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Symmetry Properties of Tensors

In theories and experiments involving physical systems with high symmetry,
one frequently encounters the question of how many independent terms are
required by symmetry to specify a tensor of a given rank for each symme-
try group. These questions have simple group theoretical answers [75]. This
chapter deals with the symmetry properties of tensors, with particular atten-
tion given to those tensors of rank 2 and higher that arise in the physics of
condensed matter concerning nonlinear optics and elasticity theory. In this
analysis we consider the symmetry implied by the permutation group which
gives the number of independent components in the case of no point group
symmetry. We then consider the additional symmetry that is introduced by
the presence of symmetry elements such as rotations, reflections and inver-
sions. We explicitly discuss full rotational symmetry and several point group
symmetries.

18.1 Introduction

We start by listing a few commonly occurring examples of tensors of rank 2, 3,
and 4 that occur in condensed matter physics. Second rank symmetric tensors
occur in the constitutive equations of Electromagnetic Theory, as for example
in the linear equations relating the current density to the electric field intensity

J (1) =
↔
σe

(2)

·E , (18.1)

where the electrical conductivity
↔
σe

(2)

is a symmetric (σe
ij = σe

ji) second
rank tensor. We use the superscript (2) to distinguish the second rank linear
conductivity tensor from the nonlinear higher order tensor terms that depend
on higher powers of the electric field E discussed below. A similar situation
holds for the relation between the polarization and the electric field

P (2) =
↔
α

(2) ·E , (18.2)
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where the polarizability
↔
α

(2)
is a symmetric second rank tensor, and where

↔
α

(2) ≡ ↔
χ

(2)

E is often called the electrical susceptibility. A similar situation also
holds for the relation between the magnetization and the magnetic field

M (2) =
↔
χ

(2)

H ·H , (18.3)

where the magnetic susceptibility
↔
χ

(2)

H is also a symmetric second rank tensor.

These relations all involve second rank symmetric tensors:
↔
σ

(2)
,
↔
α

(2)
and

↔
χ

(2)

H . Each second (3 × 3) rank tensor Tij has nine components but because
it is a symmetric tensor Tij = Tji only six coefficients (rather than nine) are
required to represent these symmetric second rank tensors. Thus, a symmetric
second rank tensor, such as the polarizability tensor or the Raman tensor, has
only six independent components. In this chapter we are concerned with the
symmetry properties of these and other tensors under permutations and point
group symmetry operations.

As an example of higher rank tensors, consider nonlinear optical phe-
nomena, where the polarization in (18.2) is further expanded to higher order
terms in E as

P =
↔
α

(2) ·E +
↔
α

(3) ·EE +
↔
α

(4) ·EEE + · · · , (18.4)

where we can consider the polarizability tensor
↔
α to be field dependent

↔
α =

↔
α

(2)
+
↔
α

(3) ·E +
↔
α

(4) ·EE + · · · , (18.5)

because an increase in the magnitude of E will make the nonlinear terms in
(18.4) and (18.5) more important. More will be said about the symmetry of

the various
↔
α

(i)
tensors under permutations and point group operations in

Sect. 18.3. Similar expansions can be made for (18.1) and (18.3).
As another example, consider the piezoelectric tensor which is a third

rank tensor relating the polarization per unit volume P to the strain tensor,
↔
e , where P is given by

P =
↔
d

(3)

· ↔e , (18.6)

which can be rewritten to show the rank of each tensor explicitly

Pk =
∑
i,j

dkij
ui

xj
, (18.7)

in which the vector ui denotes the change in the length while xj refers to the

actual length. We note that there are 27 components in the tensor
↔
d

(3)

without
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considering any symmetry of the system under permutation operations. A fre-

quently used fourth rank tensor is the elastic constant tensor
↔
C

(4)

defined by
↔
σm=

↔
C

(4)

· ↔e , (18.8)

where the second rank symmetric stress tensor
↔
σm and strain tensor

↔
e (i.e.,

the gradient of the displacement) are related through the fourth rank elas-

tic constant tensor
↔
C

(4)

(or Cijkl), which neglecting permutation symmetry
would have 81 components. More will be said about the elastic constant tensor

below (see Sect. 18.6) where we will use
↔
σm to denote the mechanical stress

tensor, but it should be noted that σe
ij is used to denote the linear electrical

conductivity tensors (18.1). The superscripts m and e are used to distinguish
σm

ij for the stress tensor from σe
ij for the electrical conductivity tensor.

These tensors and many more are discussed in a book by Nye [57]. The
discussion of tensors which we give in this chapter is group theoretical, whereas
Nye’s book gives tables of the tensors which summarize many of the results
which we can deduce from our group theoretical analysis.

In this chapter we use group theory to find the smallest number of in-
dependent coefficients for commonly occurring tensors in condensed matter
physics, including permutation symmetry and point group symmetry. Let us

now consider the total number of tensor components. As stated above
↔
α

(2)

has 32 = 9 coefficients (six for the symmetric components, αij = αji). There

are 33 = 27 coefficients (10 symmetric) in
↔
α

(3)
, 34 = 81 coefficients (only 15

symmetric) in
↔
α

(4)
, and 35 = 243 coefficients (21 symmetric) in

↔
α

(5)
, etc. We

ask how many tensor components are independent? Which components are
related to one another? How many independent experiments must be carried
out to completely characterize these tensors? These are important questions
that occur in many areas of condensed matter physics and materials science.
We address these questions in this chapter.

In Sect. 18.2, we discuss the reduction in the number of independent
coefficients arising from symmetries associated with the permutation of
tensor indices while in Sect. 18.3 we discuss the corresponding reduc-
tion in the number of independent components of tensors obtained from
point group symmetry (rotations, reflections and inversion). The num-
ber of independent coefficients for the case of complete isotropy (full ro-
tational symmetry) is considered in Sect. 18.4, while lower point group
symmetries are treated in Sect. 18.5. The independent coefficients of the
elastic modulus tensor Cijkl are discussed in Sect. 18.6. Since the num-
ber of independent symmetry elements can be found by considering the
crystal symmetry group as a subgroup of the full rotation group with-
out making contact to translational symmetry, point group symmetry
is considered in finding the form of tensors in condensed matter sys-
tems.
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18.2 Independent Components of Tensors
Under Permutation Group Symmetry

In this section we consider the effect of permutation symmetry on reducing
the number of independent components of tensors. For example, second rank
symmetric tensors occur frequently in condensed matter physics. In this case,
the symmetry αij = αji implied by the term symmetric tensor restricts the
off-diagonal matrix elements to follow this additional permutation relation
ij = ji, thereby reducing the number of allowed off-diagonal elements from
six to three, since the symmetric combinations (αij + αji)/2 are allowed and
the combinations (αij − αji)/2 vanish by symmetry. Furthermore, the three
elements (αij − αji)/2 constitute the three components of an antisymmetric
second rank tensor, also called an axial vector; the angular momentum (listed
in character tables as Ri) is an example of an antisymmetric second-rank
tensor which has three components Lx, Ly, Lz.

