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Representation Theory and Basic Theorems

In this chapter we introduce the concept of a representation of an abstract
group and prove a number of important theorems relating to irreducible rep-
resentations, including the “Wonderful Orthogonality Theorem.” This math-
ematical background is necessary for developing the group theoretical frame-
work that is used for the applications of group theory to solid state physics.

2.1 Important Definitions

Definition 12. Two groups are isomorphic or homomorphic if there exists
a correspondence between their elements such that

A→ Â

B → B̂

AB → ÂB̂ ,

where the plain letters denote elements in one group and the letters with carets
denote elements in the other group. If the two groups have the same order
(same number of elements), then they are isomorphic (one-to-one correspon-
dence). Otherwise they are homomorphic (many-to-one correspondence).

For example, the permutation group of three numbers P (3) is isomorphic
to the symmetry group of the equilateral triangle and homomorphic to its
factor group, as shown in Table 2.1. Thus, the homomorphic representations
in Table 2.1 are unfaithful. Isomorphic representations are faithful, because
they maintain the one-to-one correspondence.

Definition 13. A representation of an abstract group is a substitution group
(matrix group with square matrices) such that the substitution group is homo-
morphic (or isomorphic) to the abstract group. We assign a matrix D(A) to
each element A of the abstract group such that D(AB) = D(A)D(B).
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Table 2.1. Table of homomorphic mapping of P (3) and its factor group

permutation group element factor group

E,D, F → E
A,B,C → A

The matrices of (1.4) are an isomorphic representation of the permutation
group P (3). In considering the representation

E
D
F

⎫⎬
⎭→ (1)

A
B
C

⎫⎬
⎭→ (−1)

the one-dimensional matrices (1) and (−1) are a homomorphic representa-
tion of P (3) and an isomorphic representation of the factor group E ,A (see
Sect. 1.7). The homomorphic one-dimensional representation (1) is a repre-
sentation for any group, though an unfaithful one.

In quantum mechanics, the matrix representation of a group is important
for several reasons. First of all, we will find that an eigenfunction for a quan-
tum mechanical operator will transform under a symmetry operation similar
to the application of the matrix representing the symmetry operation on the
matrix for the wave function. Secondly, quantum mechanical operators are
usually written in terms of a matrix representation, and thus it is convenient
to write symmetry operations using the same kind of matrix representa-
tion. Finally, matrix algebra is often easier to manipulate than geometrical
symmetry operations.

2.2 Matrices

Definition 14. Hermitian matrices are defined by: Ã = A∗, Ã∗ = A, or A† =
A (where the symbol ∗ denotes complex conjugation, ∼ denotes transposition,
and † denotes taking the adjoint)

A =

⎛
⎜⎝
a11 a12 · · ·
a21 a22 · · ·
...

...

⎞
⎟⎠ , (2.1)

Ã =

⎛
⎜⎝
a11 a21 · · ·
a12 a22 · · ·
...

...

⎞
⎟⎠ , (2.2)

A† =

⎛
⎜⎝
a∗11 a

∗
21 · · ·

a∗12 a∗22 · · ·
...

...

⎞
⎟⎠ . (2.3)
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Unitary matrices are defined by: Ã∗ = A† = A−1;
Orthonormal matrices are defined by: Ã = A−1.

Definition 15. The dimensionality of a representation is equal to the dimen-
sionality of each of its matrices, which is in turn equal to the number of rows
or columns of the matrix.

These representations are not unique. For example, by performing a similarity
(or equivalence, or canonical) transformation UD(A)U−1 we generate a new
set of matrices which provides an equally good representation. A simple phys-
ical example for this transformation is the rotation of reference axes, such as
(x, y, z) to (x′, y′, z′). We can also generate another representation by taking
one or more representations and combining them according to(

D(A) O
O D′(A)

)
, (2.4)

where O = (m×n) matrix of zeros, not necessarily a square zero matrix. The
matrices D(A) and D′(A) can be either two distinct representations or they
can be identical representations.

