Derivation of an Explicit Expression for P̂
(Γn)
k�

In this section we find an explicit expression for the projection operators P̂ (Γn)
kl

by considering the relation of the projection operator to symmetry operators
of the group. We will find that the coefficients of this expression give the
matrix representations of each of the symmetry elements.

Let the projection operator P̂ (Γn)
k� be written as a linear combination of

the symmetry operators P̂R:

P̂
(Γn)
k� =

∑
R

Ak�(R)P̂R , (4.23)

where the Ak�(R) are arbitrary expansion coefficients to be determined. Sub-
stitution of (4.23) into (4.22) yields
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P̂
(Γn)
k� |Γn�〉 ≡ |Γnk〉 =

∑
R

Ak�(R)P̂R|Γn�〉 . (4.24)

Multiply (4.24) on the left by 〈Γnk| to yield

〈Γnk|Γnk〉 = 1 =
∑
R

Ak�(R) 〈Γnk|P̂R|Γn�〉︸ ︷︷ ︸
D(Γn)(R)k�

. (4.25)

But the Wonderful Orthogonality Theorem (2.51) specifies that

∑
R

D(Γn)(R)∗k�D
(Γn)(R)k� =

h

�n
, (4.26)

where h is the number of symmetry operators in the group and �n is the dimen-
sionality of the irreducible representation Γn, so that we can identify Ak�(R)
with the matrix element of the representation for the symmetry element R:

Ak�(R) =
�n
h
D(Γn)(R)∗k� . (4.27)

Thus the projection operator is explicitly given in terms of the symmetry
operators of the group by the relation:

P̂
(Γn)
k� =

�n
h

∑
R

D(Γn)(R)∗k�P̂R . (4.28)

From the explicit form for P̂ (Γn)
k� in (4.28) and from (4.22) we see how to find

the partners of an irreducible representation Γn from any single known basis
vector, provided that the matrix representation for all the symmetry operators
D(Γn)(R) is known.

As a special case, the projection operator P̂ (Γn)
kk transforms |Γnk〉 into itself

and can be used to check that |Γnk〉 is indeed a basis function. We note that
the relation of P̂ (Γn)

kk to the symmetry operators P̂R involves only the diagonal
elements of the matrix representations (though not the trace):

P̂
(Γn)
kk =

�n
h

∑
R

D(Γn)(R)∗kkP̂R , (4.29)

where
P̂

(Γn)
kk |Γnk〉 ≡ |Γnk〉 . (4.30)

4.5 The Effect of Projection Operations
on an Arbitrary Function

The projection operators P̂ (Γn)
kk defined in (4.30) are of special importance

because they can project the kth partner of irreducible representation Γn
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from an arbitrary function. Any arbitrary function F can be written as a linear
combination of a complete set of basis functions |Γn′j

′〉:

F =
∑
Γn′

∑
j′
f

(Γn′)
j′ |Γn′j

′〉 . (4.31)

We can then write from (4.29):

P̂
(Γn)
kk F =

�n
h

∑
R

D(Γn)(R)∗kkP̂RF (4.32)

and substitution of (4.31) into (4.32) then yields

P̂
(Γn)
kk F =

�n
h

∑
R

∑
Γn′

∑
j′
f

(Γn′)
j′ D(Γn)(R)∗kk P̂R|Γn′j

′〉 . (4.33)

But substitution of (4.1) into (4.33) and use of the Wonderful Orthogonality
Theorem (2.51):

∑
R

D(Γn′ )(R)jj′D
(Γn)(R)∗kk =

h

�n
δΓnΓn′ δjkδj′k (4.34)

yields
P̂

(Γn)
kk F = f

(Γn)
k |Γnk〉 , (4.35)

where
P̂

(Γn)
kk =

�n
h

∑
R

D(Γn)(R)∗kkP̂R . (4.36)

We note that the projection operator does not yield normalized basis func-
tions. One strategy to find basis functions is to start with an arbitrary func-
tion F .

(a) We then use P̂ (Γn)
kk to project out one basis function |Γnk〉.

(b) We can then use the projection operator P̂ (Γn)
k� to project out all other

partners |Γn�〉 orthogonal to |Γnk〉 in irreducible representation Γn. Or
alternatively we can use P̂ (Γn)

�� to project out each of the partners � of the
representation, whichever method works most easily in a given case.

If we do not know the explicit representations D(Γn)
k� (R)∗, but only know

the characters, then we can still project out basis functions which trans-
form according to the irreducible representations (using the argument given
in the next paragraph), though we cannot in this case project out specific
partners but only linear combinations of the partners of these irreducible
representations.