Group theory is not needed to deal with the symmetry of a second-rank
tensor because of its simplicity. As the rank of the tensor increases, group
theory becomes increasingly helpful in the classification of symmetric tensors.
Just for illustrative purposes, we now consider the case of the second-rank
tensor from the point of view of permutation group symmetry. For this pur-
pose we have listed in Table 18.1 the permutation groups which are needed
to handle the tensors mentioned in Sect. 18.1. Referring to Table 18.1 (which
is constructed from tables in Chap. 17), we see that a second rank symmetric

tensor like the electrical conductivity tensor
↔
σe is represented in Table 18.1

by pp, which we can consider as the generic prototype of a second rank sym-
metric tensor. From the discussion of Chap. 17, we found that p2 could have
angular momentum states L = 0, 1, 2 with the indicated permutation group
symmetries labeled “irreducible representations” in Table 18.1, and yielding
a total number of states equal to the sum of (2L+ 1) to yield 1 + 3 + 5 = 9.
From the table, it is seen that the symmetric states (Γ s

1 ) arise from the L = 0
and L =2 entries, corresponding to 1+5=6 states. Thus we obtain six inde-
pendent coefficients for a symmetric second rank tensor based on permutation
symmetry alone. The number of independent coefficients for the second rank
antisymmetric tensor (transforming Γ a

1 ) is correspondingly equal to 3, and
the antisymmetric contribution arises from the L =1 state.

A third-rank symmetric tensor (such as
↔
α

(3)
) is more interesting from

a group theoretical standpoint. Here we need to consider permutations in
Table 18.1 of the type p3, so that p3 can be considered as the appropriate
basis function of the permutation group P (3) for the permutation symmetry

of
↔
α

(3)
. Referring to (18.4), we note that the EE fields are clearly symmetric

under interchange of E ↔ E; but since (18.5) defines the general nonlinear
polarizability tensor

↔
α, then all terms in the expansion of

↔
α must be symmet-

ric under interchange of αij → αji. From Table 18.1, we see that p3 consists of
L = 0, 1, 2, 3 angular momentum states. The entries for the p3 configuration
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Table 18.1. Transformation properties of various tensors under permutations(a)

tensor configuration state irreducible representations group

SS L = 0 Γ s
1 P (2)

SD L = 2 Γ s
1 + Γ a

1 P (2)

DD L = 0 Γ s
1 P (2)

C(ij)(kl) DD L = 1 Γ a
1 P (2)

DD L = 2 Γ s
1 P (2)

DD L = 3 Γ a
1 P (2)

DD L = 4 Γ s
1 P (2)

pS L = 1 Γ s
1 + Γ a

1 P (2)

di(jk) pD L = 1 Γ s
1 + Γ a

1 P (2)

pD L = 2 Γ s
1 + Γ a

1 P (2)

pD L = 3 Γ s
1 + Γ a

1 P (2)

p2 L = 0 Γ s
1 P (2)

α(2) p2 L = 1 Γ a
1 P (2)

p2 L = 2 Γ s
1 P (2)

p3 L = 0 Γ a
1 P (3)

p3 L = 1 Γ s
1 + Γ2 P (3)

α(3) p3 L = 2 Γ2 P (3)

p3 L = 3 Γ s
1 P (3)

p4 L = 0 Γ s
1 + Γ2 P (4)

p4 L = 1 Γ3 + Γ3′ P (4)

α(4) p4 L = 2 Γ s
1 + Γ2 + Γ3 P (4)

p4 L = 3 Γ3 P (4)

p4 L = 4 Γ s
1 P (4)

p5 L = 0 Γ6 P (5)

p5 L = 1 Γ s
1 + Γ4 + Γ5 + Γ5′ P (5)

α(5) p5 L = 2 Γ4 + Γ5 + Γ6 P (5)

p5 L = 3 Γ s
1 + Γ4 + Γ5 P (5)

p5 L = 4 Γ4 P (5)

p5 L = 5 Γ s
1 P (5)

p6 L = 0 Γ s
1 + Γ5′′′ + Γ9 P (6)

p6 L = 1 Γ5 + Γ5′′ + Γ10 + Γ16 P (6)

p6 L = 2 Γ s
1 + Γ5 + 2Γ9 + Γ16 P (6)

α(6) p6 L = 3 Γ5 + Γ5′′ + Γ9 + Γ10 P (6)

p6 L = 4 Γ s
1 + Γ5 + Γ9 P (6)

p6 L = 5 Γ5 P (6)

p6 L = 6 Γ s
1 P (6)

(a) The irreducible representations associated with the designated permutation
group, configuration and state are listed
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Table 18.2. Number of independent components for various tensors for the listed
group symmetries

number of independent coefficients

group repr.a angular momentum valuesb C(ij)(kl) dk(ij) α(2) α(3) α(4) α(5)

Rc
∞ Γ�=0 � = 0 2 0 1 0 1 0

Ih A1g � = 0, 6, 10, . . . 2 0 1 0 1 0

Oh A1g � = 0, 4, 6, 8, 10, . . . 3 0 1 0 2 0

Td A1 � = 0, 3, 4, 6, 7, 8, 9, . . . 3 1 1 1 2 1

D∞h A1g � = 0, 2, 4, 6, . . . 5 1 2 0 3 0

C∞v A1 � = 0, 1, 2, 3, 4, 5, . . . 5 4 2 2 3 3

D6h A1g � = 0, 2, 4, 6, . . . 5 1 2 0 3 0

C1 A1 � = 0, 1, 2, 3, 4, 5, . . .d 21 18 6 10 15 21

a The notation for the totally symmetric irreducible representation for each group
is given
b The angular momentum states that contain the A1 (or A1g) irreducible represen-
tation for the various symmetry groups (see Table 18.1)
c The full rotational symmetry group is denoted by R∞
d For this lowest point group symmetry, the A1 representation occurs 2�+ 1 times.
For the other groups in this table, there is only one occurrence of A1 for each listed
� value. However, for higher � values, multiple occurrences of A1 may arise (e.g., in
Oh symmetry, the � = 12 state has two A1g modes)

in Table 18.1 come from Table 17.4 which contains a variety of configurations
of the permutation group P (3) that can be constructed from three electrons
(or more generally from three interchangeable vectors). The total number of
states in the p3 configuration is found by multiplying the degeneracy (2L+1)
of each angular momentum state along with the corresponding number of ir-
reducible representations occurring for each of the L = 0, 1, 2, 3 multiplets
and then summing all of these products to get

