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Character of a Representation

We have already discussed the arbitrariness of a representation with re-
gard to similarity or equivalence transformations. Namely, if D(Γj)(R) is
a representation of a group, so is U−1D(Γj)(R)U . To get around this ar-
bitrariness, we introduce the use of the trace (or character) of a matrix
representation which remains invariant under a similarity transformation.
In this chapter we define the character of a representation, derive the most
important theorems for the character, summarize the conventional nota-
tions used to denote symmetry operations and groups, and we discuss the
construction of some of the most important character tables for the so-
called point groups, that are listed in Appendix A. Point groups have no
translation symmetry, in contrast to the space groups, that will be dis-
cussed in Chap. 9, and include both point group symmetry operations and
translations.

3.1 Definition of Character

Definition 17. The character of the matrix representation χΓj (R) for a sym-
metry operation R in a representation D(Γj)(R) is the trace (or the sum over
diagonal matrix elements) of the matrix of the representation:

χ(Γj)(R) = traceD(Γj)(R) =
�j∑

μ=1

D(Γj)(R)μμ , (3.1)

where �j is the dimensionality of the representation Γj and j is a representa-
tion index. From the definition, it follows that representation Γj will have h
characters, one for each element in the group. Since the trace of a matrix is
invariant under a similarity transformation, the character is invariant under
such a transformation.
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3.2 Characters and Class

We relate concepts of class (see Sect. 1.6) and character by the following the-
orem.

Theorem. The character for each element in a class is the same.

Proof. Let A and B be elements in the same class. By the definition of class
this means that A and B are related by conjugation (see Sect. 1.6)

A = Y −1BY , (3.2)

where Y is an element of the group. Each element can always be represented
by a unitary matrix D (see Sect. 2.4), so that

D(A) = D(Y −1) D(B) D(Y ) = D−1(Y ) D(B) D(Y ) . (3.3)

And since a similarity transformation leaves the trace invariant, we have the
desired result for characters in the same class: χ(A) = χ(B), which completes
the proof. �

The property that all elements in a class have the same character is responsible
for what van Vleck called “the great beauty of character.” If two elements of
a group are in the same class, this means that they correspond to similar sym-
metry operations – e.g., the class of twofold axes of rotation of the equilateral
triangle, or the class of threefold rotations for the equilateral triangle.

Sometimes a given group will have more than one kind of twofold sym-
metry axis. To test whether these two kinds of axes are indeed symmetrically
inequivalent, we check whether or not they have the same characters.

We summarize the information on the characters of the representations
of a group in the celebrated character table. In a character table we list the
irreducible representations (IR) in column form (for example, the left-hand
column of the character table) and the class as rows (top row labels the
class). For example, the character table for the permutation group P (3) (see
Sect. 1.2) is shown in Table 3.1. (Sometimes you will see character tables with
the columns and rows interchanged relative to this display.)

Table 3.1. Character table for the permutation group P (3) or equivalently for group
“D3” (see Sect. 3.9 for group notation)

class → C1 3C2 2C3

IR ↓ χ(E) χ(A,B,C) χ(D,F )

Γ1 1 1 1

Γ1′ 1 −1 1

Γ2 2 0 −1
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Table 3.2. Classes for group “D3” or equivalently for the permutation group P (3)
and for the symmetry operations of the equilateral triangle

notation for each class of D3 equilateral triangle P (3)a

class 1 E (Nk = 1) 1C1 (identity class) (1)(2)(3)

class 2 A,B,C (Nk = 3) 3C2 (rotation of π about twofold axis) (1)(23)

class 3 D,F (Nk = 2) 2C3 (rotation of 120◦ about threefold axis) (123)

aFor the class notation for P (3) see Chap. 17

We will see in Sect. 3.9 that this group, more specifically this point group
is named D3 (Schoenflies notation). In Table 3.1 the notation NkCk is used in
the character table to label each class Ck, where Nk is the number of elements
in Ck. If a representation is irreducible, then we say that its character is
primitive. In a character table we limit ourselves to the primitive characters.
The classes for group D3 and P (3) are listed in Table 3.2, showing different
ways that the classes of a group are presented.

Now that we have introduced character and character tables, let us see
how to use the character tables. To appreciate the power of the character
tables we present in the following sections a few fundamental theorems for
character.

3.3 Wonderful Orthogonality Theorem for Character

The “Wonderful Orthogonality Theorem” for character follows directly
from the wonderful orthogonality theorem (see Sect. 2.7). There is also

a second orthogonality theorem for character which is discussed later (see
Sect. 3.6). These theorems give the basic orthonormality relations used to set
up character tables.

Theorem. The primitive characters of an irreducible representation obey the
orthogonality relation

∑
R

χ(Γj)(R) χ(Γj′ )(R−1) = hδΓj ,Γj′ (3.4)

or ∑
R

χ(Γj)(R) χ(Γj′ )(R)∗ = hδΓj ,Γj′ , (3.5)

where Γj denotes irreducible representation j with dimensionality �j.

This theorem says that unless the representations are identical or equivalent,
the characters are orthogonal in h-dimensional space, where h is the order of
the group.
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Example. We now illustrate the meaning of the Wonderful Orthogonality The-
orem for characters before going to the proof. Consider the permutation group
P (3). Let Γj = Γ1 and Γj′ = Γ1′ . Then use of (3.13) yields

∑
k

Nkχ
(Γj)(Ck)

[
χ(Γj′ )(Ck)

]∗
= (1)(1)(1)︸ ︷︷ ︸

class of E

+ (3)(1)(−1)︸ ︷︷ ︸
class of A,B,C

+ (2)(1)(1)︸ ︷︷ ︸
class of D,F

= 1− 3 + 2 = 0 . (3.6)

It can likewise be verified that the Wonderful Orthogonality Theorem works
for all possible combinations of Γj and Γj′ in Table 3.1.

