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Permutation Groups and Many-Electron States

In this chapter we discuss the properties of permutation groups, which are
known as “Symmetric Groups” in the mathematics literature. Although per-
mutation groups are quite generally applicable to many-body systems, they
are used in this chapter to classify the symmetry in many-electron states.
This discussion applies to the symmetries of both the spin and orbital states.
In Chap. 18 we apply the results of this chapter for the permutation groups
to show a very different use of permutation groups, which is to classify the
symmetry properties for tensors occuring in solid state physics in a powerful
way.

The main application of the permutation group in this chapter is to
describe atoms with full rotational symmetry. We give explicit results for
two, three, four, and five electron systems. Whereas two electron systems
can be handled without group theory, the power of group theory is evi-
dent for three, four, five, and even larger electron systems. With a five-
electron system, we can treat all multielectron states arising from s, p,
and d electrons, since five electrons fill half of a d level, and a more than
half-filled level such as for eight d electrons can be treated as two d level
holes, using concepts equivalent to the presence of hole states in solid
state physics. To deal with all multielectron states that could be made
with f electrons we would need to also consider the permutation groups
for six and seven objects. In the solid state, multielectron states occur
predominantly in the context of crystal fields, as for example the sub-
stitution of a transition metal ion (having d electrons) on a crystal site
which experiences the symmetry of the crystal environment. The crys-
tal field lowers the full rotational symmetry of the free ion giving rise to
crystal field splittings. In this case the effect of the crystal field must be
considered once the symmetry of the electronic configuration of the free
ion has been determined using the permutation groups discussed in this
chapter.
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17.1 Introduction

In the physics of a many-electron atom or molecule we are interested in solu-
tions to a Hamiltonian of the form

H(r1, . . . , rn) =
n∑

i=1

(
p2

i

2m
+ V (ri)

)
+

1
2

∑
i�=j

e2

rij
, (17.1)

where V (ri) is a one-electron potential and the Coulomb electron–electron
interaction term is explicitly included. The one-electron potential determines
the rotational and translational symmetry of the Hamiltonian.

In addition to symmetry operations in space, the Hamiltonian in (17.1)
is invariant under interchanges of electrons, i.e., permutation operations P of
the type

P =

(
1 2 . . . n

a1 a2 . . . an

)
, (17.2)

where the operation P replaces 1 by a1, 2 by a2, etc. and n by an. We have
already seen that these permutation operations form a group (see Sect. 1.2),
i.e., there exists the inverse operation

P−1 =

(
a1 a2 . . . an

1 2 . . . n

)
, (17.3)

and the identity element is given by

E =

(
1 2 . . . n
1 2 . . . n

)
, (17.4)

which leaves the n electrons unchanged. Multiplication involves sequential
permutation operations of the type given by (17.2). The number of symmetry
operations in a permutation group of n objects is n!, which gives the order
of the permutation group to be n!. Thus the group P (3) in Sect. 1.2 has
h = 3! = 3 · 2 · 1 = 6 elements.

The wave function solutions of the many-electron Hamiltonian (17.1) are
denoted by ΨΓi(r1, . . . , rn). Since all electrons are indistinguishable, the per-
mutation P commutes with the Hamiltonian, and we, therefore, can classify
the wave functions of the group of the Schrödinger equation according to an ir-
reducible representation Γi of the permutation or the symmetric group. Some
permutations give rise to symmetric states, others to antisymmetric states,
and the remainder are neither. In some cases, all possible states are either
symmetric or antisymmetric, and there are no states that are neither fully
symmetric nor fully antisymmetric.
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For the permutation group of n objects amongst the various possible ir-
reducible representations, there are two special one-dimensional irreducible
representations: one that is symmetric and one that is antisymmetric under
the interchange of two particles. The basis function for the symmetric repre-
sentation Γ s

1 of an orbital state is just the product wave function

ΨΓ s
1
(r1, r2, . . . , rn) =

1√
n!

∑
permutations

ψ1(r1)ψ2(r2) . . . ψn(rn) . (17.5)

The total wave function for a many-electron system is the product of the or-
bital and spin wave functions. The basis function for the antisymmetric rep-
resentation Γ a

1 is conveniently written in terms of the Slater determinant [6]:

ΨΓ a
1
(x1,x2, . . . ,xn) =

1√
n!

∣∣∣∣∣∣∣∣∣∣

ψ1(r1, σ1) ψ1(r2, σ2) . . . ψ1(rn, σn)
ψ2(r1, σ1) ψ2(r2, σ2) . . . ψ2(rn, σn)

...
...

. . .
...

ψn(r1, σ1) ψn(r2, σ2) . . . ψn(rn, σn)

∣∣∣∣∣∣∣∣∣∣
, (17.6)

where xi denotes a generalized coordinate, consisting of ri, the spatial coordi-
nate and σi, the spin coordinate. When written in this form, the many-body
wave function automatically satisfies the Pauli principle since the repetition of
either a row or a column results in a zero determinant, thereby guaranteeing
that every electron is in a different state.

The higher dimensional irreducible representations of the permutation
group are also important in determining many-electron states which sat-
isfy the Pauli principle. For example, in the L · S coupling scheme for
angular momentum, one must take combinations of n spins to get the
total S. These must be combined with the orbital angular momentum
combinations to get the total L. Both the spin states and the orbital
states will transform as some irreducible representation of the permuta-
tion group. When combined to make a total J , only those combinations
which transform as the antisymmetric representation Γ a

1 are allowed by the
Pauli principle. We will illustrate these concepts with several examples in
this chapter, including the three-electron p3 state and the four-electron p4

state.
In this chapter we will use the permutation groups to yield information

about the symmetry and the degeneracy of the states for a many-electron
system. We emphasize that in contrast to the case of rotational invariance,
the ground state of (17.1) does not transform as the totally symmetric rep-
resentation of the permutation group Γ s

1 . But rather for electrons (or half
integral spin (Fermion) particles), the ground state and all allowed excited
states transform as the antisymmetric one-dimensional irreducible represen-
tation Γ a

1 since any physical perturbation H′ will not distinguish between
like particles. The perturbation H′ itself transforms as the totally symmetric
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irreducible representation of the permutation group. Only integral spin par-
ticles (Bosons) have ground states that transform as the totally symmetric
irreducible representation Γ s

1 .
Mathematicians also study another aspect of permutations called braids

[36], where both the permutation and the ordered sequence of the permutation
is part of the definition of the group element. The group theory and application
of braids to solid state physics is not considered in this chapter.

In this chapter we first discuss the classes of the permutation groups
(Sect. 17.2), their irreducible representations (Sect. 17.2), and their basis
functions (Sect. 17.3). Applications of the permutation groups are then made
(Sect. 17.4) to classify two-electron, three-electron, four-electron and five-
electron states.

17.2 Classes and Irreducible Representations
of Permutation Groups

Of particular interest to the symmetry properties of permutation groups are
cyclic permutations.

Definition 26. A cyclic permutation is here defined in terms of an example:

If a permutation group has n objects, one of the group elements of a cyclic
permutation of n objects is

(
1 2 3 . . . (n− 1) n
2 3 4 . . . n 1

)
≡ (23 . . . n1) ,

where the permutation (1 2 3 . . . n) denotes the identity element. It is clear
that the n cyclic permutations of n identical objects are all related to one
another by an equivalence transformation

(1 2 3 . . . n) = (2 3 4 . . . n 1) = (3 4 . . . n 1 2) = etc. (17.7)

Since all of these group elements are identical, and all these cyclic permuta-
tions have 1 → 2, 2 → 3, 3 → 4, all are the same permutation of n identical
objects, all are related by an equivalence transformation, i.e., all of these cyclic
permutations represent the same physics.

