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16

Time Reversal Symmetry

In this chapter we consider the properties of the time reversal operator
(Sects. 16.1 and 16.2) and the topic of time reversal symmetry. We then
consider the effect of time reversal symmetry on the form of the electronic
dispersion relations and this topic is discussed here for the case of no spin
(Sect. 16.3) and when the spin–orbit interaction is included (Sect. 16.4). As
a second illustration of time reversal symmetry, we consider magnetic space
groups in Sect. 16.5, where the time reversal operator itself can become
a symmetry element of the group.

In high energy physics, arguments regarding time inversion were essential
in providing guidance for the development of a theory for the fundamental
particles. The CPT invariance in particle physics deals with charge conjuga-
tion (C) which is the reversal of the sign of the electrical charge, parity (P)
which is spatial inversion, and time inversion (T).

16.1 The Time Reversal Operator

Knowledge of the state of a system at any instant of time t and the determin-
istic laws of physics are sufficient to determine the state of the system both
into the future and into the past. If the wave function ψ(r, t) specifies the time
evolution of state ψ(r, 0), then ψ(r,−t) is called the time-reversed conjugate
of ψ(r, t). The time-reversed conjugate state is achieved by running the system
backwards in time or reversing all the velocities (or momenta) of the system.

The time evolution of a state is governed by Schrödinger’s equation (one
of the deterministic laws of physics)

i�
∂ψ

∂t
= Hψ , (16.1)

which is satisfied by a time-dependent wave function of the form

ψ(r, t) = e
−iHt

� ψ(r, 0) , (16.2)



404 16 Time Reversal Symmetry

where exp [−iHt/�] is the time evolution factor. The effect of time reversal
t → −t (which we denote by the operator T̂ ) on the wave function is that of
complex conjugation ψ → ψ∗ so that

T̂ ψ(r, t) = ψ(r,−t) = ψ∗(r, t) . (16.3)

In Sect. 16.2, we discuss some of the important properties of T̂ .

16.2 Properties of the Time Reversal Operator

The important properties of the time reversal operator T̂ include:

(a) Commutation: [T̂ ,H] = 0
Because of energy conservation, the time reversal operator T̂ commutes
with the Hamiltonian T̂H = HT̂ . Since T̂ commutes with the Hamilto-
nian, eigenstates of the time reversal operator are also eigenstates of the
Hamiltonian.

(b) Antilinear : T̂ i = −i
From Schrödinger’s equation (16.1), it is seen that the reversal of time
corresponds to a change of i → −i, which implies that T̂ i = −i. We call
an operator antilinear if its operation on a complex number yields the
complex conjugate of the number T̂ a = a∗ rather than the number itself.

(c) Complex conjugation of wave functions :
Since T̂ is an antilinear operator, we have T̂ ψ = ψ∗. Since T̂ψ = ψ∗, the
action of T̂ on a scalar product is

T̂ (ψ, φ) =
∫
φ∗(r)ψ(r)d3r = (ψ, φ)∗ . (16.4)

(d) In the case of no spin, we have T̂ = K̂ where K̂ is the complex conjugation
operator. With spin, we show below that T̂ = K̂σy where σy is the Pauli
spin operator,

σy =
(

0 −i
i 0

)
.

We will see below that both T̂ and K̂ are antiunitary operators. From
Schrödinger’s equation (no spin), the effect of T̂ on p is to reverse p (time
goes backward) and T̂ leaves V (r) invariant, so that indeed H is invariant
under T̂ . When spin is included, however, the Hamiltonian H must still be
invariant under T̂ . We note that T̂p = −p and T̂L = −L (orbital angular
momentum). We likewise require that T̂S = −S where S = spin angular
momentum. If these requirements are imposed, we show below that the H
is still invariant under T̂ , that is H commutes with T̂ when the spin–orbit
interaction is included:



16.2 Properties of the Time Reversal Operator 405

H =
p2

2m
+ V (r) +

�

4m2c2
σ · (∇V × p) . (16.5)

To show that T̂ commutes with H when the spin–orbit interaction is
included, we first note that K̂[σx, σy, σz ] = [σx,−σy, σz ] when the spin
components are written in terms of the Pauli matrices

σx =
(

0 1
1 0

)
,

σy =
(

0 −i
i 0

)
,

σz =
(

1 0
0 −1

)
, (16.6)

since only the Pauli matrix σy contains i. Thus K̂ by itself is not sufficient
to describe the time reversal operation on the Hamiltonian H (16.5) when
the spin–orbit interaction is included. We will however see below that the
product K̂σy can describe the time reversal of H.
Let us now consider the effect of K̂σy on the spin matrices K̂σy[σx, σy, σz ].
We note that

σyσx = −σxσy so that K̂σyσx = −K̂σxσy = −σxK̂σy

σyσz = −σzσy so that K̂σyσz = −K̂σzσy = −σzK̂σy .