Proof. The proof of the wonderful orthogonality theorem for character follows
from the Wonderful Orthogonality Theorem itself (see Sect. 2.7). Consider the
wonderful orthogonality theorem (2.51)

∑
R

D(Γj)
μν (R)D

(Γj′ )
ν′μ′ (R−1) =

h

�j
δΓj ,Γj′ δμμ′δνν′ . (3.7)

Take the diagonal elements of (3.7)

∑
R

D(Γj)
μμ (R)D

(Γj′ )
μ′μ′ (R−1) =

h

�j
δΓj ,Γj′ δμμ′δμ′μ . (3.8)

Now sum (3.8) over μ and μ′ to calculate the traces or characters

∑
R

∑
μ

D(Γj)
μμ (R)

∑
μ′
D

(Γj′ )
μ′μ′ (R−1) =

h

�j
δΓj ,Γj′

∑
μμ′

δμμ′δμ′μ , (3.9)

where we note that ∑
μμ′

δμμ′δμ′μ =
∑

μ

δμμ = �j , (3.10)

so that ∑
R

χ(Γj)(R)χ(Γj′ )(R−1) = hδΓj ,Γj′ , (3.11)

completing the proof. Equation (3.11) implies that the primitive characters
of an irreducible representation form a set of orthogonal vectors in group-
element space, the space spanned by h vectors, one for each element of the
group, also called Hilbert space (see Sect. 2.8). Since any arbitrary represen-
tation is equivalent to some unitary representation (Sect. 2.4), and the char-
acter is preserved under a unitary transformation, (3.11) can also be writ-
ten as ∑

R

χ(Γj)(R)
[
χ(Γj′ )(R)

]∗
= hδΓj ,Γj′ . (3.12)
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Since the character is the same for each element in the class, the summation
in (3.12) can be written as a sum over classes k

∑
k

Nkχ
(Γj)(Ck)

[
χ(Γj′ )(Ck)

]∗
= hδΓj ,Γj′ , (3.13)

where Nk denotes the number of elements in class k, since the representation
for R is a unitary matrix, χ(Γj′ )(R−1) = [χ(Γj′ )(R)]∗ (see Sect. 2.2). Also,
since the right-hand side of (3.13) is real, we can take the complex conjugate
of this equation to obtain the equivalent form

∑
k

Nk

[
χ(Γj)(Ck)

]∗
χ(Γj′ )(Ck) = hδΓj ,Γj′ . (3.14)

�
The importance of the results in (3.11)–(3.14) cannot be over-emphasized:

1. Character tells us if a representation is irreducible or not. If a representa-
tion is reducible then the characters are not primitive and will generally
not obey this orthogonality relation (and other orthogonality relations
that we will discuss in Sect. 3.6).

2. Character tells us whether or not we have found all the irreducible rep-
resentations. For example, the permutation group P (3) could not contain
a three-dimensional irreducible representation (see Problem 1.2), since by
(2.70) ∑

j

�2j ≤ h . (3.15)

Furthermore, character allows us to check the uniqueness of an irreducible
representation, using the following theorem.

Theorem. A necessary and sufficient condition that two irreducible represen-
tations be equivalent is that the characters be the same.

Proof. Necessary condition: If they are equivalent, then the characters are
the same – we have demonstrated this already since the trace of a matrix is
invariant under an equivalence transformation.
Sufficient condition: If the characters are the same, the vectors for each of
the irreducible representations in h-dimensional space cannot be orthogonal,
so the representations must be equivalent. �

3.4 Reducible Representations

We now prove a theorem that forms the basis for setting up the characters
of a reducible representation in terms of the primitive characters for the ir-
reducible representations. This theoretical background will also be used in
constructing irreducible representations and character tables, and is essential
to most of the practical applications of group theory to solid state physics.
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Theorem. The reduction of any reducible representation into its irreducible
constituents is unique.

Thus, if χ(Ck) is the character for some class in a reducible representation,
then this theorem claims that we can write the character for the reducible
representation χ(Ck) as a linear combination of characters for the irreducible
representations of the group χ(Γi)(Ck)

χ(Ck) =
∑
Γi

aiχ
(Γi)(Ck) , (3.16)

where the ai coefficients are non-negative integers which denote the number
of times the irreducible representation Γi is contained in the reducible rep-
resentation. Furthermore we show here that the ai coefficients are unique.
This theorem is sometimes called the decomposition theorem for reducible
representations.

Proof. In proving that the ai coefficients are unique, we explicitly determine
the values of each ai, which constitute the characters for a reducible repre-
sentation. Consider the sum over classes k:

∑
k

Nk

[
χ(Γj)(Ck)

]∗
χ(Ck) = Sj . (3.17)

Since χ(Ck) is reducible, we write the linear combination for χ(Ck) in (3.17)
using (3.16) as

Sj =
∑

k

Nk

[
χ(Γj)(Ck)

]∗∑
Γi

aiχ
(Γi)(Ck)

=
∑
Γi

ai

{∑
k

Nk

[
χ(Γj)(Ck)

]∗
χ(Γi)(Ck)

}
. (3.18)

We now apply the Wonderful Orthogonality Theorem for Characters (3.13)
to get ∑

Γi

aihδΓi,Γj = ajh =
∑

k

Nk

[
χ(Γj)(Ck)

]∗
χ(Ck) = Sj (3.19)

yielding the decomposition relation

aj =
1
h

∑
k

Nk

[
χ(Γj)(Ck)

]∗
χ(Ck) =

Sj

h
(3.20)

and completing the proof of the theorem. Thus the coefficients ai in (3.16)
are uniquely determined. In other words, the number of times the various
irreducible representations are contained in a given reducible representation
can be obtained directly from the character table for the group.
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This sort of decomposition of the character for a reducible representa-
tion is important for the following type of physical problem. Consider a cubic
crystal. A cubic crystal has many symmetry operations and therefore many
classes and many irreducible representations. Now suppose that we squeeze
this crystal and lower its symmetry. Let us further suppose that the energy
levels for the cubic crystal are degenerate for certain points in the Brillouin
zone. This squeezing would most likely lift some of the level degeneracies. To
find out how the degeneracy is lifted, we take the representation for the cubic
group that corresponds to the unperturbed energy and treat this represen-
tation as a reducible representation in the group of lower symmetry. Then
the decomposition formulae (3.16) and (3.20) tell us immediately the degen-
eracy and symmetry types of the split levels in the perturbed or stressed
crystal. (A good example of this effect is crystal field splitting, discussed in
Chap. 5.) �

3.5 The Number of Irreducible Representations

We now come to another extremely useful theorem.