To overcome the difficulty of non-uniqueness of a representation with re-
gard to a similarity transformation, we often just deal with the traces of the
matrices which are invariant under similarity transformations, as discussed in
Chap. 3. The trace of a matrix is defined as the sum of the diagonal matrix
elements. To overcome the difficulty of the ambiguity of representations in
general, we introduce the concept of irreducible representations.

2.3 Irreducible Representations

Consider the representation made up of two distinct or identical representa-
tions for every element in the group(

D(A) O
O D′(A)

)
.

This is a reducible representation because the matrix corresponding to each
and every element of the group is in the same block form. We could now
carry out a similarity transformation which would mix up all the elements so
that the matrices are no longer in block form. But still the representation is
reducible. Hence the definition:

Definition 16. If by one and the same equivalence transformation, all the
matrices in the representation of a group can be made to acquire the same
block form, then the representation is said to be reducible; otherwise it is
irreducible. Thus, an irreducible representation cannot be expressed in terms
of representations of lower dimensionality.
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We will now consider three irreducible representations for the permutation
group P (3):

E A B
Γ1 : (1) (1) (1)
Γ1′ : (1) (−1) (−1)

Γ2 :
(

1 0
0 1

) (−1 0
0 1

) (
1
2 −

√
3

2

−
√

3
2 − 1

2

)

C D F
Γ1 : (1) (1) (1)
Γ1′ : (−1) (1) (1)

Γ2 :

(
1
2

√
3

2√
3

2 − 1
2

) (
− 1

2

√
3

2

−
√

3
2 − 1

2

) (
− 1

2 −
√

3
2√

3
2 − 1

2

)
.

(2.5)

A reducible representation containing these three irreducible representations is

E A B

ΓR :

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1

2 −
√

3
2

0 0 −
√

3
2 − 1

2

⎞
⎟⎟⎠ · · · , (2.6)

where ΓR is of the form ⎛
⎝Γ1 0 O

0 Γ1′ O
O O Γ2

⎞
⎠ . (2.7)

It is customary to list the irreducible representations contained in a reducible
representation ΓR as

ΓR = Γ1 + Γ1′ + Γ2 . (2.8)

In working out problems of physical interest, each irreducible representation
describes the transformation properties of a set of eigenfunctions and corre-
sponds to a distinct energy eigenvalue. Assume ΓR is a reducible represen-
tation for some group G but an irreducible representation for some other
group G′. If ΓR contains the irreducible representations Γ1 + Γ1′ + Γ2 as il-
lustrated earlier for the group P (3), this indicates that some interaction is
breaking up a fourfold degenerate level in group G′ into three energy levels in
group G: two nondegenerate ones and a doubly degenerate one. Group theory
does not tell us what these energies are, nor their ordering. Group theory
only specifies the symmetries and degeneracies of the energy levels. In gen-
eral, the higher the symmetry, meaning the larger the number of symmetry
operations in the group, the higher the degeneracy of the energy levels. Thus
when a perturbation is applied to lower the symmetry, the degeneracy of the
energy levels tends to be reduced. Group theory provides a systematic method
for determining exactly how the degeneracy is lowered.
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Representation theory is useful for the treatment of physical problems be-
cause of certain orthogonality theorems which we will now discuss. To prove
the orthogonality theorems we need first to prove some other theorems (in-
cluding the unitarity of representations in Sect. 2.4 and the two Schur lemmas
in Sects. 2.5 and 2.6).

2.4 The Unitarity of Representations

The following theorem shows that in most physical cases, the elements of
a group can be represented by unitary matrices, which have the property of
preserving length scales. This theorem is then used to prove lemmas leading
to the proof of the “Wonderful Orthogonality Theorem,” which is a central
theorem of this chapter.

Theorem. Every representation with matrices having nonvanishing determi-
nants can be brought into unitary form by an equivalence (similarity) trans-
formation.