Also we have K̂σyσy = −σyK̂σy since, from above K̂σy = −σyK̂. Thus
we obtain

K̂σyσ = −σK̂σy ,

so that the operator K̂σy transforms σ (or S) into −σ (or −S). Clearly
σy does not act on any of the other terms in the Hamiltonian.
Since K̂K̂ = K̂2 = 1̂, where 1̂ is the unit matrix, we can write the
important relation T̂ = K̂σy which implies K̂T̂ = σy = unitary operator
since σ†yσ

−1
y = 1̂. But also σ2

y = σyσy = 1̂ so we have σ†y = σy and σ†2y = 1̂,
where the symbol † is used to denote the adjoint of an operator.

(e) In the case of no spin T̂ 2 = 1̂, since K̂2 = 1̂ and T̂ = K̂. With spin we will
now show that T̂ 2 = −1̂. Since T̂ = K̂σy when the effect of the electron
spin is included, then

T̂ 2 = (K̂σy)(K̂σy) = −(σyK̂)(K̂σy) = −σyK̂
2σy = −σyσy = −1̂ .

More generally if we write K̂T̂ = Û = unitary operator (not necessarily
σy), we can then show that T̂ 2 = ±1̂. Since two consecutive operations by
T̂ on a state ψ must produce the same physical state ψ, we have T̂ 2 = C1̂
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where C is a phase factor eiφ of unit magnitude. Since K̂2 = 1̂, we can
write

K̂2T̂ = T̂ = K̂Û = Û∗K̂ , (16.7)

T̂ 2 = K̂ÛK̂Û = Û∗K̂2Û = Û∗Û = C1̂ . (16.8)

We show below that C = ±1̂. Making use of the unitary property Û †Û =
Û Û † = 1̂, we obtain by writing Û∗ = Û∗Û Û † = CÛ †,

Û∗ = CÛ † = CŨ∗ , (16.9)

where Ũ denotes the transpose of Û . Taking the transpose of both sides
of (16.9) yields

Ũ∗ = Û † = CÛ∗ = C(CŨ∗) = C2Û † or C2 = 1 and C = ±1 .
(16.10)

We thus obtain either T̂ 2 = +1̂ or T̂ 2 = −1̂.
(f) Operators H, r, V (r) are even under time reversal T̂ ; operators p,L,σ

are odd under T̂ . Operators are either even or odd under time reversal.
We can think of spin angular momentum classically as due to a current
loop in a plane ⊥ to the z-axis. Time reversal causes the current to flow
in the opposite direction.

(g) T̂ and K̂ are antiunitary operators , as shown below.

In this subsection we show that T̂ and K̂ are antiunitary operators which
means T̂ T̂ † = −1̂ and K̂K̂† = −1̂. We show below that T̂ and K̂ are an-
tiunitary whether or not the spin is considered explicitly. The properties of
the inverse of T̂ and K̂ are readily found. Since K̂2 = 1̂, then K̂K̂ = 1̂ and
K̂−1 = K̂. If for the case where the spin is treated explicitly T̂ 2 = −1̂, then
T̂ T̂ = −1̂ and T̂−1 = −T̂ ; T̂ = K̂σy for the case of spin. For the spinless case,
T̂ 2 = 1̂ and T̂−1 = T̂ . Since complex conjugation changes i → −i, we can
write K̂† = −K̂ so that K̂ is antiunitary.

We now use this result to show that both T̂ and K̂ are antiunitary. This
is the most important property of T̂ from the point of view of group theory.
Since K̂ = T̂ in the absence of spin, and since K̂ is antiunitary, it follows that
T̂ is antiunitary in this case. However, when spin is included, T̂ = K̂σy and

σy = K̂T̂

σ†y = T̂ †K̂† . (16.11)

Since σy is a unitary operator, thus T̂ †K̂†K̂T̂ = 1̂ but since K̂†K̂ = −1̂ it
follows that T̂ †T̂ = −1̂, showing that T̂ is also antiunitary.

Furthermore K̂ and T̂ behave differently from all the operators that we
have thus far encountered in group theory, such as the point group operations
(rotations, improper rotations, mirror planes, inversion and R =rotation of
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2π must be considered for spin dependent Hamiltonians). Thus in considering
symmetry operations in group theory, we treat all the unitary operators sepa-
rately by use of character tables and all the associated apparatus, and then we
treat time reversal symmetry as an additional symmetry constraint. We will
see in Sect. 16.5 how time reversal symmetry enters directly as a symmetry
element for magnetic point groups.

We discuss first in Sects. 16.3 and 16.4 the general effect of T̂ on the form of
E(k) for the case of electronic bands neglecting spin (Sect. 16.3) and including
spin (Sect. 16.4). In these sections we also consider the question of degeneracies
imposed on energy levels by time reversal symmetry (the Herring Rules) [39].

16.3 The Effect of T̂ on E(k), Neglecting Spin

If for the moment we neglect spin, then the time reversal operation acting on
a solution of Schrödinger’s equation yields

T̂ψ(r) = ψ∗(r) . (16.12)

Since the Hamiltonian commutes with T̂ , then both ψ(r) and ψ∗(r) satisfy
Schrödinger’s equation for the same energy eigenvalue, so that a twofold de-
generacy occurs. We will now show that time reversal symmetry leads to two
symmetry properties for the energy eigenvalues for Bloch states: the evenness
of the energy eigenvalues E(k) = E(−k), and the zero slope of En(k) at the
Brillouin zone boundaries.