Theorem. Any permutation can be decomposed into cycles.

Proof. The decomposition of a given permutation is demonstrated by the
following example.
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Pi =

(
1 2 3 4 5 6 7
4 3 2 5 7 6 1

)
≡ (1 4 5 7)(2 3)(6) (17.8)

can be decomposed into three cycles as indicated in (17.8). The decomposition
of a permutation into cycles is unique, since different arrangements of cycles
correspond to different permutations. �
Definition 27. Length of a cycle.

Let us assume that a permutation of n objects is decomposed into cycles as
follows: there are λ1 cycles of one element, i.e., of length 1, λ2 cycles of length
2, . . . , λq cycles of length q:

n = λ1 + 2λ2 + · · ·+ qλq . (17.9)

It is easily seen that there are

n!
1λ1λ1! 2λ2λ2! . . . qλqλq!

(17.10)

permutations that have the same cycle structure. An example of the length
of the cycle for permutation group P (4) will be given after the next theorem.

Theorem. Permutations with the same cycle structure belong to the same
class.

Proof. Consider two permutations P and P ′ with the same cycle structure
given by

P = (a1a2 . . . aλ1)(b1b2 . . . bλ2) . . . (d1d2 . . . dλr )

P ′ = (a′1a
′
2 . . . a

′
λ1

)(b′1b
′
2 . . . b

′
λ2

) . . . (d′1d
′
2 . . . d

′
λr

) . (17.11)

Here P takes a1 → a2, etc. b1 → b2, etc., d1 → d2, etc. while P ′ does the
corresponding permutation for the primed quantities. Now we introduce the
permutation operation T which takes the primed quantities into the unprimed
quantities (e.g., a′i → ai)

T =

(
a′1 . . . a

′
λ1
b′1 . . . b

′
λ2
. . . d′1 . . . d

′
λr

a1 . . . aλ1 b1 . . . bλ2 . . . d1 . . . dλr

)
(17.12)

and T−1 takes ai → a′i. Thus T−1PT does the following sequence: a′i → ai,
ai → ai+1 and finally ai+1 → a′i+1. But this is equivalent to a′i → a′i+1 which
is precisely the permutation P ′. Therefore,

T−1PT = P ′ .

P ′ is related to P by conjugation, thus completing the proof of the theorem.
The number of elements in each class is found from (17.10). �
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From the above theorem it follows that the number k of different classes
(and hence the number of irreducible representations) of the permutation
group of n objects is the number of different cycle structures that can be
formed. Thus, the number of classes is just the number of ways in which the
number n can be written as the sum of positive integers. For example, n = 4
objects can be constituted into five different cycle structures as enumerated
below:

n = 4 4 = 4 (1, 2, 3, 4)
4 = 3 + 1 (1, 2, 3)(4)
4 = 2 + 1 + 1 (1, 2)(3)(4)
4 = 2 + 2 (1, 2)(3, 4)
4 = 1 + 1 + 1 + 1 (1)(2)(3)(4)

(17.13)

giving rise to five classes and the number of members in each class can be
found from (17.10).

As an example of this theorem consider the cycle structure (abc)(d) of the
permutation group P (4), which is isomorphic to the point group Td for the
symmetry operations of a regular tetrahedron. The cycle structure (abc)(d) in
P (4) corresponds to the rotation about a threefold axis, which also forms
a class. The number of symmetry operations k in this class according to
(17.10) is

4!
(11)(1!)(31)(1!)

= 8 ,

which is in agreement with the number of elements in 8C3 in the group Td.
Another example is finding the number of symmetry operations in the class
(ab)(cd) of the point group P (4), corresponding to the twofold axes around
x, y, z, would be 4!/[(22)(2!)] = 3 from (17.10), as expected for k from the
isomorphism of (ab)(cd) of P (4) and 3C2 in Td.

In the same way, n = 5 objects can be constituted in seven different cycle
structures giving rise to 7 classes. Correspondingly q = 6 gives rise to 11
classes, q = 7 gives rise to 15 classes, q = 8 gives rise to 22 classes, etc. as
further discussed in Problem 17.1(a).

Since the number of classes is equal to the number of irreducible repre-
sentations, we can construct Table 17.1 where P (n) labels the permutation
group of n objects. Since the permutation groups are finite groups, we can
appeal to our experience regarding finite groups and use the Theorem (3.40)

h =
∑

i

�2i , (17.14)

where �i is the dimensionality of the representation i, and h is the order of
the group. For a permutation group of n objects, the order of the group is
h = n!. From Table 17.1 we note that P (3) is isomorphic with group C3v or
alternatively with group D3. Similarly P (4) is isomorphic with the tetrahe-
dral group Td. Although the groups P (5) and Ih both have 120 symmetry
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Table 17.1. The number of classes and a listing of the dimensionalities of the
irreducible representations

group classes number of group elements
∑

i
�2i

P (1) 1 1! = 12 = 1

P (2) 2 2! = 12 + 12 = 2

P (3) 3 3! = 12 + 12 + 22 = 6

P (4) 5 4! = 12 + 12 + 22 + 32 + 32 = 24

P (5) 7 5! = 12 + 12 + 42 + 42 + 52 + 52 + 62 = 120

P (6) 11 6! = 12 + 12 + 52 + 52 + 52 + 52 + 92 + 92 + 102 + 102 + 162 = 720

P (7) 15 7! = 12 + 12 + 62 + 62 + 142 + 142 + 142 + 142 + 152 + 152

+212 + 212 + 352 + 352 + 202 = 5040

P (8) 22 8! = 12 + 12 + 72 + 72 + 142 + 142 + 202 + 202 + 212 + 212

+282 + 282 + 352 + 352 + 562 + 562 + 642 + 642 + 702 + 702

+422 + 902 = 40320
...

operations, P (5) is not isomorphic to the icosahedral group Ih since the two
groups have different numbers of classes. The number of classes of P (5) is
seven while the number of classes of Ih is 10. The dimensions �i of the seven
classes in the group P (5) are listed in Table 17.1, and include two irreducible
representations with �i = 1, two with �i = 4, two with �i = 5 icosahedral
group Ih, and one with �i = 6. The 10 irreducible representations of Ih have
the following dimensionalities: 2[1+3+3+4+5] (the 2 refers to two irreducible
representations for each dimensionality arising from the inversion symmetry).
Making use of the isomorphism of P (3) and P (4) mentioned above, matrix
representations for the symmetry operations of these groups are easily written
down.

17.3 Basis Functions of Permutation Groups

The basis functions considered here are for the particular application of per-
mutation groups to many-particle systems. For example, the one-electron
Hamiltonian

H0(r1) =
p2
1

2m
+ V (r1) (17.15)

has one-electron solutions ψ0(r1), ψ1(r1), etc. Thus the solutions of the many-
electron problem can be expanded in terms of products of the one-electron
wave functions for the Hamiltonian in (17.15). Below, we write down the
ground state many-electron wave function formed by putting all electrons in
the ground state, and the lowest excited states are formed by putting one
electron in an excited state.
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Since electrons are Fermions, we present the discussion more generally
in terms of particles. We will first consider the ground state of lowest energy
which is a fully symmetric state with Γ s

1 symmetry. Every n-particle (electron)
system also has one fully antisymmetric state with Γ a

1 symmetry. Because of
the Pauli principle, we know that every allowed Fermion state must have Γ a

1

symmetry and thus we always look for the product of orbital and spin states
that transform as Γ a

1 .
Ground State: (Boson gas)
The many-particle ground state wave function Ψ0 is found by putting all the
particles into the one-particle ground state:

Ψ0 = ψ0(r1)ψ0(r2) . . . ψ0(rn) → Γ s
1 (17.16)

and from a group theoretical point of view, this orbital state transforms at
the totally symmetric representation Γ s

1 .
Single Excitation: (e.g., “phonons” or “magnons”)
To form the first excited state, consider the functions gi found by placing the
ith particle in the first excited state ψ1(ri):

ψ1(r1)ψ0(r2) . . . ψ0(rn) = g1 ,

ψ0(r1)ψ1(r2) . . . ψ0(rn) = g2 ,

...