Theorem. The number of irreducible representations is equal to the number
of classes.

Proof. The Wonderful Orthogonality Theorem for Character (3.14)

k∑
k′=1

Nk′
[
χ(Γi)(Ck′)

]∗
χ(Γj)(Ck′) = h δΓi,Γj (3.21)

can be written as

k∑
k′=1

[√
Nk′

h
χ(Γi)(Ck′)

]∗ [√
N ′

k

h
χ(Γj)(Ck′ )

]
= δΓi,Γj . (3.22)

Each term
√
Nk′

h
χ(Γi)(Ck′)

in (3.22) gives the k′th component of a k-dimensional vector. There can be
only k such vectors in a k-dimensional space, since the (k+1)th vector would
be linearly dependent on the other k vectors. If there were less than k such
vectors, then the number of independent vectors would not be large enough to
span the k-dimensional space. To express a reducible representation in terms
of its irreducible components requires that the vector space be spanned by ir-
reducible representations. Therefore the number of irreducible representations
must be k, the number of classes.
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For our example of the permutation group of three objects, we have three
classes and therefore only three irreducible representations (see Table 3.1).
We have already found these irreducible representations and we now know
that any additional representations that we might find are either equivalent
to these representations or they are reducible. Knowing the number of distinct
irreducible representations is very important in setting up character tables.

As a corollary of this theorem, the number of irreducible representations
for Abelian groups is the number of symmetry elements in the group, because
each element is in a class by itself. Since each class has only one element, all
the irreducible representations are one dimensional. �

3.6 Second Orthogonality Relation for Characters

We now prove a second orthogonality theorem for characters which sums
over the irreducible representations and is extremely valuable for constructing
character tables.

Theorem. The summation over all irreducible representations
∑
Γj

χ(Γj)(Ck)
[
χ(Γj)(Ck′)

]∗
Nk = hδkk′ (3.23)

yields a second orthogonality relation for the characters. Thus, the Wonderful
Orthogonality Theorem for Character yields an orthogonality relation between
rows in the character table while the second orthogonality theorem gives a sim-
ilar relation between the columns of the character table.

Proof. Construct the matrix

Q =

⎛
⎜⎜⎜⎜⎜⎝

χ(1)(C1) χ(1)(C2) · · ·
χ(2)(C1) χ(2)(C2) · · ·
χ(3)(C1) χ(3)(C2) · · ·

...
...

⎞
⎟⎟⎟⎟⎟⎠
, (3.24)

where the irreducible representations label the rows and the classes label the
columns. Q is a square matrix, since by (3.22) the number of classes (desig-
nating the column index) is equal to the number of irreducible representations
(designating the row index). We now also construct the square matrix

Q′ =
1
h

⎛
⎜⎜⎜⎜⎜⎝

N1χ
(1)(C1)∗ N1χ

(2)(C1)∗ · · ·
N2χ

(1)(C2)∗ N2χ
(2)(C2)∗ · · ·

N3χ
(1)(C3)∗ N3χ

(2)(C3)∗ · · ·
...

...

⎞
⎟⎟⎟⎟⎟⎠
, (3.25)
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where the classes label the rows, and the irreducible representations label the
columns. The ij matrix element of the product QQ′ summing over classes is
then

(QQ′)ij =
∑

k

Nk

h
χ(Γi)(Ck)

[
χ(Γj)(Ck)

]∗
= δΓi,Γj (3.26)

using the Wonderful Orthogonality Theorem for Character (3.13). Therefore
QQ′ = 1̂ or Q′ = Q−1 and Q′Q = 1̂ since QQ−1 = Q−1Q = 1̂, where 1̂ is the
unit matrix. We then write Q′Q in terms of components, but now summing
over the irreducible representations

(Q′Q)kk′ =
∑
Γi

Nk

h
χ(Γi)(Ck)

[
χ(Γi)(Ck′)

]∗
= δkk′ (3.27)

so that ∑
Γi

χ(Γi)(Ck)
[
χ(Γi)(Ck′)

]∗
=

h

Nk
δkk′ , (3.28)

which completes the proof of the second orthogonality theorem. �

3.7 Regular Representation

The regular representation provides a recipe for finding all the irreducible
representations of a group. It is not always the fastest method for finding the
irreducible representations, but it will always work.

The regular representation is found directly from the multiplication table
by rearranging the rows and columns so that the identity element is always
along the main diagonal. When this is done, the group elements label the
columns and the inverse of each group element labels the rows. We will il-
lustrate this with the permutation group of three objects P (3) for which the
multiplication table is given in Table 1.1. Application of the rearrangement
theorem to place the identity element along the main diagonal gives Table 3.3.
Then the matrix representation for an element X in the regular representation
is obtained by putting 1 wherever X appears in the multiplication Table 3.3

Table 3.3. Multiplication table for the group P (3) used to generate the regular
representation

E A B C D F

E = E−1 E A B C D F

A = A−1 A E D F B C

B = B−1 B F E D C A

C = C−1 C D F E A B

F = D−1 F B C A E D

D = F−1 D C A B F E
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and 0 everywhere else. Thus we obtain

Dreg(E) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠
, (3.29)

which is always the unit matrix of dimension (h × h). For one of the other
elements in the regular representation we obtain

Dreg(A) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.30)

and so on. By construction, only Dreg(E) has a non-zero trace!
We now show that the regular representation is indeed a representation.

This means that the regular representation obeys the multiplication table
(either Table 1.1 or 3.3). Let us for example show

Dreg(BC) = Dreg(B)Dreg(C) . (3.31)

It is customary to denote the matrix elements of the regular representation
directly from the definition Dreg(X)A−1

k
,Ai

, where A−1
k labels the rows and Ai

labels the columns using the notation

Dreg(X)A−1
k

,Ai
=

⎧⎨
⎩

1 if A−1
k Ai = X

0 otherwise .
(3.32)

Using this notation, we have to show that

Dreg(BC)A−1
k

,Ai
=
∑
Aj

Dreg(B)A−1
k

,Aj
Dreg(C)A−1

j
,Ai

. (3.33)

Now look at the rearranged multiplication table given in Table 3.3. By con-
struction, we have for each of the matrices

Dreg(B)A−1
k

,Aj
=

⎧⎨
⎩

1 if A−1
k Aj = B

0 otherwise ,
(3.34)

Dreg(C)A−1
j

,Ai
=

⎧⎨
⎩

1 if A−1
j Ai = C

0 otherwise .
(3.35)
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Therefore in the sum
∑

Aj
Dreg(B)A−1

k
,Aj
Dreg(C)A−1

j ,Ai
of (3.33), we have

only nonzero entries when

BC = (A−1
k Aj)(A−1

j︸ ︷︷ ︸
1

Ai) = A−1
k Ai . (3.36)

But this coincides with the definition of Dreg(BC):

Dreg(BC)A−1
k

,Ai
=

⎧⎨
⎩

1 if A−1
k Ai = BC

0 otherwise .
(3.37)

ThereforeDreg is, in fact, a representation of the groupA1, . . . , Ah, completing
the proof.