The effect of the translation operation on a Bloch state is

ψk(r + Rn) = eik·Rnψk(r) , (16.13)

and the effect of time reversal is

T̂ψk(r) = ψ∗k(r) . (16.14)

We can write the following relation for the complex conjugate of Bloch’s the-
orem

ψ∗k(r + Rn) = e−ik·Rnψ∗k(r) , (16.15)

and we can also rewrite (16.15) in terms of k → −k as

ψ∗−k(r + Rn) = eik·Rnψ∗−k(r) , (16.16)

which upon comparing (16.13), (16.15) and (16.16) implies that for nonde-
generate levels the time reversal operator transforms k → −k

T̂ψk(r) = ψ−k(r) = ψ∗k(r) . (16.17)

If the level is doubly degenerate and ψk(r) and φk(r) are the corresponding
eigenstates, then if T̂ψk(r) = φk(r) = ψ−k(r), and no additional degeneracy
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is required by time reversal symmetry. Time reversal symmetry thus implies
that for a spinless system

En(k) = En(−k) , (16.18)

and the energy is an even function of wave vector k whether or not there is
spatial inversion symmetry.

Using this result (16.18) and the E(k) = E(k+K) periodicity in k space,
where K is a reciprocal lattice vector, we obtain

E

(
K

2
− δk

)
= E

(
−K

2
+ δk

)
= E

(
K

2
+ δk

)
, (16.19)

where δk is an infinitesimal distance to the Brillouin zone boundary. Thus
referring to Fig. 16.1, E(k) comes into the zone boundary with zero slope for
both the lower and upper branches of the solutions in Fig. 16.1. For the case
where the energy band shows a degeneracy at the zone boundary, the upper
and lower bands will have equal and opposite slopes.

We have been using the symmetry properties in (16.18) and (16.19)
throughout our solid state physics courses. In the most familiar cases, E(k)
depends on k2. Figure 16.1 illustrates the symmetry properties of (16.18) and
(16.19) for a simple parabolic band at k = 0 and at the Brillouin zone bound-
ary.

Let us now consider the consequences of these ideas from a group theoret-
ical point of view, and enumerate Herring’s rules which summarize the effect
of time reversal T̂ on the irreducible representations of a group. If ψ(r) be-
longs to the irreducible representation D, then T̂ψ(r) = ψ∗(r) will transform
according to D∗ which consists of the complex conjugate of all the matri-
ces in D. We can distinguish three different possibilities in the case of no
spin:

(a) All of the matrices in the representation D are real matrices or can be
made into real matrices by a unitary transformation. In this case, the time
reversal operator leaves the representation D invariant and no additional
degeneracies in E(k) result.

(b) If the representations D and D∗ cannot be brought into equivalence by
a unitary transformation, there is a doubling of the degeneracy of such
levels due to time reversal symmetry. Then the representations D and D∗

are said to form a time reversal symmetry pair and these levels will stick
together.

(c) If the representations D and D∗ can be made equivalent under a suitable
unitary transformation, but the matrices in this representation cannot be
made real, then the time reversal symmetry also requires a doubling of
the degeneracy of D and the bands will stick together.

To illustrate these possibilities, consider the point group C4 (see Table 16.1).
Here irreducible representations A and B are of type (a) above and each of
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Fig. 16.1. Simple E(k) diagram for a spinless electron illustrating both E(k) =
E(−k) and the zero slope of E(k) at the Brillouin zone boundary

Table 16.1. Character table for point group C4

C4 (4) E C2 C4 C3
4 time reversal

x2 + y2, z2 Rz, z A 1 1 1 1 (a)

x2 − y2, xy B 1 1 −1 −1 (a)

(xz, yz)
(x, y)

(Rx, Ry)

}
E

1

1

−1

−1

i

−i
−i
i

(b)

(b)

these representations correspond to nondegenerate energy levels. However, the
two representations labeled E are complex conjugates of each other and are
of type (b) since there is no unitary transformation that can bring them into
equivalence. Thus because of the time reversal symmetry requirement, rep-
resentation E corresponds to a doubly degenerate level. This illustrates the
case where time reversal symmetry gives rise to an additional level degener-
acy.

The time reversal partners are treated as different representations when
applying the following rules on character:

(a) The number of irreducible representations is equal to the number of
classes.

(b)
∑

i �
2
i = h.
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Using the character table for the group of the wave vector, we can distinguish
which of the three cases apply for a given irreducible representation using the
Herring test [39], which is now discussed. Let Q0 be an element in the space
group which transforms k into −k. Then Q2

0 is an element in the group of
the wave vector k, since all elements in the group of the wave vector leave
k invariant and therefore each of these group elements are elements with
the properties of Q2

0. If the inversion operator i is contained in the group of
the wave vector k, then all the elements Q0 are in the group of the wave
vector k. If i is not an element of the group of the wave vector k, then the
elements Q0 may or may not be an element in the group of the wave vector.
Let hQ0 equal the number of elements Q0. The Herring space group test is
then

∑
R

χ(Q2
0) = hQ0 case (a)

= 0 case (b)

= −hQ0 case (c) ,

where χ is the character for a representation of the group of the wave vector k
and the sum is over all the elements of the group. These tests can be used to
decide whether or not time reversal symmetry introduces any additional de-
generacies to this representation. Information on the Herring test is normally
presented in each of the 32 point groups in the character tables in Koster’s
book [47, 48].