Proof. By unitary form we mean that the matrix elements obey the relation
(A−1)ij = A†ij = A∗ji, where A is an arbitrary matrix of the representation.
The proof is carried out by actually finding the corresponding unitary matrices
if the Aij matrices are not already unitary matrices.

Let A1, A2, · · · , Ah denote matrices of the representation. We start by
forming the matrix sum

H =
h∑

x=1

AxA
†
x , (2.9)

where the sum is over all the elements in the group and where the adjoint of
a matrix is the transposed complex conjugate matrix (A†x)ij = (Ax)∗ji. The
matrix H is Hermitian because

H† =
∑

x

(AxA
†
x)† =

∑
x

AxA
†
x . (2.10)

Any Hermitian matrix can be diagonalized by a suitable unitary transforma-
tion. Let U be a unitary matrix made up of the orthonormal eigenvectors
which diagonalize H to give the diagonal matrix d:

d = U−1HU

=
∑

x

U−1AxA
†
xU

=
∑

x

U−1AxUU
−1A†xU

=
∑

x

ÂxÂ
†
x , (2.11)



20 2 Representation Theory and Basic Theorems

where we define Âx = U−1AxU for all x. The diagonal matrix d is a special
kind of matrix and contains only real, positive diagonal elements since

dkk =
∑

x

∑
j

(Âx)kj(Â†x)jk

=
∑

x

∑
j

(Âx)kj(Âx)∗kj

=
∑

x

∑
j

|(Âx)kj |2 . (2.12)

Out of the diagonal matrix d, one can form two matrices (d1/2 and d−1/2)
such that

d1/2 ≡

⎛
⎜⎝
√
d11 O√

d22

O . . .

⎞
⎟⎠ (2.13)

and

d−1/2 ≡

⎛
⎜⎝

1√
d11

O
1√
d22

O . . .

⎞
⎟⎠ , (2.14)

where d1/2 and d−1/2 are real, diagonal matrices. We note that the generation
of d−1/2 from d1/2 requires that none of the dkk vanish. These matrices clearly
obey the relations

(d1/2)† = d1/2 (2.15)
(d−1/2)† = d−1/2 (2.16)

(d1/2)(d1/2) = d (2.17)

so that
d1/2d−1/2 = d−1/2d1/2 = 1̂ = unit matrix . (2.18)

From (2.11) we can also write

d = d1/2d1/2 =
∑

x

ÂxÂ
†
x . (2.19)

We now define a new set of matrices

ˆ̂
Ax ≡ d−1/2Âxd

1/2 (2.20)

and
Â†x = (U−1AxU)† = U−1A†xU (2.21)

ˆ̂
A†x = (d−1/2Âxd

1/2)† = d1/2Â†xd−1/2 . (2.22)
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We now show that the matrices ˆ̂
Ax are unitary:

ˆ̂
Ax

ˆ̂
A†x = (d−1/2Âxd

1/2)(d1/2Â†xd
−1/2)

= d−1/2ÂxdÂ
†
xd

−1/2

= d−1/2
∑

y

ÂxÂyÂ
†
yÂ

†
xd
−1/2

= d−1/2
∑

y

(ÂxÂy)(ÂxÂy)†d−1/2

= d−1/2
∑

z

ÂzÂ
†
z d

−1/2 (2.23)

by the rearrangement theorem (Sect. 1.4). But from the relation

d =
∑

z

ÂzÂ
†
z (2.24)

it follows that ˆ̂
Ax

ˆ̂
A†x = 1̂, so that ˆ̂

Ax is unitary.
Therefore we have demonstrated how we can always construct a unitary

representation by the transformation:

ˆ̂
Ax = d−1/2U−1AxUd

1/2 , (2.25)

where

H =
h∑

x=1

AxA
†
x (2.26)

d =
h∑

x=1

ÂxÂ
†
x , (2.27)

and where U is the unitary matrix that diagonalizes the Hermitian matrix H
and Âx = U−1AxU . �

Note: On the other hand, not all symmetry operations can be represented by
a unitary matrix; an example of an operation which cannot be represented by
a unitary matrix is the time inversion operator (see Chap. 16). Time inversion
symmetry is represented by an antiunitary matrix rather than a unitary ma-
trix. It is thus not possible to represent all symmetry operations by a unitary
matrix.