(1)(1) + 3(1 + 2) + 5(2) + 7(1) = 27

which includes all 33 combinations. Of this total, the number of symmetric
combinations that go with Γ s

1 is only 3(1) + 7(1) = 10. Similarly Table 18.1
shows that there is only one antisymmetric combination (for L = 0). Of
interest is the large number of combinations that are neither symmetric nor

antisymmetric: 3(2) + 5(2) = 16 for
↔
α

(3)
for the P (3) permutation group.

Thus, Table 18.1 shows that on the basis of permutation symmetry, there are

only ten independent coefficients for
↔
α

(3)
, assuming no additional point group

symmetry. This result is summarized in Table 18.2.

As the next example, consider
↔
α

(4)
which is a fourth rank tensor that

couples P and EEE symmetrically. The generic tensor for this case is p4 in
Table 18.1 (taken from Table 17.6 for P (4) for four electrons) with 34 = 81
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coefficients neglecting permutational and point group symmetries, which is
also obtained from the entries in Table 18.1 for p4 as follows:

(1)(1 + 2) + (3)(3 + 3) + 5(1 + 2 + 3) + 7(3) + 9(1) = 81 .

Of these, 1 + 5 + 9 = 15 are symmetric (transforms as Γ s
1 ) and this entry is

included in Table 18.2. There are no antisymmetric combinations (i.e., there
is no Γ a

1 for p4 in P (4)).
Another commonly occurring tensor in solid state physics is the elastic

modulus tensor Cijkl = C(ij)(kl) which relates two symmetric tensors
↔
σm and

↔
e , each having six independent components, and thus leading to 6× 6 = 36
components for the product. But C(ij)(kl) is further symmetric under inter-
change of ij ↔ kl, reducing the 30 off-diagonal components of the 6 × 6
matrix into 15 symmetric and 15 antisymmetric combinations, in addition to
the six diagonal symmetric components. This gives a total of 21 independent
symmetric coefficients, as is explained in standard condensed matter physics
texts. From a group theoretical standpoint, the (ij) and (kl) are each treated
as p2 units which form total angular momentum states of L = 0 (labeled S in
Table 18.1) and L = 2 (labeled D). Under the permutation group P (2), we
can make one SS combination (L = 0), one symmetric and one antisymmet-
ric SD combination (L =2), and finally DD combinations can be made with
L = 0, 1, 2, 3, 4. Adding up the total number of combinations that can be
made from C(ij)(kl) we get

(1)(1) + 5(1 + 1) + 1(1) + 3(1) + 5(1) + 7(1) + 9(1) = 36 ,

in agreement with the simple argument given above. Of these, 21 are sym-
metric (i.e., go with Γ s

1 ) while 15 are antisymmetric (i.e., go with Γ a
1 ), and

the number 21 appears in Table 18.2. If we had instead used p4 in Table 18.1
as the basis function for the permutation of the elastic tensor Cijkl, we would
have neglected the symmetric interchange of the stress and strain tensors
(ij) ↔ (kl).

The final tensor that we will consider is the piezoelectric tensor di(jk)

formed as the symmetric direct product of a vector and a symmetric second
rank tensor (3×6 = 18 components). The symmetries are calculated following
the pS and pD combinations, using the concepts discussed for the transfor-

mation properties of the
↔
α

(2)
and C(ij)(kl) tensors. This discussion yields 18

independent coefficients for di(jk) under permutation symmetry.
In summary, each second rank symmetric tensor is composed of irreducible

representations L = 0 and L = 2 of the full rotation group, the third rank
symmetric tensor from L = 1 and L = 3, the fourth rank symmetric tensor
from L = 0, L = 2 and L = 4, the elastic tensor from L = 0, 2L = 2 and
L = 4, and the piezoelectric tensor from 2L = 1, L = 2 and L = 3. We use
these results to now incorporate the various rotational symmetries to further
reduce the number of independent coefficients for each symmetry group.
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18.3 Independent Components of Tensors:
Point Symmetry Groups

In this section we discuss a very general group theoretical result for tensor
components arising from point group symmetry operations such as rotations,
reflections and inversions. These symmetry operations further reduce the num-
ber of independent coefficients that need to be introduced for the various
tensors in crystals having various point group symmetries.

Let us consider a relation between a tensor of arbitrary rank Jij... and
another tensor Fi′j′ . . . also of arbitrary rank and arbitrary form where the
two tensors in general will be of different ranks.

Jij... =
∑
i′j′...

{tij...,i′j′...}Fi′j′... . (18.9)

What we have in mind in (18.9) are relations such as are given in (18.1) to
(18.8), where Jij... appears as either a simple vector or as a second rank sym-
metrical tensor. Likewise Fi′j′... denotes either a simple vector, the product of
two vectors, the product of three vectors, or a symmetric second rank tensor
etc.

Theorem. The number of independent non-zero tensor components tij...,i′j′...
allowed by point group symmetry in (18.9) is determined by finding the irre-
ducible representations contained in both {ΓJij...} =

∑
αiΓi and {ΓFi′Fj′ ...} =∑

βjΓj.

Proof. Only coefficients tij...,i′j′... coupling {J}Γi and {F }Γj that correspond
to the same partner of the same irreducible representation contained in both
Γi and Γj can be nonzero, since

↔
t must be invariant under the symmetry

operations of the group. Thus the number of independent matrix elements
in the tensor tij...i′j′... is the number of times the scalar representation Γ+

1

occurs in the decomposition of the direct product

{ΓJ} ⊗ {ΓF ...} =
∑

i

αiΓi ⊗
∑

j

βjΓj =
∑

k

γkΓk , (18.10)

thus completing the proof. �

The only nonvanishing couplings between {J}Γi and {F}Γj are between part-
ners transforming according to the same irreducible representation because
only these lead to matrix elements that are invariant under the symmetry
operations of the group. We therefore transform (18.9) to make use of the
symmetrized form

{J}Γi = tΓ+
1
{F }Γi , (18.11)

where the {J}Γi and {F }Γi correspond to the same partners of the same
irreducible representation and tΓ+

1
transforms as a scalar which has Γ+

1 sym-
metry.
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In most cases of interest, permutation symmetry requirements on the prod-
ucts {F }Γi further limit the number of independent matrix elements of a ten-
sor matrix, as discussed below (Sect. 18.4).