The following theorem allows us to find all the irreducible representations
from the regular representation.

Theorem. The regular representation contains each irreducible representa-
tion a number of times equal to the dimensionality of the representation.

(For the group P (3), this theorem says that Dreg contains D(Γ1) once, D(Γ1′ )

once, and D(Γ2) twice so that the regular representation of P (3) would be of
dimensionality 6.)

Proof. Since Dreg is a reducible representation, we can write for the characters
(see (3.16))

χreg(Ck) =
∑
Γi

aiχ
(Γi)(Ck) , (3.38)

where
∑

Γi
is the sum over the irreducible representations and the ai coeffi-

cients have been shown to be unique (3.20) and given by

ai =
1
h

∑
k

Nk

[
χ(Γi)(Ck)

]∗
χreg(Ck) . (3.39)

We note that NE = 1 for the identity element, which is in a class by itself.
But by construction χreg(Ck) = 0 unless Ck = E in which case χreg(E) = h.
Therefore ai = χ(Γi)(E) = �i, where χ(Γi) is the trace of an �i dimensional
unit matrix, thereby completing the proof.

The theorem (3.38) that we have just proven tells us that the regular
representation contains each irreducible representation of the group at least
once. To obtain these irreducible representations explicitly, we have to carry
out a similarity transformation which brings the matrices of the regular rep-
resentation into block diagonal form. It turns out to be very messy to extract
the matrices of the regular representation – in fact, it is so tedious to do
this operation that it does not even make an instructive homework problem.
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It is much easier to write down the matrices which generate the symmetry
operations of the group directly.

Consider for example the permutation group of three objects P (3) which
is isomorphic to the symmetry operations of a regular triangle (Sect. 1.2). The
matrices for D and F generate rotations by ±2π/3 about the z axis, which
is ⊥ to the plane of the triangle. The A matrix represents a rotation by ±π
about the y axis while the B and C matrices represent rotations by ±π about
axes in the x–y plane which are ±120◦ away from the y axis. In setting up
a representation, it is advantageous to write down those matrices which can
be easily written down – such as E,A,D, F . The remaining matrices such as
B and C can then be found through the multiplication table. �

We will now make use of the regular representation to prove a useful
theorem for setting up character tables. This is the most useful application of
the regular representation for our purposes.

Theorem. The order of a group h and the dimensionality �j of its irreducible
representations Γj are related by

∑
j

�2j = h . (3.40)

We had previously found (2.70) that
∑

j �
2
j ≤ h. The regular representation

allows us to prove that it is the equality that applies.

Proof. By construction, the regular representation is of dimensionality h
which is the number of elements in the group and in the multiplication table.
But each irreducible representation of the group is contained �j times in the
regular representation (see (3.38)) so that

χreg(E) = h =
∑
Γj

aj︸︷︷︸
�j

χΓj (E)︸ ︷︷ ︸
�j

=
∑
Γj

�j
2 , (3.41)

where one �j comes from the number of times each irreducible representation
is contained in the regular representation and the second �j is the dimension
of the irreducible representation Γj .

We thus obtain the result ∑
j

�2j = h , (3.42)

where
∑

j is the sum over irreducible representations. For example for P (3),
we have �1 = 1, �1′ = 1, �2 = 2 so that

∑
�2j = 6 = h. �

3.8 Setting up Character Tables

For many applications it is sufficient to know just the character table without
the actual matrix representations for a particular group. So far, we have only



3.8 Setting up Character Tables 41

set up the character table by taking traces of the irreducible representations
– i.e., from the definition of χ. For the most simple cases, the character table
can be constructed using the results of the theorems we have just proved –
without knowing the representations themselves. In practice, the character
tables that are needed to solve a given problem are found either in books or
in journal articles. The examples in this section are thus designed to show the
reader how character tables are constructed, should this be necessary. Our
goal is further to give some practice in using the theorems proven in Chap. 3.

A summary of useful rules for the construction of character tables is given
next.

(a) The number of irreducible representations is equal to the number of classes
(Sect. 3.5). The number of classes is found most conveniently from the
classification of the symmetry operations of the group. Another way to
find the classes is to compute all possible conjugates for all group elements
using the group multiplication table.

(b) The dimensionalities of the irreducible representations are found from∑
i �

2
i = h (see (3.42)). For simple cases, this relation uniquely determines

the dimensionalities of the irreducible representations. For example, the
permutation group of three objects P (3) has three classes and therefore
three irreducible representations. The identity representation is always
present, so that one of these must be one-dimensional (i.e., the matrix
for the identity element of the group is the unit matrix). So this gives
12+?2+?2 = 6.This equation only has one integer solution, namely 12 +
12 + 22 = 6. No other solution works!

(c) There is always a whole row of 1s in the character table for the identity
representation.

(d) The first column of the character table is always the trace for the unit
matrix representing the identity element or class. This character is always
�i, the dimensionality of the (�i × �i) unit matrix. Therefore, the first
column of the character table is also filled in.

(e) For all representations other than the identity representation Γ1, the fol-
lowing relation is satisfied:

∑
k

Nkχ
(Γi)(Ck) = 0 , (3.43)

where
∑

k denotes the sum on classes. Equation (3.43) follows from the
wonderful orthogonality theorem for character and taking the identity
representation Γ1 as one of the irreducible representations.
If there are only a few classes in the group, (3.43) often uniquely deter-
mines the characters for several of the irreducible representations; partic-
ularly for the one-dimensional representations.