2.5 Schur’s Lemma (Part 1)

Schur’s lemmas (Parts 1 and 2) on irreducible representations are proved in
order to prove the “Wonderful Orthogonality Theorem” in Sect. 2.7. We next
prove Schur’s lemma Part 1.
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Lemma. A matrix which commutes with all matrices of an irreducible repre-
sentation is a constant matrix, i.e., a constant times the unit matrix. There-
fore, if a non-constant commuting matrix exists, the representation is re-
ducible; if none exists, the representation is irreducible.

Proof. Let M be a matrix which commutes with all the matrices of the rep-
resentation A1, A2, . . . , Ah �

MAx = AxM . (2.28)

Take the adjoint of both sides of (2.28) to obtain

A†xM
† = M †A†x . (2.29)

Since Ax can in all generality be taken to be unitary (see Sect. 2.4), multiply
on the right and left of (2.29) by Ax to yield

M †Ax = AxM
† , (2.30)

so that if M commutes with Ax so does M †, and so do the Hermitian matrices
H1 and H2 defined by

H1 = M +M †

H2 = i(M −M †) , (2.31)

HjAx = AxHj , where j = 1, 2 . (2.32)

We will now show that a commuting Hermitian matrix is a constant matrix
from which it follows that M = H1 − iH2 is also a constant matrix.

Since Hj (j = 1, 2) is a Hermitian matrix, it can be diagonalized. Let U
be the matrix that diagonalizes Hj (for example H1) to give the diagonal
matrix d

d = U−1HjU . (2.33)

We now perform the unitary transformation on the matrices Ax of the rep-
resentation Âx = U−1AxU . From the commutation relations (2.28), (2.29),
and (2.32), a unitary transformation on all matrices HjAx = AxHj yields

(U−1HjU)︸ ︷︷ ︸
d

(U−1AxU)︸ ︷︷ ︸
Âx

= (U−1AxU)︸ ︷︷ ︸
Âx

(U−1HjU)︸ ︷︷ ︸
d

. (2.34)

So now we have a diagonal matrix d which commutes with all the matrices of
the representation. We now show that this diagonal matrix d is a constant ma-
trix, if all the Âx matrices (and thus also the Ax matrices) form an irreducible
representation. Thus, starting with (2.34)

dÂx = Âxd (2.35)

we take the ij element of both sides of (2.35)
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dii(Âx)ij = (Âx)ijdjj , (2.36)

so that
(Âx)ij(dii − djj) = 0 (2.37)

for all the matrices Ax.
If dii �= djj , so that the matrix d is not a constant diagonal matrix, then

(Âx)ij must be 0 for all the Âx. This means that the similarity or unitary
transformation U−1AxU has brought all the matrices of the representation
Âx into the same block form, since any time dii �= djj all the matrices (Âx)ij

are null matrices. Thus by definition the representationAx is reducible. But we
have assumed the Ax to be an irreducible representation. Therefore (Âx)ij �= 0
for all Âx, so that it is necessary that dii = djj , and Schur’s lemma Part 1 is
proved.

2.6 Schur’s Lemma (Part 2)

Lemma. If the matrix representations D(1)(A1), D(1)(A2), . . . , D(1)(Ah)
and D(2)(A1), D(2)(A2), . . . , D(2)(Ah) are two irreducible representations
of a given group of dimensionality �1 and �2, respectively, then, if there is
a matrix of �1 columns and �2 rows M such that

MD(1)(Ax) = D(2)(Ax)M (2.38)

for all Ax, then M must be the null matrix (M = O) if �1 �= �2. If �1 = �2,
then either M = O or the representations D(1)(Ax) and D(2)(Ax) differ from
each other by an equivalence (or similarity) transformation.