If we only know the characters of an irreducible representation Γn, we
define the projection operator for this irreducible representation as P̂ (Γn):
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P̂ (Γn) ≡
∑

k

P̂
(Γn)
kk =

�n
h

∑
R

∑
k

D(Γn)(R)∗kkP̂R , (4.37)

so that
P̂ (Γn) =

�n
h

∑
R

χ(Γn)(R)∗P̂R (4.38)

and using (4.35) we then obtain

P̂ (Γn)F =
∑

k

P̂
(Γn)
kk F =

∑
k

f
(Γn)
k |Γnk〉 , (4.39)

which projects out a function transforming as Γn but not a specific partner
of Γn.

In dealing with physical problems it is useful to use physical insight in
guessing at an appropriate “arbitrary function” to initiate this process for
finding the basis functions and matrix representations for specific problems.
This is the strategy to pursue when you do not know either the matrix repre-
sentations or the basis functions a priori.

4.6 Linear Combinations of Atomic Orbitals
for Three Equivalent Atoms
at the Corners of an Equilateral Triangle

As an example of finding basis functions from an arbitrary function, we here
consider forming linear combinations of atomic orbitals which transform as
irreducible representations of the symmetry group.

In many of the applications that we will be making of group theory
to solid-state physics, we will have equivalent atoms at different sites. We
use the symmetry operations of the group to show which irreducible rep-
resentations result when the equivalent atoms transform into each other
under the symmetry operations of the group. The discussion of projec-
tion operators of an arbitrary function applies to this very important
case.

As an example of this application, suppose that we have three equivalent
atoms at the three corners of an equilateral triangle (see Fig. 4.2) and that
each atom is in the same spherically symmetric ground state described by
a wave function ψ0(ri), where the subscript i is a site index, which can apply
to any of the three sites. As a short-hand notation for ψ0(ra), ψ0(rb), ψ0(rc)
we will here use a, b, c.

We now want to combine these atomic orbitals to make a molecular orbital
that transforms according to the irreducible representations of the group. We
will see that only the Γ1 and Γ2 irreducible representations are contained in the
linear combination of atomic orbitals for a, b, c. This makes sense since we have
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Fig. 4.2. Equilateral triangle and arbitrary functions a, b, c for atomic orbitals at
corners of an equilateral triangle, defining the notation used in Sect. 4.6

three atomic orbitals which split into a nondegenerate and a two-dimensional
representation in trigonal symmetry through the symmetry operations P̂R on
the equivalent site functions a, b, c.

To generate the proper linear combination of atomic orbitals that trans-
form as irreducible representations of the symmetry group, we use the
results on the projection operator to find out which irreducible represen-
tations are contained in the function F . According to the above discus-
sion, we can project out a basis function for representation Γn by consid-
ering the action of P̂ (Γn)

kk on one of the atomic orbitals, as for example
orbital F = a:

P̂
(Γn)
kk a =

�n
h

∑
R

D(Γn)(R)∗kk P̂Ra = f
(Γn)
k |Γnk〉 , (4.40)

in which we have used the definition for P̂ (Γn)
kk given by (4.35) and the expres-

sion for P̂ (Γn)
kk given by (4.36). If the representation Γn is one-dimensional,

then we can obtain D(Γn)(R) directly from the character table, and (4.40)
then becomes

P̂ (Γn)a =
�n
h

∑
R

χ(Γn)(R)∗P̂Ra = f (Γn)|Γn〉 . (4.41)

For the appropriate symmetry operators for this problem we refer to Sect. 1.2
where we have defined: E ≡ identity; (A,B,C) ≡ π rotations about twofold
axes in the plane of triangle; (D,F ) ≡ 2π/3 rotations about the threefold axis
⊥ to the plane of the triangle. These symmetry operations are also indicated
in Fig. 4.2.

For the identity representation Γ1 the characters and matrix representa-
tions are all unity so that
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P̂ (Γ1)a =
1
6
(P̂Ea+ P̂Aa+ P̂Ba+ P̂Ca+ P̂Da+ P̂Fa)

=
1
6
(a+ a+ c+ b+ b+ c)

=
1
3
(a+ b + c) , (4.42)

a result which is intuitively obvious. Each atom site must contribute equally
to the perfectly symmetrical molecular representation Γ1. This example illus-
trates how starting with an arbitrary function a (or ψ(ra)) we have found
a linear combination that transforms as Γ1. Likewise, we obtain the same
result by selecting b or c as the arbitrary function

P̂ (Γ1)b = P̂ (Γ1)c =
1
3
(a+ b+ c) . (4.43)