ψ0(r1)ψ0(r2) . . . ψ1(rn) = gn . (17.17)

The basis functions given by (17.17) transform as an n-dimensional reducible
representation. Decomposition of this reducible representation yields

Γn(reducible) = Γ s
1 + Γn−1 ,

where Γ s
1 refers to the totally symmetric representation, with basis functions

is given by

Ψ ′Γ s
1

=
1√
n

n∑
i=1

gi → Γ s
1 (17.18)

and Γn−1 is the (n−1) dimensional irreducible representation, the basis func-
tions depending on the ensemble of phase factors forming all possible nth roots
of unity

Ψ ′Γn−1
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
n

n∑
i=1

ω(i−1)gi

1√
n

n∑
i=1

ω2(i−1)gi

...

1√
n

n∑
i=1

ωn(i−1)gi

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

→ Γn−1 (17.19)
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where ω are phase factors given by ω = e2πi/n. For the special case n = 2,
where ω = −1, we obtain

Ψ ′Γ1=Γ a
1

=
1√
2
[ψ1(r1)ψ0(r2)− ψ0(r1)ψ1(r2)] .

For the case n = 3, where ω = e2πi/3, we obtain

Ψ ′Γ2
=

1√
3
{ψ1(r1)ψ0(r2)ψ0(r3) + ωψ0(r1)ψ1(r2)ψ0(r3)

+ω2ψ0(r1)ψ0(r2)ψ1(r3)
}

and its partner

Ψ ′′Γ2
=

1√
3

(
ψ1(r1)ψ0(r2)ψ0(r3) + ω2ψ0(r1)ψ1(r2)ψ0(r3)

+ωψ0(r1)ψ0(r2)ψ1(r3))

for the two-dimensional irreducible representation.
The (n− 1) cyclic permutations (1)(2 3 . . . n), (1)(n 2 3 . . . (n− 1)), . . . all

commute with each other. Hence the eigenfunctions can be chosen so that
these matrices are brought into diagonal form. This means that the (n − 1)
diagonal terms become eigenvalues, given by

e
2πi
n ( n−2

2 ), . . . , e
−2πi

n ( n−2
2 ) .

This Γn−1 irreducible representation is present in every permutation
group P (n).
Irreducible Representation Γ a

1 . Also present in every permutation group is
a one-dimensional irreducible representation Γ a

1 which is totally antisymmet-
ric and Γ a

1 can be found from the regular representation which contains every
irreducible representation (see Sect. 3.7) of the group in accordance with its
dimensionality.
Regular Representation. Since all n electrons are in distinct states, they have
different eigenfunctions. The Slater determinant (Sect. 17.1) formed from these
eigenfunctions is distinct, and does not vanish. Furthermore the Slater deter-
minant forms the basis function for the antisymmetric representation Γ a

1 . For
the case where all n one-electron functions are distinct, the n! functions form
a regular representation of the permutation group, and the character for the
identity element for the regular representation is the order of the group and
according to (3.42) we have

χregular =
n∑
j

�j χ
Γj = h = n! , (17.20)

where �j is the dimension of the irreducible representation Γj and each rep-
resentation occurs a number of times which is equal to the dimension of the
representation, and h is the order of the group = n!.
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17.4 Pauli Principle in Atomic Spectra

We will in the following subsections of this section apply the results in
Sect. 17.3 to specify the symmetry of many-body wave-functions formed by
two electrons, three electrons, etc. For each case, we will point out the states
corresponding to the representations Γ s

1 , Γ a
1 , and Γn−1 discussed in Sect. 17.3.

17.4.1 Two-Electron States

For the case of two electrons, the use of group theory is not especially needed
for selecting the proper linear combinations of wave functions. The same re-
sults can be found just from consideration of even and odd states, since there
are only two classes and two irreducible representations for P (2). We discuss
this case here largely for review and pedagogic reasons. The Slater determi-
nant for the two-electron problem can be written as

Ψ(x1,x2) =
1√
2

∣∣∣∣∣
ψ1(r1, σ1) ψ1(r2, σ2)
ψ2(r1, σ1) ψ2(r2, σ2)

∣∣∣∣∣ , (17.21)

where Ψ(x1,x2) denotes the many-electron wave function for the case of two
electrons. The wave-functions ψi(rj , σj), j = 1, 2 denote the one-electron wave
functions with each electron having spatial rj and spin σj coordinates. The
subscript i (i = 1, 2) refers to two distinct electron states that obey the Pauli
Principle. We use the vector xi to denote both the orbital and spin variables
(ri, σi). The two electron state defined by the Slater determinant in (17.21)
has Γ a

1 symmetry.
The lowest energy state for the two-electron problem is achieved by putting

both electrons in 1s orbital states, taking the symmetric (s) linear combination
of spatial orbitals and taking the spins antiparallel. This choice provides two
different states for the two electrons by the Pauli Principle, and minimizes
the energy. Multiplying out the Slater determinant in this case yields

Ψ(1, 2) =
1√
2
ψ1s

s (1)ψ1s
s (2)[α1β2 − α2β1] , (17.22)

where the spin up state is denoted by α or ↑ and the spin down state by β, or ↓,
and Ψ(1, 2) denotes the two-electron ground state. The function [α1β2−α2β1]
denotes the antisymmetric spin function where the subscripts refer to the
individual electrons.

Let us now consider the transformation properties of these two electrons
more generally, including their excited states. The possible spin states for two
electrons are S = 0, 1 where capital S denotes the total spin for the many elec-
tron system. The phase factor for the two-electron problem is ω = e2πi/2 = −1
so that the linear combinations simply involve ±1. For the two-electron prob-
lem we can form a symmetric and an antisymmetric combination of α and β
as given in Table 17.2.



17.4 Pauli Principle in Atomic Spectra 441

Table 17.2. Transformation properties of two-electron states under permutations

configuration state irreducible allowed

representations states

(α1β2 − β1α2)/
√

2 S = 0 Γ a
1

(α1α2 + α2α1)/
√

2, . . . S = 1 Γ s
1

s2 L = 0 Γ s
1

1S

1s2s L = 0 Γ s
1 + Γ a

1
1S, 3S

sp L = 1 Γ s
1 + Γ a

1
1P , 3P

p2 L = 0 Γ s
1

1S

p2 L = 1 Γ a
1

3P

p2 L = 2 Γ s
1

1D

pd L = 1 Γ s
1 + Γ a

1
1P + 3P

pd L = 2 Γ s
1 + Γ a

1
1D + 3D

pd L = 3 Γ s
1 + Γ a

1
1F + 3F

d2 L = 0 Γ s
1

1S

d2 L = 1 Γ a
1

3P

d2 L = 2 Γ s
1

1D

d2 L = 3 Γ a
1

3F

d2 L = 4 Γ s
1

1G

f2 L = 0 Γ s
1

1S

f2 L = 1 Γ a
1

3P

f2 L = 2 Γ s
1

1D

f2 L = 3 Γ a
1

3F

f2 L = 4 Γ s
1

1G

f2 L = 5 Γ a
1

3H

f2 L = 6 Γ s
1

1I

The symmetries of the irreducible representations of the permutation group P (2)
label the various spin and orbital angular momentum states. To obtain states allowed
by the Pauli Principle, the direct product of the symmetries between the orbital and
spin states must contain Γ a

1

For the antisymmetric combination (S = 0) as in (17.22), we can have
only MS = 0 and the corresponding linear combination of spin states is given
in Table 17.2. For the symmetric spin combination (S = 1), we can have three
linear combinations. Only the MS = 1 combination (α1α2+α2α1)/

√
2 is listed

explicitly in Table 17.2. The MS = 0 combination (α1β2 + β1α2)/
√

2 and the
MS = −1 combination (β1β2 + β2β1)/

√
2 do not appear in the table.