To apply the Herring test to the point group C4, and consider the group
of the wave vector for k = 0. Then all four symmetry operations take k → −k
since k = 0. Furthermore, E2 = E,C2

2 = E,C2
4 = C2 and (C3

4 )2 = C2 so that
for representations A and B

∑
R

χ(Q2
0) = 1 + 1 + 1 + 1 = 4 (16.20)

from which we conclude that A and B correspond to case (a), in agree-
ment with Koster’s tables. On the other hand, for each representation un-
der E, ∑

R

χ(Q2
0) = 1 + 1 + (−1) + (−1) = 0 (16.21)

from which we conclude that representations E correspond to case (b).
Therefore the two irreducible representations under E correspond to the
same energy and the corresponding E(k) will stick together. The two
representations under E are called time reversal conjugate representa-
tions.
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16.4 The Effect of T̂ on E(k),
Including the Spin–Orbit Interaction

When the spin–orbit interaction is included, then the Bloch functions trans-
form as irreducible representations of the double group. The degeneracy of the
energy levels is different from the spinless situation, and in particular every
level is at least doubly degenerate.

When the spin–orbit interaction is included, T̂ = K̂σy and not only do we
have k → −k, but we also have σ → −σ under time reversal symmetry. This
is written schematically as

T̂ψn,k↑(r) = ψn,−k↓(r) , (16.22)

so that the time reversal conjugate states are

En↑(k) = En↓(−k) (16.23)

and
En↓(k) = En↑(−k) . (16.24)

If inversion symmetry exists as well,

En(k) = En(−k) , (16.25)

then
En↑(k) = En↑(−k) and En↓(k) = En↓(−k) (16.26)

making En↑(k) and En↓(k) degenerate. In more detail, since T̂ = K̂σy and
since

σy ↑ =
(

0 −i
i 0

)(
1
0

)
= i

(
0
1

)
= i ↓

σy ↓ =
(

0 −i
i 0

)(
0
1

)
= −i

(
1
0

)
= −i ↑ ,

we obtain

T̂ ψn,k↑(r) = T̂ eik·r
[
un,k↑

(
1
0

)]
= e−ik·r

[
iu∗n,k↑

(
0
1

)]

= e−ik·run,−k↓

(
0
1

)
, (16.27)

which is a Bloch state for wave vector −k and spin ↓. Likewise

T̂ψn,k↓(r) = T̂ eik·r
[
un,k↓

(
0
1

)]
= e−ik·r

[
−iu∗n,k↓

(
1
0

)]

= e−ik·run,−k↑

(
1
0

)
(16.28)
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Fig. 16.2. Schematic example of Kramers degeneracy in a crystal in the case of:
(a) no spin–orbit interaction where each level is doubly degenerate (↑, ↓), (b) both
spin–orbit interaction and inversion symmetry are present and the levels are doubly
degenerate, (c) spin–orbit interaction and no spatial inversion symmetry where the
relations (16.23) and (16.24) apply

which is a Bloch state for wave vector −k and spin ↑ in which we have written

iu∗n,k↑ = un,−k↓

and

−iu∗n,k↓ = un,−k↑ .

For a general point in the Brillouin zone, and in the absence of spin–orbit
coupling, but including the spin on the electron, the energy levels have a nec-
essary twofold spin degeneracy and also exhibit the property E(k) = E(−k),
whether or not there is inversion symmetry. This is illustrated in Fig. 16.2(a).
When the spin–orbit interaction is turned on and there is inversion symme-
try, then we get the situation illustrated in Fig. 16.2(b), where the twofold
degeneracy remains.

However, if there is no inversion symmetry, then the only relationships
that remain are those of (16.23) and (16.24) shown in Fig. 16.2(c), and the
Kramers degeneracy results in E↑(k) = E↓(−k) and E↓(k) = E↑(−k).

The role of inversion symmetry is also important for the E(k) relations for
degenerate bands. This is illustrated in Fig. 16.3 for degenerate bands near
k = 0. We take as examples: (a) diamond for which the spin–orbit interaction
can be neglected and all levels are doubly degenerate at a general point in the
Brillouin zone, (c) InSb or GaAs which have Td symmetry (lacking inversion)
so that relations (16.23) and (16.24) apply and the twofold Kramers degener-
acy is lifted by the Dresselhaus-spin–orbit term [25], (b) Ge or Si which have
Oh symmetry (including inversion) and the twofold Kramers degeneracy is
retained at a general point in the Brillouin zone.