We now apply a similar analysis for representation Γ1′ to illustrate another
important point. In this case the matrix representations and characters are
+1 for (E,D, F ), and −1 for (A,B,C). Thus

P̂ (Γ1′ )a =
1
6
(P̂Ea− P̂Aa− P̂Ba− P̂Ca+ P̂Da+ P̂Fa)

=
1
6
(a− a− c− b + b+ c) = 0 , (4.44)

which states that no molecular orbital with Γ1′ symmetry can be made by
taking a linear combination of the a, b, c orbitals. This is verified by considering

P̂ (Γ1′ )b = P̂ (Γ1′ )c = 0 . (4.45)

The same approach can be used to obtain the two-dimensional irreducible
representations, but it does not result in a simple set of linear combinations
of atomic orbitals with a set of unitary matrices for the representation of the
symmetry operations of the group (see Problem 4.6).

To obtain a symmetrical set of basis functions for higher dimensional repre-
sentations it is useful to start with an arbitrary function that takes account of
the dominant symmetry operations of the group (e.g., a threefold rotation P̂D)

|Γ2α〉 = a+ ωb+ ω2c , (4.46)

where ω = e2πi/3 and we note here from symmetry that P̂D|Γ2α〉 = ω2|Γ2α〉
and P̂F |Γ2α〉 = ω|Γ2α〉.

Thus |Γ2α〉 is already a basis function. Clearly the partner of |Γ2α〉 is
|Γ2α〉∗ since P̂D|Γ2α〉∗ = P̂D(a + ω2b + ωc) = ω(a + ω2b + ωc) = ω|Γ2β〉,
where we have used the notation (α, β) to denote the two partners of the Γ2

representation:

|Γ2α〉 = a+ ωb+ ω2c , |Γ2β〉 = a+ ω2b+ ωc . (4.47)
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The two partners in (4.47) are complex conjugates of each other. Correspond-
ing to these basis functions, the matrix representation for each of the group
elements is simple and symmetrical

E =
(

1 0
0 1

)
A =

(
0 1
1 0

)
B =

(
0 ω2

ω 0

)
(4.48)

C =
(

0 ω
ω2 0

)
D =

(
ω2 0
0 ω

)
F =

(
ω 0
0 ω2

)
.

By inspection, the representation given by (4.48) is unitary.

4.7 The Application of Group Theory
to Quantum Mechanics

Suppose En is a k-fold degenerate level of the group of Schrödinger’s equa-
tion (see Sect. 1.8). Then any linear combination of the eigenfunctions
ψn1,ψn2, . . . , ψnk is also a solution of Schrödinger’s equation. We can write
the operation P̂Rψnα on one of these eigenfunctions as

P̂Rψnα =
∑

j

D(n)(R)jαψnj , (4.49)

whereD(n)(R)jα is an irreducible matrix which defines the linear combination,
n labels the energy index, α labels the degeneracy index.

Equation (4.49) is identical with the more general equation for a basis
function (4.1) where the states |Γnα〉 and |Γnj〉 are written symbolically rather
than explicitly as they are in (4.49).

We show here that the matrices D(n)(R) form an �n dimensional irre-
ducible representation of the group of Schrödinger’s equation where �n denotes
the degeneracy of the energy eigenvalue En. Let R and S be two symmetry
operations which commute with the Hamiltonian and let RS be their product.
Then from (4.49) we can write

P̂RSψnα = P̂RP̂Sψnα = P̂R

∑
j

D(n)(S)jαψnj (4.50)

=
∑
jk

D(n)(R)kjD
(n)(S)jαψnk =

∑
k

[
D(n)(R)D(n)(S)

]
kα
ψnk

after carrying out the indicated matrix multiplication. But by definition, the
product operator RS can be written as

P̂RSψnα =
∑

k

D(n)(RS)kαψnk , (4.51)
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so that
D(n)(RS) = D(n)(R)D(n)(S) (4.52)

and the matrices D(n)(R) form a representation for the group. We label quan-
tum mechanical states typically by a state vector (basis vector) |α, Γn, j〉where
Γn labels the irreducible representation, j the component or partner of the
irreducible representation, and α labels the other quantum numbers that do
not involve the symmetry of the P̂R operators.

The dimension of the irreducible representation is equal to the degeneracy
of the eigenvalue En. The representation D(n)(R) generated by P̂Rψnα is an
irreducible representation if all the ψnk correspond to a single eigenvalue En.
For otherwise it would be possible to form linear combinations of the type

ψ′n1, ψ
′
n2, . . . , ψ

′
ns︸ ︷︷ ︸

subset 1

ψ′n,s+1, . . . , ψ
′
nk︸ ︷︷ ︸

subset 2

, (4.53)

whereby the linear combinations within the subsets would transform amongst
themselves. But if this happened, then the eigenvalues for the two subsets
would be different, except for the rare case of accidental degeneracy. Thus,
the transformation matrices for the symmetry operations form an irreducible
representation for the group of Schrödinger’s equation.