We also make entries in Table 17.2 for the symmetries of the orbital angu-
lar momentum states. If the two electrons are in the same symmetric orbital s



442 17 Permutation Groups and Many-Electron States

state (L = 0), then the spin functions must transform as an antisymmetric
linear combination Γ a

1 in Table 17.2 and corresponding to the spectroscopic
notation 1S as in (17.22). However, if the two s electrons have different prin-
cipal quantum numbers, then we can make both a symmetric and an an-
tisymmetric combination of orbital states, as is illustrated here for the two
electrons occupying 1s and 2s states, where the symmetric and antisymmetric
combinations are

(ψ1s(r1)ψ2s(r2) + ψ1s(r2)ψ2s(r1))/
√

2 ,

which transforms as Γ s
1 and

(ψ1s(r1)ψ2s(r2)− ψ1s(r2)ψ2s(r1))/
√

2 ,

which transforms as Γ a
1 . Because of the Pauli principle, the orbital Γ s

1 combi-
nation goes with the Γ a

1 spin state leading to an 1S level, while the Γ a
1 orbital

state goes with the Γ s
1 spin state leading to an 3S level (see Table 17.2).

The state with Γn−1 symmetry will be a one-dimensional representation also,
but we already have two one-dimensional representations and there can be no
more than two irreducible representations for P (2) because we have only two
classes.

We now consider the next category of entries in Table 17.2. If one elec-
tron is in an s state and the second is in a p state (configuration labeled
sp), the total L value must be L = 1. We however have two choices for the
orbital states: a symmetric Γ s

1 state or an antisymmetric Γ a
1 state. The sym-

metric combination of orbital wave functions (Γ s
1 ) must then correspond to

the S = 0 antisymmetric spin state (Γ a
1 ), resulting in the 1P level, whereas

the antisymmetric orbital combination (transforming as Γ a
1 ) goes with the

symmetric triplet Γ s
1 spin state and yields the 3P level (see Table 17.2).

Placing two electrons in p states with the same principal quantum num-
ber (configuration p2 in Table 17.2) allows for a total angular momentum of
L = 0 (which must have Γ s

1 symmetry), of L = 1 (with Γ a
1 symmetry) and of

L = 2 (again with Γ s
1 symmetry). Each p electron can be in one of the three

orbital states (p+, p0, p−), corresponding to ml = 1, 0,−1, respectively, for
each one-electron state. Combining the p+p+ product yields an ML = 2 state
which belongs exclusively to the L = 2 multiplet, whereas combining the p+p0

states symmetrically yields the ML = 1 state of the L = 2 multiplet. We use
the notation p+p0 to denote ψp+(r1)ψp0(r2). However, combining p+p0 anti-
symmetrically yields the ML = 1 state of the L = 1 multiplet. The formation
of the two-electron states for the various L and ML values occurring for the
p2 configuration is given below. Since the orbital functions for the L = 1 state
transform as Γ a

1 the spin functions transform as Γ s
1 and the L = 1 multiplet

is a triplet spin state 3P . The L = 0 and L = 2 states both transform as Γ s
1

and thus the allowed spin states must be the singlet spin state S = 0 (see
Table 17.2).

The wave functions for the p2 configuration sketched above can be found
in many standard quantum mechanics text books and are:
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L = 2 symmetry (Γ s
1 ) going with Γ a

1 for the spins to yield a 1D state.

Ψ(L = 2,ML = 2) = (p+p+)

Ψ(L = 2,ML = 1) = (p0p+ + p+p0)/
√

2

Ψ(L = 2,ML = 0) = [(p0p0) + (p+p− + p−p+)/
√

2]/
√

2

Ψ(L = 2,ML = −1) = (p0p− + p−p0)/
√

2
Ψ(L = 2,ML = −2) = (p−p−) . (17.23)

L = 1 symmetry (Γ a
1 ) going with a symmetric spin state (Γ s

1 ) to yield a 3P
state.

Ψ(L = 1,ML = 1) = (p0p+ − p+p0)/
√

2

Ψ(L = 1,ML = 0) = (p+p− − p−p+)/
√

2

Ψ(L = 1,ML = −1) = (p0p− − p−p0)/
√

2 . (17.24)

L = 0 symmetry (Γ s
1 ) going with an antisymmetric spin state (Γ a

1 ) to yield
a 1S state.

Ψ(L = 0,ML = 0) = [(p0p0)− (p+p− + p−p+)/
√

2]/
√

2 . (17.25)

Following this explanation for the p2 configuration, the reader can now fill in
the corresponding explanations for the states formed from two-electron states
derived from the pd, d2 or f2 configurations listed in Table 17.2.

17.4.2 Three-Electron States

For the case of three electrons, the use of group theory becomes more im-
portant. In this case we have the permutation group of three objects P (3)
which has six elements, three classes and three irreducible representations
(see Table 17.3). In the extended character table above, we label the class

Table 17.3. Extended character table for permutation group P (3)

χ(E) χ(A,B,C) χ(D,F)

P (3) (13) 3(2, 1) 2(3)

Γ s
1 1 1 1

Γ a
1 1 −1 1

Γ2 2 0 −1

Γperm.(ψ1ψ1ψ1) 1 1 1 ⇒ Γ s
1

Γperm.(ψ1ψ1ψ2) 3 1 0 ⇒ Γ s
1 + Γ2

Γperm.(ψ1ψ2ψ3) 6 0 0 ⇒ Γ s
1 + Γ a

1 + 2Γ2
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(13) to denote the cyclic structure (1)(2)(3) and class (2, 1) to denote the
cyclic structures (1 2)(3), (2)(1 3), (1)(2 3), and class (3) to denote the cyclic
structure (1 2 3). The correspondence between the six symmetry elements
E,A,B,C,D, F and these three classes is immediate and is given in the table
explicitly. Also given below the character table are all the possible symme-
tries of the permutations for three-electron wave functions. Because of these
additional listings, we call this an extended character table. The first per-
mutation representation Γperm. for the three-electron state would correspond
to having all the same one-electron states (ψ1ψ1ψ1). This function is invari-
ant under any of the six permutations of the group, so that all characters
are one and the function (ψ1ψ1ψ1) transforms as Γ s

1 . In the second possible
case, one of the electrons is in a different state (ψ1ψ1ψ2), and since there are
three possible combinations that can be formed with the ψ2 one-electron wave
function, we have three distinct functions that can be obtained from permu-
tation of the electrons. Hence (ψ1ψ1ψ2) transforms as a three-dimensional
reducible representation of the permutation group P (3) with three partners
for this state. The identity operation leaves the three partners invariant so
we get a character three. Each of the permutation operations [3(2, 1)] leaves
one of the partners invariant, so we get a character of one, while the cyclic
permutations change all partners yielding a character of zero. The reduction
of this reducible representation to its irreducible components yields Γ s

1 +Γ2 as
indicated on the table. Finally, we consider the case when all three electrons
are in different states (ψ1ψ2ψ3). This choice gives rise to six partners, and it
is only the identity operation which leaves the partners (ψ1ψ2ψ3) invariant.
This reducible representation [like the regular representation can be expressed
in terms of its irreducible constituents using the relation h =

∑
i(�

2
i )] contains

Γ s
1 + Γ a

1 + 2Γ2 as is expected for the regular representation. The equivalence
principle is thus used to form reducible representations such as those for P (3)
given in Table 17.3. This table is also given in Appendix F as Table F.1.