(f) The Wonderful Orthogonality Theorem for character works on rows of the
character table:
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∑
k

[
χ(Γi)(Ck)

]∗
χ(Γj)(Ck)Nk = hδΓi,Γj . (3.44)

This theorem can be used both for orthogonality (different rows) or for
normalization (same rows) of the characters in an irreducible representa-
tion and the complex conjugate can be applied either to the χ(Γi)(Ck) or
to the χ(Γj)(Ck) terms in (3.44) since the right hand side of (3.44) is real.

(g) The second orthogonality theorem works for columns of the character
table: ∑

Γi

[
χ(Γi)(Ck)

]∗
χ(Γi)(Ck′) =

h

Nk
δkk′ . (3.45)

This relation can be used both for orthogonality (different columns) or
normalization (same columns), as the wonderful orthogonality theorem
for character.

(h) From the second orthogonality theorem for character, and from the char-
acter for the identity class

χ(Γi)(E) = �i (3.46)

we see that the characters for all the other classes obey the relation∑
Γi

χ(Γi)(Ck)�i = 0 , (3.47)

where
∑

Γi
denotes the sum on irreducible representations and �i is the

dimensionality of representation Γi. Equation (3.47) follows from the won-
derful orthogonality theorem for character, and it uses the identity rep-
resentations as one of the irreducible representations, and for the second
any but the identity representation (Γi �= Γ1) can be used.

With all this machinery it is often possible to complete the character tables
for simple groups without an explicit determination of the matrices for a rep-
resentation.

Let us illustrate the use of the rules for setting up character tables with
the permutation group of three objects, P (3). We fill in the first row and first
column of the character table immediately from rules #3 and #4 in the earlier
list (see Table 3.4).

In order to satisfy #5, we know that χ(Γ1′ )(C2) = −1 and χ(Γ1′ )(C3) = 1,
which we add to the character table (Table 3.5).

Table 3.4. Character table for P(3) – Step 1

C1 3C2 2C3

Γ1 1 1 1

Γ1′ 1

Γ2 2
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Table 3.5. Character table for P(3) – Step 2

C1 3C2 2C3

Γ1 1 1 1

Γ1′ 1 −1 1

Γ2 2

Table 3.6. Character table for P(3)

C1 3C2 2C3

Γ1 1 1 1

Γ1′ 1 −1 1

Γ2 2 0 −1

Table 3.7. Multiplication table for the cyclic group of three rotations by 2π/3 about
a common axis

E C3 C2
3

E E C3 C2
3

C3 C3 C2
3 E

C2
3 C2

3 E C3

Now apply the second orthogonality theorem using columns 1 and 2 and
then again with columns 1 and 3, and this completes the character table,
thereby obtaining Table 3.6.

Let us give another example of a character table which illustrates another
principle that not all entries in a character table need to be real. Such a sit-
uation can occur in the case of cyclic groups. Consider a group with three
symmetry operations:

• E – identity,
• C3 – rotation by 2π/3,
• C2

3 – rotation by 4π/3.

See Table 3.7 for the multiplication table for this group. All three oper-
ations in this cyclic group C3 are in separate classes as can be easily seen
by conjugation of the elements. Hence there are three classes and three irre-
ducible representations to write down. The character table we start with is
obtained by following Rules #3 and #4 (Table 3.8). Orthogonality of Γ2 to
Γ1 yields the algebraic relation: 1 + a+ b = 0.

Since C2
3 = C3C3 and C2

3C3 = E, it follows that b = a2 and ab = a3 = 1,
so that a = exp(2πi/3). Then, orthogonality of the second column with the
first yields c = exp(4πi/3) and orthogonality of the third column with the
first column yields d = [exp(4πi/3)]2. From this information we can read-
ily complete the Character Table 3.9, where ω = exp[2πi/3]. Such a group
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Table 3.8. Character table for Cyclic Group C3

E C3 C2
3

Γ1 1 1 1

Γ2 1 a b

Γ3 1 c d

Table 3.9. Character table for cyclic group C3

E C3 C2
3

Γ1 1 1 1

Γ2 1 ω ω2

Γ3 1 ω2 ω

often enters into a physical problem which involves time inversion symme-
try, where the energy levels corresponding to Γ2 and Γ3 are degenerate
(see Chap. 16).

This idea of the cyclic group can be applied to a four-element group: E,
C2, C4, C3

4 – to a five-element group: E, C5, C2
5 , C3

5 , C4
5 – and to a six-element

group: E, C6, C3, C2, C2
3 , C5

6 , etc. In each case, use the fact that the Nth
roots of unity sum to zero so that each Γj is orthogonal to Γ1 and by the
rearrangement theorem each Γj is orthogonal to Γj′ . For the case of Bloch’s
theorem, we have an N -element group with characters that comprise the Nth
roots of unity ω = exp[2πi/N ].

All these cyclic groups are Abelian so that each element is in a class by
itself. The representations for these groups correspond to the multiplication
tables, which therefore contain the appropriate collections of roots of unity.

The character tables for all the point groups used in this chapter are listed
in Appendix A. The notation used in these tables is discussed in more detail
in the next sections.

3.9 Schoenflies Symmetry Notation

There are two point group notations that are used for the symmetry operations
in the character tables printed in books and journals. One is the Schoenflies
symmetry notation, which is described in this section and the other is the
Hermann–Mauguin notation that is used by the crystallography community
and is summarized in Sect. 3.10. For the Schoenflies system the following no-
tation is commonly used:

• E = Identity
• Cn = rotation through 2π/n. For example C2 is a rotation of 180◦. Likewise

C3 is a rotation of 120◦, while C2
6 represents a rotation of 60◦ followed
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Fig. 3.1. Schematic illustration of a dihedral symmetry axis. The reflection plane
containing the diagonal of the square and the fourfold axis is called a dihedral plane.
For this geometry σd(x, y, z) = (−y,−x, z)

by another rotation of 60◦ about the same axis so that C2
6 = C3. In

a Bravais lattice it can be shown that n in Cn can only assume values of
n = 1, 2, 3, 4, and 6. The observation of a diffraction pattern with fivefold
symmetry in 1984 was therefore completely unexpected, and launched the
field of quasicrystals, where a six-dimensional space is used for obtaining
crystalline periodicity.