Proof. Since the matrices which form the representation can always be trans-
formed into unitary form, we can in all generality assume that the matrices of
both representations D(1)(Ax) and D(2)(Ax) have already been brought into
unitary form. �

Assume �1 ≤ �2, and take the adjoint of (2.38)

[D(1)(Ax)]†M † = M †[D(2)(Ax)]† . (2.39)

The unitary property of the representation implies [D(Ax)]† = [D(Ax)]−1 =
D(A−1

x ), since the matrices form a substitution group for the elements Ax of
the group. Therefore we can write (2.39) as

D(1)(A−1
x )M † = M †D(2)(A−1

x ) . (2.40)

Then multiplying (2.40) on the left by M yields

MD(1)(A−1
x )M † = MM †D(2)(A−1

x ) = D(2)(A−1
x )MM † , (2.41)
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which follows from applying (2.38) to the element A−1
x which is also an element

of the group

MD(1)(A−1
x ) = D(2)(A−1

x )M . (2.42)

We have now shown that if MD(1)(Ax) = D(2)(Ax)M then MM † commutes
with all the matrices of representation (2) and M †M commutes with all ma-
trices of representation (1). But if MM † commutes with all matrices of a rep-
resentation, then by Schur’s lemma (Part 1), MM † is a constant matrix of
dimensionality (�2 × �2):

MM † = c 1̂ , (2.43)

where 1̂ is the unit matrix.
First we consider the case �1 = �2. Then M is a square matrix, with an

inverse

M−1 =
M †

c
, c �= 0 . (2.44)

Then if M−1 �= O, multiplying (2.38) by M−1 on the left yields

D(1)(Ax) = M−1D(2)(Ax)M (2.45)

and the two representations differ by an equivalence transformation.
However, if c = 0 then we cannot write (2.44), but instead we have to

consider MM † = 0
∑

k

MikM
†
kj = 0 =

∑
k

MikM
∗
jk (2.46)

for all ij elements. In particular, for i = j we can write
∑

k

MikM
∗
ik =

∑
k

|Mik|2 = 0 . (2.47)

Therefore each element Mik = 0 so that M is a null matrix. This completes
proof of the case �1 = �2 and M = O.

Finally we prove that for �1 �= �2, then M = O. Suppose that �1 �= �2, then
we can arbitrarily take �1 < �2. Then M has �1 columns and �2 rows. We can
make a square (�2× �2) matrix out of M by adding (�2− �1) columns of zeros

�1 columns

�2 rows

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0
0 0 · · · 0

M 0 0 · · · 0
...

...
...

0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

= N = square (�2 × �2) matrix .
(2.48)



2.7 Wonderful Orthogonality Theorem 25

The adjoint of (2.48) is then written as
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M †

0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= N † (2.49)

so that
NN † = MM † = c 1̂ dimension (�2 × �2) . (2.50)

∑
k

NikN
†
ki =

∑
k

NikN
∗
ik = c 1̂

∑
ik

NikN
∗
ik = c�2 .

But if we carry out the sum over i we see by direct computation that some
of the diagonal terms of

∑
k,i NikN

∗
ik are 0, so that c must be zero. But this

implies that for every element we have Nik = 0 and therefore also Mik = 0,
so that M is a null matrix, completing the proof of Schur’s lemma Part 2.

2.7 Wonderful Orthogonality Theorem

The orthogonality theorem which we now prove is so central to the applica-
tion of group theory to quantum mechanical problems that it was named the
“Wonderful Orthogonality Theorem” by Van Vleck, and is widely known by
this name. The theorem is in actuality an orthonormality theorem.