Application of this theorem is given for the maximum amount of rotational
symmetry (the full rotation group) in Sect. 18.4 and for specific point group
symmetries in Sect. 18.5 and Sect. 18.6.

18.4 Independent Components of Tensors
Under Full Rotational Symmetry

The highest point group symmetry is the full isotropy provided by the full
rotation group R∞. In Sect. 18.3 we showed that the number of independent
coefficients in a tensor tij...i′j′... in (18.9) coupling two tensors is the number of
times the direct product in (18.10) contains Γ s

1 . For full rotational symmetry
we use in the fully symmetric irreducible representation L = 0. Thus we must
look for the occurrence of L = 0 in Table 18.1.

Referring to Table 18.1, we find ΓL=0 and that for the second rank tensor,
we have Γ1 contained once, giving only a single independent coefficient {Γj}⊗
{Γt}. Consequently, group theory tells us that the one independent coefficient
is α11 = α22 = α33 while the off-diagonal terms vanish α12 = α23 = α31 = 0
for a symmetric second rank tensor in a medium with full rotational symmetry.
This result for the number of independent components is given in Table 18.2.

Likewise Table 18.1 shows that there are no independent coefficients for
↔
α

(3)
in full rotational symmetry. Group theory thus tells us that this tensor

vanishes by symmetry for the case of full rotational symmetry. This analysis
further tells us that we cannot have any non-vanishing tensors of odd rank
given by (18.4).

With regard to the fourth rank tensor,
↔
α

(4)
, Table 18.1 shows that we can

have only one independent coefficient for full rotational symmetry. In contrast,
the C(ij)(kl) fourth rank tensor contains two independent coefficients in full
rotational symmetry and the components of di(jk) all vanish by symmetry.

This completes the discussion for the form of the various tensors in Ta-
ble 18.2 under full rotational symmetry. Also listed in the table are the number
of independent coefficients for several point group symmetries, including Ih,
Oh, Td, D∞h, C∞v, D6h, and C1. These results can be derived by consider-
ing these groups as subgroups of the full rotational group, and going from
higher to lower symmetry. Some illustrative examples of the various point
group symmetries are given in the following sections.

18.5 Tensors in Nonlinear Optics

In this section we consider polarizability tensors arising in nonlinear optics,
including symmetric second rank, third rank and fourth rank tensors, such
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as those appearing in (18.5). We now consider these tensors for groups with
symmetries lower than the full rotational group thereby filling in entries in
Table 18.2.

18.5.1 Cubic Symmetry: Oh

The character table for group Oh is shown in Table 10.2 using solid state
physics notation together with basis functions for each irreducible represen-
tation. We first consider the transformation properties of the linear response

tensor
↔
α

(2)
and the nonlinear polarizability tensors

↔
α

(3)
and

↔
α

(4)
(see (18.5)).

Consider for example the second rank tensor
↔
α

(2)
defined by

P =
↔
α

(2) ·E (18.12)

in linear response theory. Both P and E transform as Γ−15 (or Γ15 in Ta-
ble 10.2), which gives for the direct product:

ΓP ⊗ ΓE = Γ−15 ⊗ Γ−15 = Γ+
1 + Γ+

12 + Γ+
15 + Γ+

25 , (18.13)

in which we use a notation which explicitly displays the irreducible represen-
tations that are even (+) or odd (−) under inversion, as can immediately be
identified from the basis functions given in Table 10.2. But since the symmetry
elements in Γ+

15 are represented by a 3× 3 matrix for the angular momentum
Rij , this 3 × 3 matrix is antisymmetric under interchange of i ↔ j so that
Rij = −Rji and we have

Γ
(s)
↔
α

= Γ+
1 + Γ+

12 + Γ+
25 , Γ

(a)
↔
α

= Γ+
15 (18.14)

showing the symmetries of the six partners for the second rank symmetric
tensor, and the three partners for the second rank antisymmetric tensor. These
results can also be obtained starting from the full rotation group, considering
the decomposition of the L = 0 and L = 2 states for the symmetric partners
and the L = 1 states for the antisymmetric partners.

Since Γ+
1 is contained only once in the direct product Γ−15 ⊗ Γ−15 in cubic

Oh symmetry (18.13), there is only one independent tensor component for
↔
α

(2)
and we can write

↔
α

(2)
= α0

↔
1 , where

↔
1 is the unit tensor and α0 is

a constant. As a consequence of this general result, the electrical conductivity
in cubic symmetry (Oh or Td) is independent of the direction of the fields
relative to the crystal axes and only one experiment is required to measure
the polarizability or the conductivity of an unoriented cubic crystal.

In non-linear optics the lowest order non-linear term is
↔
α

(2) ·EE in (18.4)

where
↔
α

(2)
is a third rank tensor. Since (EE) is symmetric under interchange,

then (EE) transforms as
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Γ
(s)
EE = Γ+

1 + Γ+
12 + Γ+

25 , (18.15)

where we have thrown out the Γ+
15 term because it is antisymmetric under

interchange of EiEj −→ EjEi. Thus, we obtain the irreducible representations
contained in the direct product:

ΓP ⊗ Γ
(s)
EE = Γ−15 ⊗ {Γ+

1 + Γ+
12 + Γ+

25}
= (Γ−2 + 2Γ−15 + Γ−25)

(s)

+(Γ−12 + Γ−15 + Γ−25) (18.16)

yielding 18 partners, ten of which are symmetric, in agreement with the gen-
eral result in Table 18.1. Of particular significance is the fact that none of
the ten symmetric irreducible representations have Γ+

1 symmetry. Thus there

are no nonvanishing tensor components for a third rank tensor (such as
↔
α

(3)
)

in Oh symmetry, a result which could also be obtained by going from full
rotational symmetry to Oh symmetry. The ten symmetric partners are found
from Table 18.1 and includes angular momentum states L = 1 (corresponding
to Γ−15) and L = 3 (corresponding to Γ−2 + Γ−15 + Γ−25) and the decomposi-
tion of these angular momentum states in full rotational symmetry yields the
irreducible representations of group Oh as shown in Table 5.6 in Chap. 5.