Let us now look at the spin states that can be made from three electrons.
Referring to Sect. 17.3 we can make a symmetric state

(α1α2α3)

with symmetry Γ s
1 that corresponds to the S = 3/2 and MS = 3/2 spin state.

To obtain the linear combination of spin states for the three other MS values
(MS = 1/2,−1/2,−3/2), we must apply lowering operators to the MS = 3/2
state (α1α2α3). With regard to the S = 1/2 state, (17.17) tells us that this
state is a two-dimensional representation with partners:

Ψ ′Γ2
=

{
(g1 + ωg2 + ω2g3)

(g1 + ω2g2 + ωg3) ,
(17.26)

where ω = exp(2πi/3) and where the functions gi are assembled by sequen-
tially selecting the spin down state β at each of the sites 1, 2 or 3. This
explains the first two entries in Table 17.4. The state Ψ ′Γ2

corresponds to the
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Table 17.4. Transformation properties of three-electron states under permu-
tations(a)

configuration state irreducible representation allowed state

(↑↑↓) S = 1/2 Γ2

(↑↑↑) S = 3/2 Γ s
1

s3 L = 0 Γ s
1 –

1s22s L = 0 Γ s
1 + Γ2

2S

s2p L = 1 Γ s
1 + Γ2

2P

sp2 L = 0 Γ s
1 + Γ2

2S

sp2 L = 1 Γ a
1 + Γ2

2P , 4P

sp2 L = 2 Γ s
1 + Γ2

2D

(2p)2(3p) L = 0 Γ a
1 + Γ2

2S, 4S

(2p)2(3p) L = 1 2Γ s
1 + Γ a

1 + 3Γ2
2P , 2P , 2P , 4P

(2p)2(3p) L = 2 Γ s
1 + Γ a

1 + 2Γ2
2D, 2D, 4D

(2p)2(3p) L = 3 Γ s
1 + Γ2

2F

p3 L = 0 Γ a
1

4S

p3 L = 1 Γ s
1 + Γ2

2P

p3 L = 2 Γ2
2D

p3 L = 3 Γ s
1 –

d3 L = 0 Γ s
1 –

d3 L = 1 Γ a
1 + Γ2

2P , 4P

d3 L = 2 Γ s
1 + 2Γ2

2D, 2D

d3 L = 3 Γ s
1 + Γ a

1 + Γ2
2F , 4F

d3 L = 4 Γ s
1 + Γ2

2G

d3 L = 5 Γ2
2H

d3 L = 6 Γ s
1 –

f3 L = 0 Γ a
1

4S

f3 L = 1 Γ s
1 + Γ2

2P

f3 L = 2 Γ a
1 + 2Γ2

2D, 2D, 4D

f3 L = 3 2Γ s
1 + Γ a

1 + 2Γ2
2F , 2F , 4F

f3 L = 4 Γ s
1 + Γ a

1 + 2Γ2
2G, 2G, 4G

f3 L = 5 Γ s
1 + 2Γ2

2H , 2H

f3 L = 6 Γ s
1 + Γ a

1 + Γ2
2I , 4I

f3 L = 7 Γ s
1 + Γ2

2J

f3 L = 8 Γ2
2K

f3 L = 9 Γ s
1 –

(a) The symmetries of the irreducible representations of the permutation group P (3)
label the various spin and orbital angular momentum states. To obtain the states
allowed by the Pauli Principle, the direct product of the symmetries between the
orbital and spin states must contain Γ a

1
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state with Γn−1 symmetry in Table 17.4. Using the g1, g2, and g3 functions
we can write the state with Γ s

1 symmetry as

Ψ ′Γ s
1

=
1√
3
(g1 + g2 + g3) (17.27)

and the state with Γ a
1 symmetry as the Slater determinant

Ψ ′Γ a
1

=
1√
3

∣∣∣∣∣∣∣
g1(x1) g1(x2) g1(x3)
g2(x1) g2(x2) g2(x3)
g3(x1) g3(x2) g3(x3)

∣∣∣∣∣∣∣
. (17.28)

Now let us examine the spatial states. Putting all three electrons in the same
s state would yield a state with L = 0, ML = 0 and having Γ s

1 symmetry.
Taking the direct product between Γ s

1 for the orbital L = 0 state and either
of the spin states Γ s

1 ⊗(Γ s
1 +Γ2) does not yield a state with Γ a

1 symmetry, and
therefore the s3 configuration is not allowed because of the Pauli principle.
This is a group theoretical statement of the fact that a particular s level can
only accommodate one spin up and one spin down electron. If now one of the
electrons is promoted to a 2s state, then we can make an Γ s

1 state and a Γ2

state in accordance with Sect. 17.3 and with the character table for P (3) in
Table 17.3, taking g1 = ψ2s(r1)ψ1s(r2)ψ1s(r3), etc. and forming states such
as given in (17.18) and (17.19). The direct product

Γ2 ⊗ Γ2 = Γ s
1 + Γ a

1 + Γ2

then ensures that a state with Γ a
1 symmetry can be assembled to satisfy the

Pauli principle. Since the spin state with Γ2 symmetry corresponds to a Pauli-
allowed component S = 1/2, the allowed 1s22s state will be a doublet 2S state
as shown in Table 17.4. Similar arguments apply to the formation of s2p states
with L = 1.

For the sp2 configuration the orbital angular momentum can be L = 0,
L = 1 and L = 2. This corresponds to (2 × 6 × 6 = 72) possible states in the
multiplet. We show below using the Pauli principle and group theory argu-
ments that the number of allowed states is 30. The spatial states for the sp2

configuration with L = 2 are formed from products of the type sp+p+ for the
ML = 2 state (see (17.23)–(17.25)). Once again from the character table (Ta-
ble 17.3) for P (3), the symmetries which are contained in the three-electron
wave function sp+p+ (denoting ψs(r1)ψp+(r2)ψp+(r3)) are Γ s

1 and Γ2 just
as was obtained for the 1s22s configuration. The only possible allowed state
for L = 2 has S = 1/2 which results in the 2D state listed in the table. The
ML = 1 states are linear combinations of the sp+p0 functions which have the
symmetries Γ s

1 +Γ a
1 +2Γ2, since this case corresponds to (ψ1ψ2ψ3) in the char-

acter table. Of these symmetry types, the Γ s
1 + Γ2 states are associated with

the ML = 1 state of the L = 2 multiplet, since the irreducible representation
is specified by the quantum number L and the ML only specify the partners
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of that irreducible representation. After this subtraction has been performed
the symmetry types Γ a

1 + Γ2 for the L = 1, ML = 1 level are obtained.
Referring to Table 17.4, the symmetry for the L = 0 state of the sp2

configuration could arise from a sp0p0 state which is of the (ψ1ψ1ψ2) form
and therefore transforms according to Γ s

1 + Γ2 symmetry (see the character
table (Table 17.3) for P (3)). These orbital states go with the spin states Γ a

1 .
For the L = 1 state, the orbital Γ a

1 irreducible representation goes with
the Γ s

1 spin 3/2 state to give rise to a quartet 4P state while the Γ2 orbital
state can only go with the Γ2 spin state to give a Γ a

1 state when taking the
direct product of the symmetries of the orbital and spin states (Γ2 ⊗ Γ2).
The case of the p3 configuration is an instructive example where we can see
how group theory can be used to simplify the analysis of the symmetries of
multi-electron states. As the number of electrons increases, the use of group
theory becomes essential to keep track of the symmetries that are possible by
the addition of angular momentum and the symmetries that are allowed by
the Pauli principle. For the p3 configuration, we can have a total of 6×6×6 =
216 states. We will show below that if all electrons have the same principal
quantum number, only 20 of these states are allowed by the Pauli principle
and we will here classify their symmetry types.