Theorem. The orthonormality relation

∑
R

D(Γj)
μν (R)D

(Γj′ )
ν′μ′ (R−1) =

h

�j
δΓj ,Γj′ δμμ′δνν′ (2.51)

is obeyed for all the inequivalent, irreducible representations of a group, where
the summation is over all h group elements A1, A2, . . . , Ah and �j and �j′

are, respectively, the dimensionalities of representations Γj and Γj′ . If the
representations are unitary, the orthonormality relation becomes

∑
R

D(Γj)
μν (R)

[
D

(Γ ′j)

μ′ν′ (R)
]∗

=
h

�j
δΓj ,Γj′ δμμ′δνν′ . (2.52)
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Example. To illustrate the meaning of the mathematical symbols of this theo-
rem, consider the orthogonality between the Γ1 and Γ1′ irreducible represen-
tations for the P (3) group in Sect. 2.5 using the statements of the theorem
(2.52):∑

R

D(Γ1)
μν (R)D(Γ1′ )∗

μ′ν′ (R) = [(1) · (1)] + [(1) · (1)] + [(1) · (1)] (2.53)

+[(1) · (−1)] + [(1) · (−1)] + [(1) · (−1)] = 0 .

Proof. Consider the �j′ × �j matrix

M =
∑
R

D(Γj′ )(R)XD(Γj)(R−1) , (2.54)

where X is an arbitrary matrix with �j′ rows and �j columns so that M is
a rectangular matrix of dimensionality (�j′× �j). Multiply M by D(Γj′ )(S) for
some element S in the group:

D(Γj′ )(S)M︸ ︷︷ ︸
�j′×�j

=
∑
R

D(Γj′ )(S)D(Γj′ )(R) X D(Γj)(R−1) . (2.55)

We then carry out the multiplication of two elements in a group

D(Γj′ )(S)M︸ ︷︷ ︸
�j′×�j

=
∑
R

D(Γj′ )(SR) X D(Γj)(R−1S−1)D(Γj)(S) , (2.56)

where we have used the group properties (1.3) of the representations Γj and
Γj′ . By the rearrangement theorem, (2.56) can be rewritten

D(Γj′ )(S)M =
∑
R

D(Γj′ )(R) X D(Γj)(R−1)

︸ ︷︷ ︸
M

D(Γj)(S) = M D(Γj)(S) . (2.57)

Now apply Schur’s lemma Part 2 for the various cases. �
Case 1. �j �= �j′ or if �j = �j′ , and the representations are not equivalent.

Since D(Γj′ )(S)M = MD(Γj)(S), then by Schur’s lemma Part 2, M must
be a null matrix. From the definition of M we have

0 = Mμμ′ =
∑
R

∑
γ,λ

D
(Γj′ )
μγ (R)XγλD

(Γj)
λμ′ (R−1) . (2.58)

But X is an arbitrary matrix. By choosing X to have an entry 1 in the νν′

position and 0 everywhere else, we write

X =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 · · ·
0 0 0 1 0 0 · · ·
0 0 0 0 0 0 · · ·
0 0 0 0 0 0 · · ·
...

...
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎠

, Xγλ = δγνδλν′ . (2.59)
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It then follows by substituting (2.59) into (2.58) that

0 =
∑
R

D
(Γj′ )
μν (R)D(Γj)

ν′μ′ (R
−1) . (2.60)

Case 2. �j = �j′ and the representations Γj and Γj′ are equivalent.
If the representations Γj and Γj′ are equivalent, then �j = �j′ and Schur’s

lemma part 1 tells us that M = c1̂. The definition for M in (2.54) gives

Mμν′ = cδμμ′ =
∑
R

∑
γ,λ

D
(Γj′ )
μγ (R)XγλD

(Γj′ )
λμ′ (R−1) . (2.61)