We give in Table 16.2 the general Herring rules (see Sect. 16.3) which apply
whether or not the spin–orbit interaction is included. When the spin–orbit
interaction is included, there are also three cases which can be distinguished.
When the time reversal operator T̂ acts on a spin dependent wavefunction ψ
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Fig. 16.3. Schematic examples of energy bands E(k) near k = 0: (a) in diamond
without spin-orbit interaction, each band having a twofold spin degeneracy. (b) in
Ge where the spin-orbit interaction split bands, with each band remaining at least
doubly degenerate. (c) in GaAs where the Γ8 bands are split by the spin-orbit
interaction and the degeneracy occurs only at k = 0. At a general k point the levels
do not stick together. The magnitudes of the splittings are not to scale

Table 16.2. Summary of Herring rules regarding degeneracies and time reversal

case relation between
D and D∗

Frobenius–
Schur test

spinless
electron

half-integral
spin electron

(a) D and D∗ are equivalent
to the same real irreducible
representation

∑
R
χ(Q2

0) = h no extra
degeneracy

doubled
degeneracy

(b) D and D∗ are
inequivalent

∑
R
χ(Q2

0) = 0 doubled
degeneracy

doubled
degeneracy

(c) D and D∗ are equivalent
to each other but not
to a real representation

∑
R
χ(Q2

0) = −h double
degeneracy

no extra
degeneracy

which transforms according to an irreducible representation D, then we have
three possibilities:

(a) If the representationD is real, or can be transformed by a unitary transfor-
mation into a set of real matrices, then the action of T̂ on these matrices
will yield the same set of matrices. To achieve the required additional
degeneracy, we must have D occur twice.

(b) If representations D and D∗ cannot be brought into equivalence by a uni-
tary transformation, then the corresponding levels must stick together in
pairs to satisfy the time reversal degeneracy requirement.
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Table 16.3. Character table for the double group C4
a

C4 E Ē C4 C̄4 C2 C̄2 C−1
4 C̄−1

4 time basis for

inv. group C4

Γ1 1 1 1 1 1 1 1 1 a z or Sz

Γ2 1 1 −1 −1 1 1 −1 −1 a xy

Γ3 1 1 i i −1 −1 −i −i b −i(x+ iy)

or −(Sx + iSy)

Γ4 1 1 −i −i −1 −1 i i b i(x− iy)

or (Sx − iSy)

Γ5 1 −1 ω −ω i −i −ω3 ω3 b φ(1/2, 1/2)

Γ6 1 −1 −ω3 ω3 −i i ω −ω b φ(1/2,−1/2)

Γ7 1 −1 −ω ω i −i ω3 −ω3 b φ(3/2,−3/2)

Γ8 1 −1 ω3 −ω3 −i i −ω ω b φ(3/2, 3/2)

a In the table i = eiπ/2 and ω = eiπ/4, and Ē, C̄4, C̄2 and C̄−1
4 denote

RE, RC4, RC2 and RC−1
4 where R is rotation by 2π (see Chap. 14)

(c) If representations D and D∗ can be brought into equivalence but neither
can be made all real, then no additional degeneracy need be introduced
and both make up the time reversal degenerate pair.

These results are summarized in Table 16.2 for both the case of no spin and
when spin–orbit interaction is included. We now illustrate these rules with
two cases:

(i) The double group representations of point group C4 (symmorphic);
(ii) The double group representation at the L point in Ge (or Si) where the

levels are degenerate by time reversal symmetry (nonsymmorphic).

For the first illustration, we give in Table 16.3 the character table for the
double group C4 discussed in the literature [47, 48]. We note that the double
group tables contain an entry for time inversion, which summarizes the results
discussed in Sect. 16.1 for the spinless bands. Inspection of this character table
shows that the double group representations involve the 4th roots of unity (as
shown below) and obey the relation χ(Ai) = −χ(Āi) for each of the pairs of
symmetry operations Ai and Āi where Āi = RAi. Note that the character
table originally given in Koster has some misprints with regard to χ(C−1

4 ) =
−χ(C̄−1

4 ), which are corrected in Table 16.3. Table 16.4 clearly shows that
the characters for the Γ5 and Γ6 irreducible representations are time reversal
degenerate pairs, and likewise for the Γ7 and Γ8 irreducible representations.

For the double group representations, we consider the character χ(Q0Q̄0)
in applying the Herring rules which is also known in the literature as the
Frobenius–Schur test. Application of the Frobenius–Schur test for Γ5 gives
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Table 16.4. Characters for Γ5, Γ6, Γ7 and Γ8 irreducible representations in terms
of ω = eiπ/4

E Ē C4 C̄4 C2 C̄2 C−1
4 C̄−1

4

Γ5: ω0 ω4 ω ω5 ω2 ω6 ω7 ω3

Γ6: ω0 ω4 ω7 ω3 ω6 ω2 ω ω5

Γ7: ω0 ω4 ω5 ω ω2 ω6 ω3 ω7

Γ8: ω0 ω4 ω3 ω7 ω6 ω2 ω5 ω

∑
χ(Q0Q̄0) = (1)(−1) + (1)(−1)− ω2 − ω2 + 1 + 1− ω6 − ω6

= −1− 1− i− i+ 1 + 1 + i+ i = 0 , (16.29)

and shows that Γ5 is type “b” under time reversal symmetry. By doing a similar
Frobenius–Schur test for the other double group irreducible representations
of double group C4 we find that the representations Γ6, Γ7 and Γ8 are also
of the b type with respect to time reversal symmetry and this information is
also given in Table 16.3.