The rest of the book discusses several applications of the group theory
introduced up to this point to problems of solid state physics. It is convenient
at this point to classify the ways that group theory is used to solve quantum
mechanical problems. Group theory is used both to obtain exact results and
in applications of perturbation theory. In the category of exact results, we
have as examples:

(a) Irreducible representations of the symmetry group of Schrödinger’s equa-
tion label the states and specify their degeneracies (e.g., an atom in
a crystal field).

(b) Group theory is useful in following the changes in the degeneracies of the
energy levels as the symmetry is lowered. This case can be thought of in
terms of a Hamiltonian

H = H0 +H′ , (4.54)

where H0 has high symmetry corresponding to the group G, and H′ is
a perturbation having lower symmetry and corresponding to a group G′

of lower order (fewer symmetry elements). Normally group G′ is a sub-
group of group G. Here we find first which symmetry operations of G
are contained in G′; the irreducible representations of G′ label the states
of the lower symmetry situation exactly. In going to lower symmetry we
want to know what happens to the degeneracy of the various states in the
initial higher symmetry situation (see Fig. 4.3). We say that in general the
irreducible representation of the higher symmetry group forms reducible
representations for the lower symmetry group.



72 4 Basis Functions

Fig. 4.3. The effect of lowering the symmetry often results in a lowering of the
degeneracy of degenerate energy states

The degeneracy of states may either be lowered as the symmetry is low-
ered or the degeneracy may be unchanged. Group theory tells us exactly
what happens to these degeneracies. We are also interested in finding the
basis functions for the lower symmetry group G′. For those states where
the degeneracy is unchanged, the basis functions are generally unchanged.
When the degeneracy is reduced, then by proper choice of the form of the
partners, the basis functions for the degenerate state will also be basis
functions for the states in the lower symmetry situation.
An example of going from higher to lower symmetry is the following: If
(x, y, z) are basis functions for a three-dimensional representation in the
cubic group, then lowering the symmetry to tetragonal with z as the main
symmetry direction will give a two-dimensional representation with basis
functions (x, y) and a one-dimensional representation with basis function
z. However, if the symmetry is lowered to tetragonal along a z′ direction
(different from z), then linear combinations of (x, y, z) must be taken to
obtain a vector along z′ and two others that are mutually orthogonal.
The lowering of degeneracy is a very general topic and will enter the
discussion of many applications of group theory (see Chap. 5).

(c) Group theory is helpful in finding the correct linear combination of wave-
functions that is needed to diagonalize the Hamiltonian. This procedure
involves the concept of equivalence which applies to situations where
equivalent atoms sit at symmetrically equivalent sites (see Chap. 7).

Selected Problems

4.1. (a) What are the matrix representations for (2xy, x2 − y2) and (Rx, Ry)
in the point group D3?

(b) Using the results in (a), find the unitary transformation which transforms
the matrices for the representation corresponding to the basis functions
(xy, x2 − y2) into the representation corresponding to the basis functions
(x, y).

(c) Using projection operators, check that xy forms a proper basis function
of the two-dimensional irreducible representation Γ2 in point group D3.
Using the matrix representation found in (a) and projection operators,
find the partner of xy.
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(d) Using the basis functions in the character table for D3h, write a set of
(2 × 2) matrices for the two two-dimensional representations E′ and E′′.
Give some examples of molecular clusters that require D3h symmetry.

4.2. (a) Explain the Hermann–Manguin notation Td(4̄3m).
(b) What are the irreducible representations and partners of the following

basis functions in Td symmetry? (i) ωx2+ω2y2+z2, where ω = exp(2πi/3);
(ii) xyz; and (iii) x2yz.

(c) Using the results of (b) and the basis functions in the character table for
the point group Td, give one set of basis functions for each irreducible
representation of Td.

(d) Using the basis function ωx2 + ω2y2 + z2 and its partner (or partners),
find the matrix for an S4 rotation about the x-axis in this irreducible
representation.

4.3. Consider the cubic group Oh. Find the basis functions for all the sym-
metric combinations of cubic forms (x, y, z) and give their irreducible repre-
sentations for the point group Oh.