• σ = reflection in a plane.
• σh = reflection in a “horizontal” plane. The reflection plane here is per-

pendicular to the axis of highest rotational symmetry.
• σv = reflection in a “vertical” plane. The reflection plane here contains

the axis of highest rotational symmetry.
• σd is the reflection in a diagonal plane. The reflection plane here is a verti-

cal plane which bisects the angle between the twofold axes ⊥ to the prin-
cipal symmetry axis. An example of a diagonal plane is shown in Fig. 3.1.
σd is also called a dihedral plane.

• i is the inversion which takes ⎧⎨
⎩
x→ −x
y → −y
z → −z .

• Sn is the improper rotation through 2π/n, which consists of a rotation by
2π/n followed by a reflection in a horizontal plane. Alternatively, we can
define Sn as a rotation by 4π/n followed by the inversion.

• iCn = compound rotation–inversion, which consists of a rotation followed
by an inversion.
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In addition to these point group symmetry operations, there are several space
group symmetry operations, such as translations, glide planes, screw axes,
etc. which are discussed in Chap. 9. The point groups, in contrast to the
space groups, exhibit a point that never moves under the application of all
symmetry operations. There are 32 common point groups for crystallographic
systems (n = 1, 2, 3, 4, 6), and the character tables for these 32 point groups
are given in many standard group theory texts. For convenience we also list
the character tables for these point groups in Appendix A (Tables A.1–A.32).
Tables A.22–A.28 are for groups with fivefold symmetry axes and such tables
are not readily found in group theory books, but have recently become im-
portant, because of the discovery of quasicrystals, C60, and related molecules.
Note that the tables for fivefold symmetry are: C5 (Table A.22); C5v (Ta-
ble A.23); C5h ≡ C5 ⊗ σh; D5 (Table A.24); D5d (Table A.25); D5h (Ta-
ble A.26); I (Table A.27); and Ih (Table A.28). Recurrent in these tables is
the “golden mean,” τ = (1 +

√
5)/2 where τ − 1 = 2 cos(2π/5) = 2 cos 72◦.

These are followed by Tables A.33 and A.34 for the semi-infinite groups C∞v

and D∞h, discussed later in this section.
Certain patterns can be found between the various point groups. Groups

C1, C2, . . . , C6 only have n-fold rotations about a simple symmetry axis Cn

(see for example Table A.15) and are cyclic groups, mentioned in Sect. 3.8.
Groups Cnv have, in addition to the n-fold axes, vertical reflection planes σv

(e.g., Table A.16). Groups Cnh have, in addition to the n-fold axes, hor-
izontal reflection planes σh and include each operation Cn together with
the compound operations Cn followed by σh (Tables A.3 and A.11 illus-
trate this relation between groups). The groups S2, S4, and S6 have mostly
compound operations (see Tables A.2, A.17, and A.20). The groups de-
noted by Dn are dihedral groups and have non-equivalent symmetry axes
in perpendicular planes (e.g., Table A.18). The group of the operations of
a square is D4 and has in addition to the principal fourfold axes, two sets
of non-equivalent twofold axes (Table A.18). We use the notation C′2 to in-
dicate that these twofold axis are in a different plane (see also Table A.12
for group D3, where this same situation occurs). When non-equivalent axes
are combined with mirror planes we get groups like D2h, D3h, etc. (see Ta-
bles A.8 and A.14). There are five cubic groups T , O, Td, Th, and Oh. These
groups have no principal axis but instead have four threefold axes (see Ta-
bles A.29–A.32).

3.10 The Hermann–Mauguin Symmetry Notation

There is also a second notation for symmetry operations and groups, namely
the Hermann–Mauguin or international notation, which is used in the Interna-
tional Tables for X-Ray Crystallography, a standard structural and symmetry
reference book. The international notation is what is usually found in crys-
tallography textbooks and various materials science journals. For that reason
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Table 3.10. Comparison between Schoenflies and Hermann–Mauguin notation

Schoenflies Hermann–Mauguin

rotation Cn n

rotation–inversion iCn n̄

mirror plane σ m

horizontal reflection

plane ⊥ to n-fold axes σh n/m

n-fold axes in

vertical reflection plane σv nm

two non-equivalent

vertical reflection planes σv′ nmm

Table 3.11. Comparison of notation for proper and improper rotations in the
Schoenflies and International systems

proper rotations improper rotations

international Schoenflies international Schoenflies

1 C1 1̄ S2

2 C2 2̄ ≡ m σ

3 C3 3̄ S−1
6

32 C−1
3 3̄2 S6

4 C4 4̄ S−1
4

43 C−1
4 4̄3 S4

5 C5 5̄ S10

54 C−1
5 5̄4 S−1

10

6 C6 6̄ S−1
3

65 C−1
6 6̄5 S3

it is also necessary to become familiar with this notation. The general corre-
spondence between the two notations is shown in Table 3.10 for rotations and
mirror planes. The Hermann–Mauguin notation n̄ means iCn which is equiv-
alent to a rotation of 2π/n followed by or preceded by an inversion. A string
of numbers like 422 (see Table A.18) means that there is a fourfold major
symmetry axis (C4 axis), and perpendicular to this axis are two inequivalent
sets of twofold axes C′2 and C′′2 , such as occur in the group of the square (D4).
If there are several inequivalent horizontal mirror planes like

2
m
,

2
m
,

2
m
,

an abbreviated notation mmm is sometimes used [see notation for the group
D2h (Table A.8)]. The notation 4mm (see Table A.16) denotes a fourfold axis
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and two sets of vertical mirror planes, one set through the axes C4 and denoted
by 2σv and the other set through the bisectors of the 2σv planes and denoted
by the dihedral vertical mirror planes 2σd. Table 3.11 is useful in relating the
two kinds of notations for rotations and improper rotations.

3.11 Symmetry Relations
and Point Group Classifications

In this section we summarize some useful relations between symmetry opera-
tions and give the classification of point groups. Some useful relations on the
commutativity of symmetry operations are:

(a) Inversion commutes with all point symmetry operations.
(b) All rotations about the same axis commute.
(c) All rotations about an arbitrary rotation axis commute with reflections

across a plane perpendicular to this rotation axis.
(d) Two twofold rotations about perpendicular axes commute.
(e) Two reflections in perpendicular planes will commute.
(f) Any two of the symmetry elements σh, Sn, Cn (n = even) implies the

third.