We will now use the symmetric partners of the third rank tensor to dis-
cuss the fourth rank tensors. The next order term in (18.4) for the nonlinear
response to a strong optical beam (e.g., multiple photon generation) is the

fourth rank tensor
↔
α

(4)
defined by

P (3) =
↔
α

(4) ·EEE . (18.17)

If we consider the product EEE to arise from the symmetric combination for
a third rank tensor (see (18.16)), then

Γ
(s)
EEE = Γ−2 + 2Γ−15 + Γ−25 (18.18)

in cubic Oh symmetry, and

ΓP ⊗ Γ
(s)
EEE = Γ−15 ⊗ {Γ−2 + 2Γ−15 + Γ−25}

= 2Γ+
1 + Γ+

2 + 3Γ+
12 + 3Γ+

15 + 4Γ+
25 . (18.19)

Referring to Table 18.1 we see that the symmetric partners for p4 correspond
to L = 0 (giving Γ+

1 ), L = 2 (giving Γ+
12 +Γ+

25) and L = 4 (giving Γ+
1 +Γ+

12 +
Γ+

15 + Γ+
25) yielding the 15 symmetric partners

(2Γ+
1 + 2Γ+

12 + Γ+
15 + 2Γ+

25)
(s) ,

showing which irreducible representations of (18.19) correspond to symmetric
tensors. Since Γ+

1 is contained twice among the 15 symmetric partners in cubic

Oh symmetry, the symmetric fourth rank tensor
↔
α

(4)
has two independent

coefficients that would need to be determined by experiments.
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18.5.2 Tetrahedral Symmetry: Td

The group Td has half the number of symmetry operations of the group Oh,
has slightly different classes from group O, and lacks inversion symmetry.
Since Γ−2 (Oh) → Γ1(Td), the corresponding relations to (18.16) shows that
there exists one nonvanishing tensor component in Td symmetry for a third

rank tensor
↔
α

(3)
. This means that zinc-blende structures such as (GaAs and

InSb) can have nonvanishing nonlinear optical terms in
↔
α

(3)
because in Td

symmetry, the symmetric partners of the direct product transform as

(ΓP ⊗ Γ
(s)
EE)(s) = Γ1 + 2Γ25 + Γ15 (18.20)

and the Γ1 representation is contained once (see Table 18.2).

18.5.3 Hexagonal Symmetry: D6h

The character table for D6h (hexagonal symmetry) is shown in Table A.21. In
this subsection we will use the notation found in this character table. Vector
forces in hexagonal symmetry decompose into two irreducible representations

Γvector = A2u + E1u . (18.21)

Thus the second rank conductivity tensor requires consideration of

ΓP ⊗ ΓE = (A2u + E1u)⊗ (A2u + E1u)

= 2A1g +A2g + 2E1g + E2g

= (2A1g + E1g + E2g)(s) + (A2g + E1g)(a) . (18.22)

Equation (18.22) indicates that there are two independent components for
a symmetric second rank tensor such as the conductivity tensor. Hence, one
must measure both in-plane and out-of-plane conductivity components to de-
termine the conductivity tensor, which is as expected because of the equiva-
lence of transport in the in-plane directions and along the c-axis. The sym-
metric tensor components (six partners) of (18.22) are

Γ
(s)
EE = 2A1g + E1g + E2g (18.23)

and the antisymmetric components (three partners) are (A2g + E1g). Hence
for the symmetric third rank tensor we can write

ΓP ⊗ Γ
(s)
EE = (A2u + E1u)⊗ (2A1g + E1g + E2g)

= (A1u +A2u +B1u +B2u + 2E1u + E2u)(s)

+(2A2u + 4E1u + E2u)(a) (18.24)
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and there are thus no nonvanishing third rank tensor components in hexagonal
D6h symmetry because of parity considerations. For the fourth rank tensor
we have

ΓP ⊗ Γ
(s)
EEE = (A2u + E1u)⊗ (A1u +A2u +B1u +B2u + 2E1u + 2E2u)

= (3A1g + B1g +B2g + 2E1g + 3E2g)(s)

+(3A2g + 2B1g + 2B2g + 4E1g + 3E2g)(a) (18.25)

and there are three independent tensor components. This result could also be
obtained by going from full rotational symmetry (L = 0, L = 2, and L = 4),
yielding the identical result

[A1g + (A1g + E1g + E2g) + (A1g +B1g +B2g + E1g + 2E2g)](s) .

The results forD6h andD∞h (see Table 18.2) show great similarity in behavior
between all the tensors that are enumerated in this table, and these similarities
stem from the angular momentum states to which they relate (see Table 5.6).

In lowering the symmetry from D6h to D3h which has no inversion sym-
metry, we get Γ±i (D6h) → Γi(D3h) for the various irreducible representations.
The only difference between the tensor properties in D6h and D3d symmetries
involves odd rank tensors. Referring to (18.24) we can see that for D3h there
is a nonvanishing third rank tensor component and once again piezoelectric
phenomena are symmetry allowed.

18.6 Elastic Modulus Tensor

The elastic modulus tensor represents a special case of a fourth rank tensor
(see (18.8)). The elastic energy is written as

W =
1
2
Cijkleijekl , (18.26)

whereW transforms as a scalar, the eij strain tensors transform as second rank
symmetric tensors, and the Cijkl matrices transform as a fourth rank tensor
formed by the direct product of two symmetric second rank tensors. The
symmetry of Cijkl with regard to permutations was considered in Sect. 18.2.
With regard to point group symmetry, we have the result following (18.10)
that the maximum number of independent components of the Cijkl tensor is
the number of times the totally symmetric representation A1g is contained
in the direct product of the symmetric part of Γeij ⊗ Γekl

. In this section we
provide a review of the conventions used to describe the Cijkl tensor and then
give results for a few crystal symmetries.

To make a connection between the elastic constants as discussed from the
group theory perspective and in conventional solid state physics books, we
introduce a contracted notation for the stress tensor and the strain tensor [57]:
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σm
1 = σm

11

σm
2 = σm

22

σm
3 = σm

33

σm
4 = (σm

23 + σm
32)/2

σm
5 = (σm

13 + σm
31)/2

σm
6 = (σm

12 + σm
21)/2

ε1 = e11

ε2 = e22

ε3 = e33

ε4 = (e23 + e32)
ε5 = (e13 + e31)
ε6 = (e12 + e21) .