4.4. Consider the hypothetical molecule CH4 (Fig. 4.4) where the four H
atoms are at the corners of a square (±a, 0, 0) and (0,±a, 0) while the C
atom is at (0, 0, z), where z < a. What are the symmetry elements?

(a) Identify the appropriate character table.
(b) Using the basis functions in the character table, write down a set of

(2 × 2) matrices which provide a representation for the two-dimensional
irreducible representation of this group.

(c) Find the four linear combinations of the four H orbitals (assume identical
s-functions at each H site) that transform as the irreducible representa-
tions of the group. What are their symmetry types?

(d) What are the basis functions that generate the irreducible representations.
(e) Check that xz forms a proper basis function for the two-dimensional rep-

resentation of this point group and find its partner.
(f) What are the irreducible representations and partners of the following

basis functions in the point group (assuming that the four hydrogens lie
in the xy plane): (i) xyz, (ii) x2y, (iii) x2z, (iv) x+ iy.

(g) What additional symmetry operations result in the limit that all H atoms
are coplanar with atom C? What is now the appropriate group and char-
acter table? (The stereograms in Figure 3.2 may be useful.)

Fig. 4.4. Molecule CH4
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Fig. 4.5. Molecule AB6

4.5. Consider a molecule AB6 (Fig. 4.5) where the A atom lies in the central
plane and three B atoms indicated by “©” lie in a plane at a distance c above
the central plane and the B atoms indicated by “×” lie in a plane below the
central plane at a distance −c′. When projected onto the central plane, all B
atoms occupy the corners of a hexagon.

(a) Find the symmetry elements and classes.
(b) Construct the character table. To which point group (Chap. 3) does this

molecule correspond? How many irreducible representations are there?
How many are one-dimensional and how many are of higher dimensional-
ity?

(c) Using the basis functions in the character table for this point group, find
a set of matrices for each irreducible representation of the group.

(d) Find the linear combinations of the six s-orbitals of the B atoms that
transform as the irreducible representations of the group.

(e) What additional symmetry operations result in the limit that all B atoms
are coplanar with A? What is now the appropriate group and character
table for this more symmetric molecule?

(f) Indicate which stereograms in Fig. 3.2 are appropriate for the case where
the B atoms are not coplanar with A and the case where they are copla-
nar.

4.6. Consider the linear combinations of atomic orbitals on an equilateral
triangle (Sect. 4.6).

(a) Generate the basis functions |Γ21〉 and |Γ22〉 for the linear combination
of atomic orbitals for the Γ2 irreducible representation obtained by using
the projection operator acting on one of the atomic orbitals P̂ (Γ2)

11 a and
P̂

(Γ2)
22 a.

(b) Show that the resulting basis functions |Γ21〉 and |Γ22〉 lead to matrix
representations that are not unitary.

(c) Show that the |Γ21〉 and |Γ22〉 thus obtained can be expressed in terms of
the basis functions |Γ2α〉 and |Γ2β〉 given in (4.47).

4.7. The aim of this problem is to give the reader experience in going from
a group with higher symmetry to a group with lower symmetry and to give
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Fig. 4.6. Hypothetical XH12 molecule where the atom X is at the center of a regular
dodecahedron

Fig. 4.7. Hypothetical XH12 molecule where the atom X is at the center of a regular
truncated icosahedron

some experience in working with groups with icosahedral and fivefold sym-
metry. Consider the hypothetical XH12 molecule (see Fig. 4.6) which has Ih
icosahedral symmetry, and the X atom is at the center. The lines connecting
the X and H atoms are fivefold axes.

(a) Suppose that we stretch the XH12 molecule along one of the fivefold axes.
What are the resulting symmetry elements of the stretched molecule?

(b) What is the appropriate point group for the stretched molecule?
(c) Consider the Gu and Hg irreducible representations of group Ih as a re-

ducible representation of the lower symmetry group. Find the symmetries
of the lower symmetry group that were contained in a fourfold energy
level that transforms as Gu and in a fivefold level that transforms as Hg

in the Ih group. Assuming the basis functions given in the character table
for the Ih point group, give the corresponding basis functions for each of
the levels in the multiplets for the stretched molecule.

(d) Suppose that the symmetry of the XH12 molecule is described in terms
of hydrogen atoms placed at the center of each pentagon of a regular
dodecahedron (see Fig. 4.7). A regular dodecahedron has 12 regular pen-
tagonal faces, 20 vertices and 30 edges. What are the symmetry classes for
the regular dodecahedron. Suppose that the XH12 molecule is stretched
along one of its fivefold axes as in (a). What are the symmetry elements
of the stretched XH12 molecule when viewed from the point of view of
a distortion from dodecahedral symmetry?