For the second illustration involving the L-point levels in Ge, see the E(k)
diagram in Fig. 14.1(b) for the case where the spin–orbit interaction is in-
cluded. The character table appropriate to the L-point (group D3d) is given
in Table 16.5. The character table for the group of the wave vector for the
L point for the diamond structure is given in Table C.18 in the absence of
spin. Since the translation τ d = (a/4)(1, 1, 1) does not enter into any of the
symmetry operations, the classes can be simply represented as in Table 16.5.

The designations for the L-point representations have been added on the
left column of Koster’s table which is given in general in Table 16.5 for a double
group for D3d symmetry. This example shows the importance of checking the
notation used in the literature for dispersion relations (Fig. 14.1(b)) and the
notation used in general tables for double groups (Table 16.5) to verify that
they are internally consistent.

For a Λ point (group D3), the operations E, 2C3 and 3C′2 take k → −k so
each symmetry operation corresponds to an operator of the Q0 type. For the
L-point (group D3d) also, all operations are of the Q0 type, so that for the
representations L1, L2 and L3, we have Σχ(Q0Q̄0) = 12, yielding representa-
tions of type a, in agreement with the character table for D3d (Table 16.5).
For the double group representation L+

6 we obtain

L+
6 = Σχ(Q0Q̄0) = −4− 2 + 0− 4− 2 + 0 = −12 type (c) , (16.30)

where again we write Q0Q̄0 or Q0RQ0 for Q2
0. For the double group repre-

sentation L+
4 , the Frobenius–Schur test yields

L+
4 : Σχ(Q0Q̄0)) = −1− 2 + 3− 1− 2 + 3 = 0 type (b) . (16.31)
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Table 16.5. Character table and basis functions for the double group D3d [48]

D3d E Ē 2C3 2C̄2 3C′2 3C̄′2 I Ī 2S6 2S̄6 3σd 3σ̄d time
inv.

bases

L+
1 Γ+

1 1 1 1 1 1 1 1 1 1 1 1 1 a R

L+
2 Γ+

2 1 1 1 1 −1 −1 1 1 1 1 −1 −1 a Sx

L+
3 Γ+

3 2 2 −1 −1 0 0 2 2 −1 −1 0 0 a (Sx − iSy),

−(Sx + iSy)

L−1 Γ−1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 a zSz

L−2 Γ−2 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 a z

L−3 Γ−3 2 2 −1 −1 0 0 −2 −2 1 1 0 0 a (x− iy),

−(x+ iy)

L+
6 Γ+

4 2 −2 1 −1 0 0 2 −2 1 −1 0 0 c φ(1/2,−1/2)

L+
4 Γ+

5 1 −1 −1 1 i −i 1 −1 −1 1 i −i b φ(3/2,−3/2)

−iφ(3/2, 3/2)

L+
5 Γ+

6 1 −1 −1 1 −i i 1 −1 −1 1 −i i b −(φ(3/2, 3/2)

−iφ(3/2,−3/2))

L−6 Γ−4 2 −2 1 −1 0 0 −2 2 −1 1 0 0 c Γ+
4 × Γ−1

L−4 Γ−5 1 −1 −1 1 i −i −1 1 1 −1 −i i b Γ+
5 × Γ−1

L−5 Γ−6 1 −1 −1 1 −i i −1 1 1 −1 i −i b Γ+
6 × Γ−1

Likewise L+
5 is of type b. Since L+

4 and L+
5 are complex conjugate rep-

resentations, L+
4 and L+

5 form time reversal degenerate pairs. Similarly,
L−4 and L−5 are type b representations and form time reversal degenerate
pairs (see Figs. 14.1(b) and 16.2(b)). For both L+

4 and L+
5 (and likewise

for L−4 and L−5 ) which are type (b) under time reversal symmetry, the
dispersion shown in Fig. 16.2(b) applies. To obtain the regime shown in
Fig. 16.2(c), the crystal should have no spatial inversion symmetry, which
is pertinent to the zinc blende structure. Finally in Table 16.5 we see basis
function entries of the form φ(1/2,−1/2) which denote spherical harmonics
for which the two entries 1/2 and −1/2, respectively, denote j = 1/2 and
mj = −1/2.

With this discussion of time reversal symmetry, we have explained all
the entries to the character tables, and have explained why because of time
reversal symmetry certain bands stick together on the E(k) diagrams, such
as in Fig. 14.1(b).