(18.27)

Since both the stress and strain tensors are symmetric, then Cijkl can have
no more than 36 components. We further note from (18.26) that the Cijkl are
symmetric under the interchange of ij ↔ kl, thereby reducing the number
of independent components to 21 for a crystal with no symmetry operations
beyond translational symmetry of the lattice. Crystals with non-trivial sym-
metry operations such as rotations, reflections and inversions will have fewer
than 21 independent coefficients. Using the notation of (18.27) for the stress
and strain tensors, the stress–strain relations can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σm
1

σm
2

σm
3

σm
4

σm
5

σm
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

ε3

ε4

ε5

ε6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (18.28)

where the contracted Cij matrix is symmetric, with the 21 independent coef-
ficients containing 15 off-diagonal components and six diagonal components.
In the most compact form, we write

σm
i = Cijεj , i, j = 1, . . . 6 , (18.29)

where the Cij components are normally used in the description of the mechan-
ical properties of solids. The introduction of additional symmetry operations
reduces the number of independent components from the maximum of 21 for
a monoclinic crystal group C1 with no symmetry to a much smaller num-
ber (e.g., two for the full rotational group R∞). We consider here the case
of full rotational symmetry, icosahedral symmetry, cubic symmetry, full axial
symmetry, and hexagonal symmetry.

Fiber reinforced composites represent an interesting application of these
symmetry forms. If the fibers are oriented in three-dimensional space in the
six directions prescribed by icosahedral symmetry, then isotropy of the elas-
tic modulus tensor will be obtained. In the corresponding two dimensional
situation, if the fibers are oriented at 60◦ intervals, then isotropy is obtained
in the plane. It is standard practice in the field of fiber composites to use
fiber composite sheets stacked at 60◦ angular intervals to obtain “quasiplanar
isotropy”.
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18.6.1 Full Rotational Symmetry: 3D Isotropy

The highest overall symmetry for an elastic medium is the full rotation group
which corresponds to “jellium”. For the case of full rotational symmetry, the
rules for the addition of angular momentum tell us that a general second
rank tensor transforms according to the representations that can be written
as a sum of symmetric and an antisymmetric part

Γ = Γ (s) + Γ (a) , (18.30)

where the symmetric components for full rotational symmetry transform as
the irreducible representations

Γ (s) = Γ�=0 + Γ�=2 (18.31)

and the antisymmetric components transform as

Γ (a) = Γ�=1 , (18.32)

in which the irreducible representations of the full rotation group are denoted
by their total angular momentum values �, which are symmetric (antisym-

metric) if � is even (odd). Since the stress tensor ∇ · F ≡ ↔
σm and the strain

tensor
↔
e are symmetric second rank tensors, both σm

α and eij transform ac-
cording to (Γ�=0+Γ�=2) in full rotational symmetry, where σm

α denotes a force
in the x direction applied to a plane whose normal is in the α direction.

The fourth rank symmetric Cijkl tensor of (18.26) transforms according
to the symmetric part of the direct product of two second rank symmetric
tensors Γ (s)

↔
e
⊗ Γ

(s)
↔
e

yielding

(Γ�=0 + Γ�=2)⊗ (Γ�=0 + Γ�=2) = (2Γ�=0 + 2Γ�=2 + Γ�=4)(s)

+(Γ�=1 + Γ�=2 + Γ�=3)(a) , (18.33)

in which the direct product has been broken up into the 21 partners that
transform as symmetric irreducible representations (s) and the 15 partners
for the antisymmetric irreducible representations (a). In the case of no crystal
symmetry eij is specified by six constants and the Cijkl tensor by 21 constants
because Cijkl is symmetrical under the interchange of ij ↔ kl. Since all the
symmetry groups of interest are subgroups of the full rotation group, the
procedure of going from higher to lower symmetry can be used to determine
the irreducible representations for less symmetric groups that correspond to
the stress and strain tensors and to the elastic tensor Cijkl .

As stated in Sect. 18.3 and in Sect. 18.4, the number of times the totally
symmetric representation (e.g., Γ�=0 for the full rotational group) is contained
in the irreducible representations of a general matrix of arbitrary rank deter-
mines the minimum number of independent nonvanishing constants needed
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to specify that matrix. In the case of full rotational symmetry, (18.33) shows
that the totally symmetric representation (Γ�=0) is contained only twice in
the direct product of the irreducible representations for two second rank sym-
metric tensors, indicating that only two independent nonvanishing constants
are needed to describe the 21 constants of the Cijkl tensor in full rotational
symmetry, a result that is well known in elasticity theory for isotropic media
and is discussed above (see Sect. 18.4).

We denote the two independent non-vanishing constants needed to spec-
ify the Cijkl tensor by C0 for Γ�=0 and by C2 for Γ�=2 symmetry. We then
use these two constants to relate symmetrized stresses and strains labeled
by the irreducible representations Γ�=0 and Γ�=2 in the full rotation group.
The symmetrized stress–strain equations are first written in full rotational
symmetry, using basis functions for the partners of the pertinent irreducible
representations (one for � = 0 and five for the � = 2 partners):

(Xx + Yy + Zz)=C0(exx + eyy + ezz) for � = 0,m = 0
(Xx − Yy + iYx + iXy)=C2(exx − eyy + iexy + ieyx) for � = 2,m = 2
(Zx +Xz + iYz + iZy)=C2(ezx + exz + ieyz + iezy) for � = 2,m = 1

(Zz − 1
2
(Xx + Yy))=C2(ezz − 1

2
(exx + eyy)) for � = 2,m = 0

(Zx +Xz − iYz − iZy)=C2(ezx + exz − ieyz − iezy) for � = 2,m = −1
(Xx − Yy − iYx − iXy)=C2(exx − eyy − iexy − ieyx) for � = 2,m = −2

(18.34)

in which X , Y and Z are the Cartesian components of the stress tensor
↔
σm

and the subscripts denote the shear directions. Since the basis functions in full
rotational symmetry are specified by angular momentum states, the quantum
numbers � and m are used to denote the irreducible representations and their
partners.

From the first, second, fourth and sixth relations in (18.34) we solve for
Xx in terms of the strains, yielding

Xx =
(
C0

3
+

2C2

3

)
exx +

(
C0

3
− C2

3

)
(eyy + ezz) . (18.35)

Likewise five additional relations are then written down for the other five
stress components in (18.34).