If we have a major symmetry axis Cn(n ≥ 2) and there are either twofold
axes C2 or vertical mirror planes σv, then there will generally be more than
one C2 or σv symmetry operations. In some cases these symmetry operations
are in the same class and in the other cases they are not, and this distinction
can be made by use of conjugation (see Sect. 1.6).

The classification of the 32 crystallographic point symmetry groups shown
in Table 3.12 is often useful in making practical applications of character
tables in textbooks and journal articles to specific materials.

In Table 3.12 the first symbol in the Hermann–Mauguin notation denotes
the principal axis or plane. The second symbol denotes an axis (or plane)
perpendicular to this axis, except for the cubic groups, where the second
symbol refers to a 〈111〉 axis. The third symbol denotes an axis or plane that
is ⊥ to the first axis and at an angle of π/n with respect to the second axis.

In addition to the 32 crystallographic point groups that are involved with
the formation of three-dimensional crystals, there are nine symmetry groups
that form clusters and molecules which show icosahedral symmetry or are
related to the icosahedral group Ih. We are interested in these species because
they can become part of crystallographic structures. Examples of such clusters
and molecules are fullerenes. The fullerene C60 has full icosahedral symmetry
Ih (Table A.28), while C70 has D5h symmetry (Table A.26) and C80 has
D5d symmetry (Table A.25). The nine point groups related to icosahedral
symmetry that are used in solid state physics, as noted earlier, are also listed
in Table 3.12 later that double line.
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Table 3.12. The extended 32 crystallographic point groups and their symbols(a)

system Schoenflies Hermann–Mauguin symbol(b) examples

symbol full abbreviated

triclinic C1 1 1
Ci, (S2) 1̄ 1̄ Al2SiO5

monoclinic C1h, (S1) m m KNO2

C2 2 2
C2h 2/m 2/m

orthorhombic C2v 2mm mm
D2, (V ) 222 222
D2h, (Vh) 2/m 2/m 2/m mmm I, Ga

tetragonal C4 4 4
S4 4̄ 4̄
C4h 4/m 4/m CaWO4

D2d, (Vd) 4̄2m 4̄2m
C4v 4mm 4mm
D4 422 42
D4h 4/m 2/m 2/m 4/mmm TiO2, In, β-Sn

rhombohedral C3 3 3 AsI3
C3i, (S6) 3̄ 3̄ FeTiO3

C3v 3m 3m
D3 32 32 Se
D3d 3̄2/m 3̄m Bi,As,Sb,Al2O3

hexagonal C3h, (S3) 6̄ 6̄
C6 6 6
C6h 6/m 6/m
D3h 6̄2m 6̄2m
C6v 6mm 6mm ZnO, NiAs
D6 622 62 CeF3

D6h 6/m 2/m 2/m 6/mmm Mg, Zn, graphite

Footnote (a): The usual 32 crystallographic point groups are here extended by in-
cluding 9 groups with 5 fold symmetry and are identified here as icosahedral point
groups.
Footnote (b): In the Hermann–Mauguin notation, the symmetry axes parallel to
and the symmetry planes perpendicular to each of the “principal” directions in the
crystal are named in order. When there is both an axis parallel to and a plane
normal to a given direction, these are indicated as a fraction; thus 6/m means
a sixfold rotation axis standing perpendicular to a plane of symmetry, while 4̄ denotes
a fourfold rotary inversion axis. In some classifications, the rhombohedral (trigonal)
groups are listed with the hexagonal groups. Also show are the corresponding entries
for the icosahedral groups (see text).
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Table 3.12. (continued)

the extended 32 crystallographic point groups and their symmetries

system Schoenflies Hermann–Mauguin symbol examples

symbol full abbreviated

cubic T 23 23 NaClO3

Th 2/m3̄ m3 FeS2

Td 4̄3m 4̄3m ZnS
O 432 43 β-Mn
Oh 4/m 3̄ 2/m m3m NaCl, diamond, Cu

icosahedral C5 5 5
C5i, (S10) 1̄0 1̄0
C5v 5m 5m
C5h, S5 5̄ 5̄
D5 52 52
D5d 5̄2/m 5̄/m C80

D5h 1̄02m 1̄02m C70

I 532 532
Ih C60

It is also convenient to picture many of the point group symmetries with
stereograms (see Fig. 3.2). The stereogram is a mapping of a general point on
a sphere onto a plane going through the center of the sphere. If the point on
the sphere is above the plane it is indicated as a +, and if below as a ◦. In
general, the polar axis of the stereogram coincides with the principal axis of
symmetry. The first five columns of Fig. 3.2 pertain to the crystallographic
point group symmetries and the sixth column is for fivefold symmetry.

The five first stereograms on the first row pertaining to groups with a sin-
gle axis of rotation show the effect of two-, three-, four-, and sixfold rotation
axes on a point +. These groups are cyclic groups with only n-fold axes.
Note the symmetry of the central point for each group. On the second row
we have added vertical mirror planes which are indicated by the solid lines.
Since the “vertical” and “horizontal” planes are not distinguishable for C1,
the addition of a mirror plane to C1 is given in the third row, showing the
groups which result from the first row upon addition of horizontal planes.
The symbols ⊕ indicate the coincidence of the projection of points above and
below the plane, characteristic of horizontal mirror planes.

If instead of proper rotations as in the first row, we can also have im-
proper rotations, then the groups on row 4 are generated. Since S1 is identical
with C1h, it is not shown separately; this also applies to S3 = C3h and
to S5 = C5h (neither of which are shown). It is of interest to note that S2

and S6 have inversion symmetry but S4 does not.
The addition of twofold axes ⊥ to the principal symmetry axis for the

groups in the first row yields the stereograms of the fifth row where the twofold
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Fig. 3.2. The first five columns show stereographic projections of simple crystallo-
graphic point groups

axes appear as dashed lines. Here we see that the higher the symmetry of the
principal symmetry axis, the greater the number of twofold axes D5 (not
shown) that would have 5 axes separated by 72◦.