16.5 Magnetic Groups

If atoms at each lattice site can be represented as a charge distribution ρ(r)
with no particular spin symmetry (paramagnetic or diamagnetic), the ordi-
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Fig. 16.4. (a) The 14 ordinary Bravais lattices on the left and (b) the 22 additional
magnetic Bravais lattices on the right. The open circles represent the time reversed
sites

nary space groups are used. If, however, we have ordered arrangements of
spins, then the time reversal operator (which reverses the spin direction) can
be combined with other group elements to form elements of a new type of
symmetry group. Groups in which the time reversal operator forms group el-
ements are called magnetic space groups and the corresponding point groups
are called magnetic point groups. In this section we present some of the essen-
tial properties of magnetic space groups and give some examples of interest
to solid state physics [54, 70].
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16.5.1 Introduction

When magnetically ordered phases are taken into account, the magnetic
unit cell is often larger than the chemical unit cell, as for example in an
antiferromagnetic system. Additional symmetry elements are introduced (see
Sect. 16.5.2), and as a result many more point groups and space groups are
possible (see Sect. 16.5.3).

There are, in fact, 122 (58 + 2 × 32) magnetic point groups (rather than
32), and 1,651 (1, 191+2×230) magnetic space groups (rather than 230), and
36 (22 + 14) magnetic Bravais lattices rather than 14. The magnetic Bravais
lattices which are important for describing antiferromagnetic structures are
shown in Fig. 16.4(b), and for comparison the 14 ordinary Bravais lattices are
also shown in Fig. 16.4(a), and are further explained below. We will confine
our brief discussion to magnetic single groups (not double groups) and we
shall only discuss magnetic point groups, and showing their connection to
time reversal symmetry.

16.5.2 Types of Elements

Magnetic groups have symmetry elements corresponding to unitary operators
(denoted by Ai) and antielements Mk = T̂Ak corresponding to antiunitary
operators, where T̂ is the antiunitary time reversal operator (see Sect. 16.2).
We show in Fig. 16.5(a) a one-dimensional lattice in which T̂ when combined
with a translation is a symmetry operation. However, by displacing the non-
magnetic white atoms relative to the magnetic shaded atoms in Fig. 16.5(b)
relative to their positions in Fig. 16.5(a), we see that T̂ is no longer a sym-
metry operation. The lowering of the symmetry of the chain of atoms intro-
duced by the spin on the magnetic ion breaks the time reversal symmetry
in Fig. 16.5(b) as the spin-up magnetic species attracts the nonmagnetic ion
relative to the interaction with the spin-down magnetic ion. This structural

Fig. 16.5. Diagram showing a one-dimensional lattice where the white atoms are
nonmagnetic and the shaded atoms are magnetic with the indicated direction of spin
angular momentum: (a) the operation T̂ is combined with translation as a space
group symmetry operation, (b) T̂ is not a symmetry operation of the group, even if
combined with translations
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lattice distortion represents another manifestation of the Jahn–Teller effect
(see Sect. 7.7).

The product of two unitary elements Ai or of two antiunitary elements
Mk yields a unitary element, while the product of a unitary element Ai with
an antiunitary element Mk yields an antiunitary element:

AiAi′ = Ai′′

AiMk = Mk′

MkAi = Mk′′

MkMk′′′ = Ai′′′ . (16.32)

To satisfy these relations, group properties and the rearrangement theorem,
there must be equal numbers of elements of the type Ai and of the type Mk

in a magnetic point group.

16.5.3 Types of Magnetic Point Groups

In classifying the magnetic point groups we must consider three types of point
groups:

(a) 32 ordinary point groups G′ where T̂ is not an element.
(b) 32 ordinary point groups G′ ⊗ T̂ . In these magnetic point groups, all

elements Ai of G′ are contained together with all elements T̂Ai.
(c) 58 point groups G in which half of the elements are {Ai} and half are

{Mk} where Mk = T̂Ak and the {Ai, Ak} form an ordinary point group
G′. Also {Ai} is a subgroup of G′. It is important to emphasize that the
Mk elements are made from Ak elements that are different from the Ai

elements.

Summing the number of types (a), (b), and (c) we obtain (32+32+58) = 122
magnetic point groups. Case (a) can apply to nonmagnetic materials and
some ferromagnetic materials. Case (b) can apply to some antiferromagnetic
materials. Case (c) can apply to magnetic materials with a variety of spin
orderings.

We list in Table 16.6 the 58 magnetic point groups of type (c) and denoted
by G; also included in the table are the 32 ordinary point groups of type (a)
which are denoted by G′ [70]. The 32 point groups of type (b), obtained from
those in type (a) as G′ ⊗ T̂ , are not listed. The magnetic groups of type (c)
are related to elements of a group G′ and a subgroup Hr and are denoted by
G′(Hr). The appropriate group G′ contains the symmetry elements {Ai, Ak}
while the subgroup Hr of G′ only has elements {Ai}.