For the p3 configuration we can have L = 3, 2, 1 and 0 total orbital
angular momentum states. In the discussion that follows we will assume that
all electrons have the same principal quantum number (e.g., 2p3). For the
L = 3 state to be allowed, we must be able to put all three electrons into
a (p+p+p+) state to make the ML = 3 state. From the extended character
table (Table 17.3) for P (3), we see that L = 3 must transform as Γ s

1 . Since
the direct product of the orbital and spin states Γ s

1 ⊗ (Γ s
1 + Γ2) does not

contain Γ a
1 this state is not allowed. The L = 2 multiplet is constructed from

an ML = 2 state having p+p+p0 combinations which from the character table
(Table 17.3) for P (3) transform as Γ s

1 + Γ2. Since ML = 2 also contributes
to the L = 3 state with symmetry Γ s

1 , we must subtract Γ s
1 from Γ s

1 + Γ2 to
get the symmetry Γ2 for the L = 2 state. If we take a direct product of the
orbital and spin states for this case, we obtain

Γ2 ⊗ (Γ s
1 + Γ2) = Γ s

1 + Γ a
1 + 2Γ2 ,

but it is only the direct product Γ2 ⊗ Γ2 which contributes a state with Γ a
1

symmetry that is allowed by the Pauli principle. Thus only the 2D state
is symmetry-allowed as indicated in Table 17.4. To get the symmetry of
the L = 1 state, consider the combinations p+p0p0 and p+p+p− which con-
tribute to the ML = 1 state. In this case the ML = 1 state contains irreducible
representations 2(Γ s

1 + Γ2). Since ML = 1 also appears for L = 2 and L = 3,
we need to subtract (Γ s

1 + Γ2) to obtain (Γ s
1 + Γ2) for the symmetries of the

orbital L = 1 state (see Table 17.4). For the ML = 0 levels we have the com-
binations p0p0p0 and p+p−p0, the first transforming as Γ s

1 and the second as
Γ s

1 + Γ a
1 + 2Γ2 to give a total of 2Γ s

1 + Γ a
1 + 2Γ2. However ML = 0 is also

present in the L = 3, 2 and 1 multiplets, so we must subtract the irreducible
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representations (Γ s
1 ) + (Γ2) + (Γ s

1 + Γ2) to obtain Γ a
1 for the L = 0 state. For

an orbital angular momentum with symmetry Γ a
1 , it is only the S = 3/2 Γ s

1

spin state that is allowed by the Pauli principle (see Table 17.4).
The same procedure can be used to obtain all the other entries in Ta-

ble 17.4, as well as the many three-electron states not listed. As the angular
momentum increases (e.g., for the case of d3 or f3 configurations), group
theoretical concepts become increasingly important.

17.4.3 Four-Electron States

In consideration of the four-electron problem we must consider the permuta-
tion group P (4). The character table for the group P (4) is given in Table 17.5
and also in Table F.2. The irreducible representations are denoted by sub-
scripts referring to their dimensionality. Also shown in Table 17.5 are the
transformation properties for the various products of functions. These trans-
formation properties are obtained in the same way as for the case of the group
P (3) discussed in Sect. 17.4.2. The various four-electron states of a free ion or
atom that are consistent with the Pauli principle are formed with the help of
this extended character table.

We first consider the possible spin states for the four-electron configura-
tion. The transformation of the spin states under the operations of the permu-
tation group are shown in Table 17.6. The four spins can be arranged to give
a total spin of S = 2, S = 1 and S = 0. The representation for the fully sym-
metric (α1α2α3α4) state, which appears in Table 17.5 as Γperm.(ψ1ψ1ψ1ψ1),
has S = 2 and clearly transforms as Γ s

1 . The S = 1 state is formed from a com-
bination (α1α2α3β4) with MS = 1 and the product wave-function is of the
form (ψ1ψ1ψ1ψ2), which from the extended character table in Table 17.5 trans-
forms as Γ s

1 +Γ3. But MS = 1 also contributes to the S = 2 state which trans-
forms as Γ s

1 . Thus by subtraction, S = 1 transforms as Γ3. Likewise, the S = 0

Table 17.5. Extended character table for group P (4)

P (4) (14) 8(3, 1) 3(22) 6(2, 12) 6(4)

Γ s
1 1 1 1 1 1

Γ a
1 1 1 1 −1 −1

Γ2 2 −1 2 0 0

Γ3 3 0 −1 1 −1

Γ3′ 3 0 −1 −1 1

Γperm.(ψ1ψ1ψ1ψ1) 1 1 1 1 1 ⇒ Γ s
1

Γperm.(ψ1ψ1ψ1ψ2) 4 1 0 2 0 ⇒ Γ s
1 + Γ3

Γperm.(ψ1ψ1ψ2ψ2) 6 0 2 2 0 ⇒ Γ s
1 + Γ2 + Γ3

Γperm.(ψ1ψ1ψ2ψ3) 12 0 0 2 0 ⇒ Γ s
1 + Γ2 + 2Γ3 + Γ3′

Γperm.(ψ1ψ2ψ3ψ4) 24 0 0 0 0 ⇒ Γ s
1 + Γ a

1 + 2Γ2 + 3Γ3 + 3Γ3′
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Table 17.6. Transformation properties of four-electron states under permutations(a)