Yy =
(
C0

3
+

2C2

3

)
eyy +

(
C0

3
− C2

3

)
(ezz + exx) , (18.36)

Zz =
(
C0

3
+

2C2

3

)
ezz +

(
C0

3
− C2

3

)
(exx + eyy) , (18.37)

Zy + Yz = C2 (ezy + eyz) , (18.38)

Yx +Xy = C2 (eyx + exy) , (18.39)
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Zx +Xz = C2 (ezx + exz) . (18.40)

In the notation that is commonly used in elasticity theory, we write the stress–
strain relations as

σm
i =

∑
j=1,6

Cijεj , (18.41)

where the six components of the symmetric stress and strain tensors are writ-
ten in accordance with (18.27) as

σm
1 =Xx

σm
2 =Yy

σm
3 =Zz

σm
4 =

1
2
(Yz + Zy)

σm
5 =

1
2
(Zx +Xz)

σm
6 =

1
2
(Xy + Yx)

and

ε1=exx

ε2=eyy

ε3=ezz

ε4=(eyz + ezy)
ε5=(ezx + exz)
ε6=(exy + eyx)

(18.42)

and Cij is the 6 × 6 elastic modulus matrix. In this notation the 21 partners
that transform as (2Γ�=0 + 2Γ�=2 + Γ�=4) in (18.33) correspond to the sym-
metric coefficients of Cij . From the six relations for the six stress components
(given explicitly by (18.35) through (18.40)), the relations between the C0

and C2 and the Cij coefficients follow:

C11 =
1
3
(C0 + 2C2) = C22 = C33

C12 =
1
3
(C0 − C2) = C13 = C23

C44 =
1
2
C2 = C55 = C66

Cij = Cji (18.43)

from which we construct the Cij matrix for a 3D isotropic medium. Note that
the elastic modulus tensor for full rotational symmetry only two independent
constants C11 and C12

Cij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0
C11 C12 0 0 0

C11 0 0 0
1
2
(C11 − C12) 0 0

1
2
(C11 − C12) 0

1
2
(C11 − C12)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(18.44)
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18.6.2 Icosahedral Symmetry

Any subgroup of the full rotation group for which the fivefold Γ�=2 level
degeneracy is not lifted will leave the form of the Cij matrix invariant. The
icosahedral group with inversion symmetry Ih, which is a subgroup of the
full rotation group, and the icosahedral group without inversion I, which is
a subgroup of both the full rotation group and the group Ih, are two examples
of groups which preserve the fivefold degenerate level of the full rotation group
and hence retain the form of the Cij matrix given by (18.44). This result
follows from at least two related arguments. The first argument relates to the
compatibility relations between the full rotation group and the Ih group for
which the basis functions follow the compatibility relations

Γ�=0 −→ (Ag)Ih
and Γ�=2 −→ (Hg)Ih

. (18.45)

Thus, for the icosahedral group, we have for a symmetric second rank tensor:

Γ
(s)
↔
e

= (Ag)Ih
+ (Hg)Ih

. (18.46)

From (18.46) we see that with respect to second rank tensors no lifting of
degeneracy occurs in going from full rotational symmetry to Ih symmetry
from which it follows that the number of nonvanishing independent constants
in the Cij matrix remains at 2 for Ih (and I) symmetry.

The same conclusion follows from the fact that the basis functions for Γ�=0

and Γ�=2 for the full rotation group can also be used as basis functions for the
Ag and Hg irreducible representations of Ih. Therefore the same stress–strain
relations are obtained in Ih symmetry as are given in (18.34) for full rotational
symmetry. It therefore follows that the form of the Cij matrix will also be the
same for either group Ih or full rotational symmetry, thereby completing the
proof.

Clearly, the direct product Γ (s)
↔
e

⊗ Γ
(s)
↔
e

given by (18.33) is not invariant
as the symmetry is reduced from full rotational symmetry to Ih symmetry
since the ninefold representation Γ�=4 in (18.33) splits into the irreducible
representations (Gg +Hg) in going to the lower symmetry group Ih. But this
is not of importance to the linear stress–strain equations which are invari-
ant to this particular lowering of symmetry. However, when nonlinear effects
are taken into account, and perturbations from (18.26) are needed to specify
the nonlinear stress–strain relations, different mechanical behavior would be
expected to occur in Ih symmetry in comparison to the full rotation group.

18.6.3 Cubic Symmetry

It should be noted that all symmetry groups forming Bravais lattices in con-
densed matter physics have too few symmetry operations to preserve the
fivefold degeneracy of the � = 2 level of the full rotation group. For exam-
ple, the Bravais lattice with the highest symmetry is the cubic group Oh.



18.6 Elastic Modulus Tensor 473

The � = 2 irreducible representation in full rotational symmetry corresponds
to a reducible representation of group Oh which splits into a threefold and
a twofold level (the T2g and Eg levels), so that in this case we will see below,
three elastic constants are needed to specify the 6× 6 matrix for Cij in cubic
Oh symmetry.

Since eij (where i, j = x, y, z) is a symmetric second rank tensor, the
irreducible representations for eij in cubic symmetry are found as

Γ
(s)
↔
e

= Γ+
1 + Γ+

12 + Γ+
25 . (18.47)

From the direct product we obtain

Γ
(s)
↔
e
⊗ Γ

(s)
↔
e

= (Γ+
1 + Γ+

12 + Γ+
25)⊗ (Γ+

1 + Γ+
12 + Γ+

25)

= 3Γ+
1 + Γ+

2 + 4Γ+
12 + 3Γ+

15 + 5Γ+
25 , (18.48)

which has 21 symmetric partners (3Γ+
1 + 3Γ+

12 + Γ+
15 + 3Γ+

25) and 15
antisymmetric partners (Γ+

2 + Γ+
12 + 2Γ+

15 + 2Γ+
25) and three indepen-

dent Cij coefficients. These results could also be obtained by going
from higher (full rotational R∞) symmetry to lower (Oh) symmetry
using the cubic field splittings of the angular momenta shown in
Table 5.6.

Forming basis functions for the irreducible representations of the stress
and strain tensors in cubic Oh symmetry, we can then write the symmetrized
elastic constant equations as

(Xx + Yy + Zz)=CΓ+
1

(exx + eyy + ezz) for Γ+
1

(Xx + ωYy + ω2Zz)=CΓ+
12

(exx + ωeyy + ω2ezz) for Γ+
12

(Xx + ω2Yy + ωZz)=CΓ+
12

(exx + ω2eyy + ωezz) for Γ+∗
12

(Yz + Zy)=CΓ+
25

(eyz) for Γ+
25x

(Zx +Xz)=CΓ+
25

(exz) for Γ+
25y

(Xy + Yx)=CΓ+
25

(exy) for Γ+
25z .