The addition of twofold axes to the groups on the fourth row yields the
stereograms of the sixth row, where D2d comes from S4, while D3d comes from
S6. Also group D5d (not shown) comes from S10. The addition of twofold axes
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Fig. 3.3. Schematic diagram for the symmetry operations of the group Td

to S2 results in C2h. The stereograms on the last row are obtained by adding
twofold axes ⊥ to Cn to the stereograms for the Cnh groups on the third row.
D5h (not shown) would fall into this category. The effect of adding a twofold
axis to C1h is to produce C2v.

The five point symmetry groups associated with cubic symmetry (T , O,
Td, Th and Oh) are not shown in Fig. 3.2. These groups have higher symmetry
and have no single principal axis. The resulting stereograms are very compli-
cated and for this reason are not given in Fig. 3.2. For the same reason the
stereograph for the I and Ih icosahedral groups are not given. We give some
of the symmetry elements for these groups next.

The group T (or 23 using the International notation) has 12 symmetry
elements which include:

1 identity
3 twofold axes (x, y, z)
4 threefold axes (body diagonals – positive rotation)
4 threefold axes (body diagonals – negative rotations)
12 symmetry elements

The point group Th (denoted by m3 in the abbreviated International nota-
tion or by 2/m3 in the full International notation) contains all the symmetry
operations of T and inversion as well, and is written as Th ≡ T ⊗ i, indicating
the direct product of the group T and the group Ci having two symmetry
elements E, i (see Chap. 6). This is equivalent to adding a horizontal plane of
symmetry, hence the notation 2/m; the symbol 3 means a threefold axis (see
Table 3.11). Thus Th has 24 symmetry elements.

The point group Td (4̄3m) contains the symmetry operations of the reg-
ular tetrahedron (see Fig. 3.3), which correspond to the point symmetry for
diamond and the zincblende (III–V and II–VI) structures. We list next the 24
symmetry operations of Td:
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Fig. 3.4. Schematic for the symmetry operations of the group O

Fig. 3.5. Schematic diagram of the CO molecule with symmetry C∞v and symmetry
operations E, 2Cφ, σv, and the linear CO2 molecule in which the inversion operation
together with (E, 2Cφ, σv) are also present to give the group D∞h

• identity,
• eight C3 about body diagonals corresponding to rotations of ±2π/3,
• three C2 about x, y, z directions,
• six S4 about x, y, z corresponding to rotations of ±π/2,
• six σd planes that are diagonal reflection planes.

The cubic groups are O (432) and Oh (m3m), and they are shown schemati-
cally in Fig. 3.4.

The operations for group O as shown in Fig. 3.4 are E, 8C3, 3C2 = 3C2
4 ,

6C2, and 6C4. To get Oh we combine these 24 operations with inversion to
give 48 operations in all. We note that the second symbol in the Hermann–
Mauguin (International) notation for all five cubic groups is for the 〈111〉 axes
rather than for an axis ⊥ to the principal symmetry axis.

In addition to the 32 crystallographic point groups and to the eight fivefold
point groups, the character tables contain listings for C∞v (Table A.33) and
D∞h (Table A.34) which have full rotational symmetry around a single axis,
and therefore have an ∞ number of symmetry operations and classes. These
two groups are sometimes called the semi-infinite groups because they have
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an infinite number of operations about the major symmetry axis. An example
of C∞v symmetry is the CO molecule shown in Fig. 3.5.

Here the symmetry operations are E, 2Cφ, and σv. The notation Cφ de-
notes an axis of full rotational symmetry and σv denotes the corresponding
infinite array of vertical planes. The group D∞h has in addition the inversion
operation which is compounded with each of the operations in C∞v, and this
is written as D∞h = C∞v ⊗ i (see Chap. 6). An example of a molecule with
D∞h symmetry is the CO2 molecule (see Fig. 3.5).

Selected Problems

3.1. (a) Explain the symmetry operations pertaining to each class of the point
group D3h. You may find the stereograms on p. 51 useful.

(b) Prove that the following irreducible representations E1 and E2 in the
group D5 (see Table A.24) are orthonormal.

(c) Given the group T (see Table A.29), verify that the equality
∑

j

�2j = h

is satisfied. What is the meaning of the two sets of characters given for
the two-dimensional irreducible representation E? Are they orthogonal to
each other or are they part of the same irreducible representation?

(d) Which symmetry operation results from multiplying the operations σv

and σd in group C4v? Can you obtain this information from the character
table? If so, how?

3.2. Consider an A3B3 molecule consisting of 3A atoms at the corners of
a regular triangle and 3B atoms at the corners of another regular triangle,
rotated by 60◦ with respect to the first.

(a) Consider the A and B atoms alternately occupy the corners of a planar
regular hexagon. What are the symmetry operations of the symmetry
group and what is the corresponding point group? Make a sketch of the
atomic equilibrium positions for this case.

(b) If now the A atoms are on one plane and the B atoms are on another
parallel plane, what are the symmetry operations and point group?

(c) If now all atoms in (a) are of the same species, what then are the symmetry
operations of the appropriate point group, and what is this group?

(d) Which of these groups are subgroups of the highest symmetry group? How
could you design an experiment to test your symmetry group identifica-
tions?

3.3. (a) What are the symmetry operations of a regular hexagon?
(b) Find the classes. Why are not all the two-fold axes in the same class?
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(c) Find the self-conjugate subgroups, if any.
(d) Identify the appropriate character table.
(e) For some representative cases (two cases are sufficient), check the validity

of the “Wonderful Orthogonality and Second Orthogonality Theorems”
on character, using the character table in (d).

3.4. Suppose that you have the following set of characters: χ(E) = 4, χ(σh) =
2, χ(C3) = 1, χ(S3) = −1, χ(C′2) = 0, χ(σv) = 0.

(a) Do these characters correspond to a representation of the point group
D3h? Is it irreducible?

(b) If the representation is reducible, find the irreducible representations con-
tained therein.

(c) Give an example of a molecule with D3h symmetry.

3.5. Consider a cube that has Oh symmetry.

(a) Which symmetry group is obtained by squeezing the cube along one of
the main diagonals?

(b) Which symmetry group is obtained if you add mirror planes perpendic-
ular to the main diagonals, and have a mirror plane crossing these main
diagonals in the middle.