configu-
ration state irreducible representation allowed state

(↑↑↓↓) S = 0 Γ2

(↑↑↑↓) S = 1 Γ3

(↑↑↑↑) S = 2 Γ s
1

s4 L = 0 Γ s
1 –

1s32s L = 0 Γ s
1 + Γ3 –

1s22s2 L = 0 Γ s
1 + Γ2 + Γ3

1S
sp3 L = 0 Γ a

1 + Γ3′
3S, 5S

sp3 L = 1 Γ s
1 + Γ2 + 2Γ3 + Γ3′

1P , 3P
sp3 L = 2 Γ2 + Γ3 + Γ3′

1D, 3D
sp3 L = 3 Γ s

1 + Γ3 –
(2p)3(3p) L = 0 Γ s

1 + Γ2 + 2Γ3 + Γ3′
1S, 3S

(2p)3(3p) L = 1 Γ s
1 + Γ a

1 + 2Γ2 + 3Γ3 + 3Γ3′
1P , 1P , 3P , 3P , 3P , 5P

(2p)3(3p) L = 2 2Γ s
1 + 2Γ2 + 4Γ3 + 2Γ3′

1D, 1D, 3D, 3D
(2p)3(3p) L = 3 Γ s

1 + Γ2 + 2Γ3 + Γ3′
1F , 3F

(2p)3(3p) L = 4 Γ s
1 + Γ3 –

p4 L = 0 Γ s
1 + Γ2

1S
p4 L = 1 Γ3 + Γ3′

3P
p4 L = 2 Γ s

1 + Γ2 + Γ3
1D

p4 L = 3 Γ3 –
p4 L = 4 Γ s

1 –
d4 L = 0 Γ s

1 + 2Γ2
1S, 1S

d4 L = 1 2Γ3 + 2Γ3′
3P , 3P

d4 L = 2 2Γ s
1 + Γ a

1 + 2Γ2 + 2Γ3 + Γ3′
1D, 1D, 3D, 5D

d4 L = 3 Γ2 + 3Γ3 + 2Γ3′
1F , 3F , 3F

d4 L = 4 2Γ s
1 + 2Γ2 + 2Γ3 + Γ3′

1G, 1G, 3G
d4 L = 5 Γ s

1 + 2Γ3 + Γ3′
3H

d4 L = 6 Γ s
1 + Γ2 + Γ3

1I
d4 L = 7 Γ3 –
d4 L = 8 Γ s

1 –
f4 L = 0 2Γ s

1 + Γ a
1 + 3Γ3

5S
f4 L = 1 2Γ2 + 3Γ3 + 3Γ3′

1P , 1P , 3P , 3P , 3P
f4 L = 2 2Γ s

1 + Γ a
1 + 4Γ2 + 3Γ3 + 2Γ3′

1D, 1D, 1D, 1D, 3D, 3D, 5D
f4 L = 3 Γ s

1 + Γ a
1 + Γ2 + 5Γ3 + 4Γ3′

1F , 3F , 3F , 3F , 3F , 5F
f4 L = 4 3Γ s

1 + Γ a
1 + 4Γ2 + 4Γ3 + 3Γ3′

1G, 1G, 1G, 1G, 3G, 3G, 3G, 5G
f4 L = 5 Γ s

1 + 2Γ2 + 5Γ3 + 4Γ3′
1H , 1H , 3H , 3H , 3H

f4 L = 6 3Γ s
1 + Γ a

1 + 3Γ2 + 4Γ3 + 2Γ3′
1I , 1I , 1I , 3I , 3I , 5I

f4 L = 7 Γ s
1 + Γ2 + 4Γ3 + 2Γ3′

1J , 3J , 3J
f4 L = 8 2Γ s

1 + 2Γ2 + 2Γ3 + Γ3′
1K, 1K, 3K

f4 L = 9 Γ s
1 + 2Γ3 + Γ3′

3L
f4 L = 10 Γ s

1 + Γ2 + Γ3
1M

f4 L = 11 Γ3 –
f4 L = 12 Γ s

1 –

(a) The symmetries of the irreducible representations of the permutation group P (4)
label the various spin and orbital angular momentum states. To obtain the states
allowed by the Pauli Principle the direct product of the symmetries between the
orbital and spin states must contain Γ a

1
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state is formed from a configuration (α1α2β3β4) with MS = 0 which from the
extended character Table 17.5 is of the form (ψ1ψ1ψ2ψ2) and transforms as
Γ s

1 +Γ2+Γ3. Upon subtraction of the symmetry types for the S = 1 and S = 2
states (Γ3 +Γ s

1 ), we obtain the symmetry Γ2 for the S = 0 state, as shown in
Table 17.6. This completes the discussion for the spin entries to Table 17.6.

The allowed states resulting from the s4, 1s32s and 1s22s2 orbital states
follow from the discussion in Sect. 17.4.2. Some similarity is also found for
the sp3 states in Table 17.6. We now illustrate the four-electron problem with
the p4 electron configuration, assuming the same principal quantum number
for all four electrons as for example in a (2p4) state. Here we can have L =
4, 3, 2, 1 and 0 (see Table 17.6). Starting with the L = 4 multiplet, the
ML = 4 state p+p+p+p+ would have Γ s

1 symmetry. This state is forbidden
by the Pauli principle since the direct product of the orbital and spin states
Γ s

1 ⊗ (Γ s
1 + Γ2 + Γ3) does not contain Γ a

1 symmetry. To find the symmetry
for the L = 3 multiplet, we consider the ML = 3 states which arise from
a p+p+p+p0 configuration and from Table 17.5 (giving the character table
for P (4)), we see that (ψ1ψ1ψ1ψ2) contains the irreducible representations
Γ s

1 + Γ3. Thus subtracting Γ s
1 for the L = 4 state gives the symmetry Γ3 for

the L = 3 multiplet. The direct product of the orbital and spin states

Γ3 ⊗ (Γ s
1 + Γ2 + Γ3) = Γ s

1 + Γ2 + 3Γ3 + 2Γ3′

again does not contain Γ a
1 and therefore is not allowed by the Pauli principle.

However the L = 2 state is allowed and gives rise to a 1D level since ML = 2
arises from p+p+p0p0 or p+p+p+p− which, respectively, correspond to the
symmetries

(Γ s
1 + Γ2 + Γ3) + (Γ s

1 + Γ3) .

Thus subtracting the contributions of ML = 2 to the L = 3 and L = 4 states
gives (Γ a

1 + Γ2 + Γ3). Now taking the direct product between the orbital and
spin states

(Γ s
1 + Γ2 + Γ3)⊗ (Γ s

1 + Γ2 + Γ3) = 3Γ s
1 + Γ a

1 + 4Γ2 + 5Γ3 + 3Γ3′

does contain the Γ a
1 symmetry arising from the direct product of Γ2⊗Γ2 and

corresponding to the S = 0 spin state which is a singlet state. Likewise the
symmetries of the 3P and 1S states for L = 1 and L = 0, respectively, can be
found, and the results are given in Table 17.6. Since a p4 electron configuration
is equivalent to a p2 hole configuration the allowed states for p4 should be the
same as for p2. This can be verified by comparing the allowed states for p2 in
Table 17.2 with those (1S, 3P , 1D) for p4 in Table 17.6.

It is left to the reader to verify the other entries in Table 17.6 and to explore
the symmetries of other four-electron combinations not listed. In finding these
entries it should be noted that

Γ2 ⊗ Γ2 = Γ s
1 + Γ a

1 + Γ2
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and
Γ3 ⊗ Γ3′ = Γ a

1 + Γ2 + Γ3 + Γ3′

so that the spatial functions with Γ a
1 , Γ2 and Γ3′ all can give rise to states

allowed by the Pauli principle.

17.4.4 Five-Electron States

The character table for the permutation group of five electrons is shown
in Table F.3 of Appendix F. Note that there are no 2D or 3D irreducible
representations, but rather there are four, five and six-dimensional irre-
ducible representations, yielding h =

∑
l2i = 120 = 5!, as required. Also

listed in Table F.3 of Appendix F are the characters for all possible dis-
tinct products of five functions considered within the equivalence represen-
tation. The irreducible representations of P (5) contained in the decompo-
sition of the reducible equivalence representation Γperm. are listed below
the character table for P (5) (Table F.3 of Appendix F). With the help
of these tables, the entries in Table 17.7 can be obtained for the spin
and orbital symmetries for a number of the five-electron states that are
listed in this table. The possible spin states are S = 1/2 which occurs ten
times, the S = 3/2 which occurs five times and the S = 5/2 which oc-
curs once. In making the antisymmetric combinations it should be noted
that

Γ4 ⊗ Γ4′ = Γ a
1 + Γ4′ + Γ5′ + Γ6 and

Γ5 ⊗ Γ5′ = Γ a
1 + Γ4 + Γ4′ + Γ5 + Γ5′ + Γ6 ,

so that the spatial functions with Γ a
1 , Γ4′ and Γ5′ may all give rise to states

that are allowed by the Pauli Principle. Five-electron states occur in a half-
filled d level. Such half-filled d levels are important in describing the magnetic
ions in magnetic semiconductors formed by the substitution of Mn2+ for Cd
in CdTe or CdSe.