(18.49)

As in Sect. 18.6.1, we now solve for Xx, Yy and Zz in terms of exx, eyy and
ezz to connect the three symmetry-based elastic constants C+

Γ1
, C+

Γ12
and

C+
Γ25

and the C11, C12 and C44 in Nye’s book (and other solid state physics
books)

C11 = (C+
Γ1

+ 2C+
Γ12

)/3

C12 = (CΓ1 − C+
Γ12

)/3

C44 = C+
Γ25
/2 , (18.50)
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yielding an elastic tensor for cubic symmetry Oh in the form

Cij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0
C11 C12 0 0 0

C11 0 0 0
C44 0 0

C44 0
C44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (18.51)

18.6.4 Other Symmetry Groups

We briefly sketch results for Cijkl for several groups of lower symmetry.
One simple method for finding the irreducible representations for lower

symmetry groups is to make use of the compatibility relations between the
full rotation group and the lower symmetry groups. For example, for group
D∞h (see character Table A.34) we have

Γ�=0 −→ A1g

Γ�=1 −→ A2u + E1u

Γ�=2 −→ A1g + E1g + E2g

Γ�=3 −→ A2u + E1u + E2u + E3u

Γ�=4 −→ A1g + E1g + E2g + E3g + E4g . (18.52)

Since the symmetric second rank tensor eij transforms according to the sum
Γ�=0+Γ�=2, then we look for the irreducible representations contained therein.
For D∞h symmetry we would then obtain

Γ
(s)
↔
e

= A1g + (A1g + E1g + E2g) = 2A1g + E1g + E2g , (18.53)

and a similar procedure would be used for other low symmetry groups.
From the symmetric terms in (18.33) and (18.52), we find that the Cijkl

tensor transforms according to 2Γ�=0+2Γ�=2+Γ�=4 which for D∞h symmetry
becomes

ΓCijkl
= (2A1g) + (2A1g + 2E1g + 2E2g) + (A1g + E1g + E2g + E3g + E4g)

= 5A1g + 3E1g + 3E2g + E3g + E4g . (18.54)

The same result as in (18.54) can be obtained by taking the direct product
of (A1g +E1g +E2g)⊗ (A1g +E1g +E2g) which comes from Γ�=2⊗ Γ�=2 and
retaining only the symmetric terms. From (18.54), we see that there are only
five independent elastic constants remain for D∞h symmetry.

To find the form of the elasticity matrix Cij we go through the pro-
cess of finding the (6 × 6) stress=strain relations for � = 0,m = 0 and
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� = 2,m = 2, 1, 0,−1,−2 and then relate symmetry coefficients to obtain
the Cij coefficients and the relation between these to obtain the Cij matrix
for full axial D∞h symmetry:

Cij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C11 C13 0 0 0

C33 0 0 0
C44 0 0

C44 0
1
2
(C11 − C12)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (18.55)

The symmetric combination of irreducible representations for the groupD6h is

Γ
(s)
↔
e

= 2A1g + E1g + E2g , (18.56)

which is isomorphic to D∞h. Using (18.33) and the irreducible representations
contained in the angular momentum states � = 0, � = 2, and � = 4 in D6h

symmetry, we get

Γ�=0 → A1g

Γ�=1 → A2u + E1u

Γ�=2 → A1g + E1g + E2g

Γ�=3 → A2u +B1u +B2u + E1u + E2u

Γ�=4 → A1g +B1g +B2g + E1g + 2E2g , (18.57)

which gives
ΓC(ij)(kl) = 5A1g +B1g +B2g + 3E1g + 4E2g (18.58)

yielding five independent Cij coefficients.
A similar analysis to that for the group D∞h, yields for D6h the same

form of Cij as for D∞h given by (18.55). As we go to lower symmetry more
independent coefficients are needed.

For D2h group symmetry which is the case of symmetry with respect
to three mutually orthogonal planes (called orthotropy in the engineering
mechanics literature), there remain nine independent components of Cij . The
Cij tensor in this case assumes the form

Cij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

C55 0
C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (18.59)
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The lowest nontrivial symmetry group for consideration of the elastic tensor is
group C2h with a single symmetry plane. In this case Cij has 13 independent
components and assumes the form

Cij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 C16

C22 C23 0 0 C26

C33 0 0 C36

C44 C45 0
C55 0

C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (18.60)

Selected Problems

18.1. Consider the third rank tensor di(jk) in (18.6) and (18.7).

(a) Show from Table 18.1 that there are exactly 18 independent coefficients
after taking permutational symmetry into account.

(b) Find the number of independent coefficients for full rotational symmetry.
(c) Find the number of independent coefficients for Oh and Td symmetries.
(d) Finally find the number of independent coefficients for D4h symmetry.

18.2. Suppose that stress is applied to FCC aluminum Al in the (100) di-
rection, and suppose that the effect of the resulting strain is to lower the
symmetry of aluminum from cubic Oh symmetry to tetragonal D4h symme-
try. The situation outlined here arises in the fabrication of superlattices using
the molecular beam epitaxy technique.

(a) How many independent elastic constants are there in the stressed alu-
minum Al?

(b) What is the new symmetrized form of the stress–strain relations (see
(18.34))?

(c) What is the form of the Cijkl tensor for D4h symmetry (see (18.44))?

18.3. (a) Assume that the material in Problem 18.2 is a nonlinear elastic
material and the stress–strain relation is of the form

σm
ij = C

(2)
ijklεkl + C

(3)
ijklmnεklεmn + · · ·

Consider the symmetry of the nonlinear tensor coefficient C(3)
ijklmn explic-

itly. How many independent constants are there in C(3)
ijklmn assuming that

the point group symmetry is C1 (i.e., no rotational symmetry elements
other than the identity operation), but taking into account permutation
symmetry?
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(b) How many independent constants are there when taking into account both
permutation and crystal (Oh) symmetry? (Note: To do this problem, you
may have to make a new entry to Table 18.1.)

18.4. Suppose that we prepare a quantum well using as the constituents GaAs
and GaAs1−xPx. In bulk form GaAs and similar III–V compounds have Td

symmetry. The lattice mismatch introduces lattice strain and lowers the sym-
metry. Denote by ẑ the direction normal to the layer. Find the number of

independent coefficients in the polarizability tensor, including
↔
α

(2)
,
↔
α

(3)
, and

↔
α

(4)
, for

(i) ẑ ‖ (100)
(ii) ẑ ‖ (111)
(iii) ẑ ‖ (110)

Using these results, how can infrared and Raman spectroscopy be used to
distinguish between the crystalline orientation of the quantum well?