Choose X in (2.59) as above to have a nonzero entry at νν′ and 0 everywhere
else. Then Xγλ = c′νν′δγνδλν′ , so that

c′′νν′δμμ′ =
∑
R

D
(Γj′ )
μν (R) D

(Γj′ )
ν′μ′ (R−1) , (2.62)

where c′′νν′ = c/c′νν′ . To evaluate c′′νν′ choose μ = μ′ in (2.62) and sum on μ:

c′′νν′
∑

μ

δμμ

︸ ︷︷ ︸
�j′

=
∑
R

∑
μ

D
(Γj′ )
μν (R) D

(Γj′ )
ν′μ (R−1) =

∑
R

D
(Γj′ )
ν′ν (R−1R) . (2.63)

since D(Γj′ )(R) is a representation of the group and follows the multiplication
table for the group. Therefore we can write

c′′νν′�j′ =
∑
R

D
(Γj′ )
ν′ν (R−1R) =

∑
R

D
(Γj′ )
ν′ν (E) = D

(Γj′ )
ν′ν (E)

∑
R

1 . (2.64)

But D
(Γj′ )
ν′ν (E) is a unit (�j′ × �j′) matrix and the ν′ν matrix element is δν′ν .

The sum of unity over all the group elements is h. Therefore we obtain

c′′νν′ =
h

�j′
δνν′ . (2.65)

Substituting (2.65) into (2.62) gives:

h

�j′
δμμ′δνν′ =

∑
R

D
(Γj′ )
μν (R) D

(Γj′ )
ν′μ′ (R−1) . (2.66)

We can write the results of Cases 1 and 2 in compact form
∑
R

D(Γj)
μν (R) D

(Γj′ )
ν′μ′ (R−1) =

h

�j
δΓj ,Γj′ δμμ′δνν′ . (2.67)

For a unitary representation (2.67) can also be written as
∑
R

D(Γj)
μν (R) D

(Γj′ )∗
μ′ν′ (R) =

h

�j
δΓj ,Γj′ δμμ′δνν′ . (2.68)

This completes the proof of the wonderful orthogonality theorem, and we see
explicitly that this theorem is an orthonormality theorem.
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2.8 Representations and Vector Spaces

Let us spend a moment and consider what the representations in (2.68) mean
as an orthonormality relation in a vector space of dimensionality h. Here h
is the order of the group which equals the number of group elements. In this
space, the representations D(Γj)

μν (R) can be considered as elements in this h-
dimensional space:

V (Γj)
μ,ν =

[
D(Γj)

μν (A1), D(Γj)
μν (A2), . . . , D(Γj)

μν (Ah)
]
. (2.69)

The three indices Γj , μ, ν label a particular vector. All distinct vectors in
this space are orthogonal. Thus two representations are orthogonal if any one
of their three indices is different. But in an h-dimensional vector space, the
maximum number of orthogonal vectors is h. We now ask how many vectors
V

(Γj)
μ,ν can we make? For each representation, we have �j choices for μ and ν

so that the total number of vectors we can have is
∑

j �
2
j where we are now

summing over representations Γj . This argument yields the important result
∑

j

�2j ≤ h . (2.70)

We will see later (Sect. 3.7) that it is the equality that holds in (2.70). The
result in (2.70) is extremely helpful in finding the totality of irreducible (non-
equivalent) representations (see Problem 2.2).

Selected Problems

2.1. Show that every symmetry operator for every group can be represented
by the (1 × 1) unit matrix. Is it also true that every symmetry operator for
every group can be represented by the (2 × 2) unit matrix? If so, does such
a representation satisfy the Wonderful Orthogonality Theorem? Why?

2.2. Consider the example of the group P (3) which has six elements. Using the
irreducible representations of Sect. 2.3, find the sum of �2j . Does the equality
or inequality in (2.70) hold? Can P (3) have an irreducible representation with
�j = 3? Group P (4) has 24 elements and 5 irreducible representations. Using
(2.70) as an equality, what are the dimensionalities of these 5 irreducible
representations (see Problem 1.4)?