17.4.5 General Comments on Many-Electron States

The Pauli-allowed states for n electrons in a more than half filled p shell
and for 6 − n holes are the same. For example, referring to Table 17.7,
the only Pauli-allowed state for p5 is an L = 1, 2P state. But this state
corresponds to a single hole in a p-shell, which has the same allowed an-
gular momentum states as a single p electron (S = 1/2) in a p-shell. We
can denote both of these states by p1 corresponding to the level designa-
tion 2P . Using the same arguments, we find that p2 and p4 have the same
allowed states. Similarly, the states for the d6 electron configuration are iden-
tical to those for the d4 hole configuration which are worked out in the
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Table 17.7. Transformation properties of five-electron states under permutations(a)

configuration state irreducible representation allowed state

(↑↑↑↓↓) S = 1/2 Γ5

(↑↑↑↑↓) S = 3/2 Γ4

(↑↑↑↑↑) S = 5/2 Γ s
1

s5 L = 0 Γ s
1 –

1s42s L = 0 Γ s
1 + Γ4 –

1s22s23s L = 0 Γ s
1 + 2Γ4 + 2Γ5 + Γ5′ + Γ6

2S

p5 L = 0 Γ6 –

p5 L = 1 Γ s
1 + Γ4 + Γ5 + Γ5′

2P

p5 L = 2 Γ4 + Γ5 + Γ6 –

p5 L = 3 Γ s
1 + Γ4 + Γ5 –

p5 L = 4 Γ4 –

p5 L = 5 Γ s
1 –

d5 L = 0 Γ a
1 + Γ4 + Γ5′ + Γ6

2S, 6S

d5 L = 1 Γ s
1 + 2Γ4 + Γ4′ + 3Γ5 + Γ5′ + 2Γ6

2P , 4P

d5 L = 2 2Γ s
1 + 3Γ4 + Γ4′ + 4Γ5 + 3Γ5′ + 2Γ6

2D, 2D, 2D, 4D

d5 L = 3 Γ s
1 + 4Γ4 + Γ4′ + 3Γ5 + 2Γ5′ + 4Γ6

2F , 2F , 4F

d5 L = 4 2Γ s
1 + 4Γ4 + Γ4′ + 4Γ5 + 2Γ5′ + 2Γ6

2G, 2G, 4G

d5 L = 5 Γ s
1 + 3Γ4 + 3Γ5 + Γ5′ + 3Γ6

2H

d5 L = 6 2Γ s
1 + 3Γ4 + 2Γ5 + Γ5′ + Γ6

2I

d5 L = 7 Γ s
1 + 2Γ4 + Γ5 + Γ6 –

d5 L = 8 Γ s
1 + Γ4 + Γ5 –

d5 L = 9 Γ4 –

d5 L = 10 Γ s
1 –

(a) The symmetries of the irreducible representations of the permutation group P (5)
label the various spin and orbital angular momentum states. To obtain the states
allowed by the Pauli Principle the direct product of the symmetries between the
orbital and spin states must contain Γ a

1

Table 17.6, etc. In this sense, the tables that are provided in this chapter
are sufficient to handle all atomic s, p and d levels. To treat the f levels
completely we would need to construct tables for the permutation groups
P (6) and P (7), and the character tables for P (6) and P (7) are found in Ap-
pendix F.

In solids and molecules where point group symmetry rather than full
rotational symmetry applies, the application of permutation groups to the
many-electron states is identical. Thus the 3d levels of a transition metal
ion in a crystal field of cubic symmetry are split into a Eg and a T2g level
(see Sect. 5.3) and the allowed d2 levels would be either a 1Eg or a 1T2g,
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3T2g level. In general, crystal field splittings are applied to the many-electron
states whose symmetries are given in Tables 17.2, 17.4, 17.6 and 17.7. The
d states in icosahedral symmetry do not experience any crystal field split-
ting and all the arguments of this chapter apply directly. Character ta-
bles for the groups P (3), P (4), P (5), P (6) and P (7) are found in Ap-
pendix F.

Selected Problems

17.1. Use the following character table for the permutation group P (5) given
in Table F.3.

(a) Using (17.10) find the number of symmetry elements in each of the classes
for the permutation group P (5), and check the entries to Table F.3.

(b) What are the characters for the equivalence transformation for a state
where three of the five electrons are in one state (e.g., a d-state) and
two electrons are in another state (e.g., a p-state)? Explain how you ob-
tained your result. What irreducible representations are contained in this
equivalence transformation (see Table F.3)?

(c) Multiply element

Pi =

(
1 2 3 4 5
3 2 1 4 5

)

by element

Pj =

(
1 2 3 4 5
4 2 5 1 3

)

to form PiPj and PjPi. Are your results consistent with the character
table?

(c) Referring to Table 17.7, what are the irreducible representations for the
spin configuration (↑↑↓↓↓)? How did you obtain this result?

(e) What are the Pauli allowed states (as would be given in Table 17.7) with
the largest L value for the p3d2 configuration? Note that this calculation
would make a new entry to Table 17.7.

17.2. (a) Consider the addition of Mn2+ as a substitutional magnetic impu-
rity for CdTe. Since Mn2+ has five 3d electrons, use the permutation group
P (5) to find the Pauli-allowed states for the Mn2+ ion in CdTe (Table F.3
in Appendix F). Of these Pauli-allowed d5 states, which is the ground
state based on Hund’s rule?

(b) Using the electric dipole selection rule for optical transitions, find the
allowed transitions from the ground state in (a) to Pauli-allowed states in
the 3d34p2 configuration (see Problem 17.1(e)).
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17.3. Use the character table for the permutation group P (6) (Table F.4 in
Appendix F).

(a) Starting with q = 6 objects, show that there are 11 classes of the form
given in the character table for P (6) (see Sect. 17.2). Show that all 6!
symmetry elements are contained in these classes.

(b) Show that there are 45 symmetry elements in the class (22, 12) and 40
symmetry elements in class (3, 13).

(c) Show that the irreducible representations Γ
′′′
5 and Γ9 as given in the char-

acter table are orthogonal. (This is a check that the entries in the charac-
ter table in Table F.4 are correct.) Which of the four five-dimensional
irreducible representations correspond to the basis functions Ψ ′Γn−1

in
(17.19)?

(d) What are the irreducible representations in P (6) that represent the spin
angular momentum states S = 3, 2, 1, 0? To solve this problem, you will
have to find the equivalence transformations corresponding to selected
permutations of spin configurations that are needed to construct the var-
ious spin angular momentum states (see Tables F.3 and F.4 for the per-
mutation group P (5) to provide guidance for solving this problem for
P (6)).

(e) According to Hund’s rule, what are the S, L and J values for placing six
electrons in a d6 electronic configuration. To which irreducible represen-
tations of P (6) do the spin and spatial parts of this Hund’s rule ground
state correspond?

17.4. In this chapter, we considered multielectron occupation of atomic states.
Consider both the case of no spin–orbit interaction and of including the spin–
orbit interaction for the following cases.

(a) What is the effect of time inversion on two 1s electrons in an atomic state?
What is the effect of time inversion symmetry on two 2p electrons?

(b) What is the effect of time inversion symmetry on three 2p electrons?