16.5.4 Properties of the 58 Magnetic Point Groups {Ai, Mk}
We list below some of the properties of the magnetic point groups [type (c)]
that contain both unitary and antiunitary symmetry elements, Ai and Mk =
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Table 16.6. The magnetic point groups of type (a) and type (c)

(Group G′ is a point group and the underscores on the Shubnikov notation denote
elements of G′ to which T̂ has been adjoined. F and AF denote ferromagnetic and
antiferromagnetic ordering, respectively)
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Table 16.6. (continued)
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T̂Ak, respectively. We denote a typical magnetic point group of this category
by G = {Ai,Mk}.
(a) T̂ is not an element in the magnetic point group G (since the identity

element is one of the elements of {Ai} but not of {Ak}).
(b) Ai and Ak are distinct, so that no element in the set {Ai} is also in {Ak}

where {Mk} = {T̂Ak}. If there were one Aj in common, then we could
have T̂Aj in {Mk} and A−1

j in {Ai}, which on multiplication T̂AjA
−1
j

implies that T̂ is in G, in contradiction with property (a).
(c) G′ ≡ {Ai, Ak} is one of the 32 ordinary point groups.
(d) The set Hr = {Ai} forms an invariant unitary subgroup of G. This sub-

group is selfconjugate because conjugation of an element in Ai with any
element in {Mk} written as MkAiM

−1
k yields an element in {Ai} as a re-

sult of (16.32), and likewise the conjugation AiMkA
−1
i yields an element

in {Mk}.
(e) The number of unitary operators Ai = the number of antiunitary op-

erators Mk, to satisfy the multiplication rules in (16.32) and the group
properties of G.

(f) {Ai} is the only coset of Hr in G and {Ak} is the only coset of Hr in G′.
(g) Since Hr and G′ are groups, and properties (e) and (f) apply, then G is

a group of the form
G = Hr + T̂ (G′ −Hr) . (16.33)

(h) From property (g), we see that the procedure for finding magnetic point
groups is to start with one of the 32 point groups G′ and find all invariant
subgroups Hr of index 2 where half of the elements in G′ are in Hr and
half are not. Denoting each such subgroup by Hr we can form a magnetic
group Gr such that

Gr = Hr + T̂ (G′ −Hr) . (16.34)

We denote each magnetic group Gr thus formed by G′(Hr) in which the
relevant G′ and Hr for each Gr are listed. This notation is used in Table 16.6
and the various G′(Hr) can be found in this table.

To illustrate the elements of magnetic point groups, we consider the four
entries under C2h in Table 16.6. We then list below the symmetry elements
of each of the C2h(Hr) magnetic point groups.

C2h(C2h) : E,C2, i, iC2 , (iC2 = σh)

C2h(C2) : E,C2, T̂ i, T̂ iC2

C2h(Ci) : E, i, T̂C2, T̂ iC2

C2h(C1h) : E, iC2, T̂ i, T̂C2 , (16.35)

in which the magnetic point group C2h(C2h) is of type (a), and the other
three are of type (c). Not listed is the magnetic space group C2h ⊗ T̂ of type
(b) which contains the eight symmetry elements {Ai} = {E,C2, i, iC2} and
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{T̂⊗Ai} = {T̂ , T̂C2, T̂ i, T̂ iC2} (see Table A.6 in Appendix A for the character
table for C2h). We note that the time reversal operator of T̂ reverses the sign
of a spin, while the inversion operator i leaves a spin invariant (since the
angular momentum L is even under inversion, while r and p are each odd).

16.5.5 Examples of Magnetic Structures

We give below three examples of magnetic structures in each case illustrating
a different aspect of magnetic structures. First we illustrate an orthorhombic
ferromagnetic structure for which the magnetic unit cell and the chemical unit
cell are the same (see Fig. 16.6).

The symmetry of this magnetic structure is denoted by D2h (C2h) which
denotes a point group D2h from which the subgroup (C2h) forms the set of
symmetry elements {Ai} and the remaining symmetry elements of G′ are
{Ak} where the elements Mk in G are of the form Mk = T̂Ak. We note from
Table 16.6 that D2h (C2h) corresponds to a ferromagnetic structure such as
the one shown in Fig. 16.6. In the paramagnetic state, the proper symmetry
group for this structure in D2h.

The symmetry operations for D2h = D2 ⊗ i are E, C2x, C2y, C2z , i, iC2x,
iC2y, iC2z [see Appendix A for character tables for D2h (Table A.7) and C2h

(Table A.6)]. It is immediately seen that the subgroup of D2h which leaves
the spin invariant consists of the elements {Ai} = E, C2z , i, iC2z, since both
orbital and spin angular momentum are invariant under inversion. These four
elements form the group C2h = C2 ⊗ i, noting again that the spin angular
momentum S is even under inversion. The remaining elements of D2h reverse
the spins, so that the time reversal operator T̂ is needed to keep all the spins

Fig. 16.6. Magnetic spin arrangement in D2h(C2h) symmetry for an orthorhombic
ferromagnetic system
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ferro-magnetically aligned. We therefore obtain {Mk} = T̂C2x, T̂C2y , T̂ iC2x

and T̂ iC2y for the remaining symmetry elements of D2h (C2h). The appropri-
ate Bravais lattice in this case is the orthorhombic-P Bravais lattice for the
nonmagnetic groups (see Fig. 16.4(a)). The magnetic space group D2h(C2h)
is further developed in Problem 16.5.

Next we consider for our second example antiferromagnets with the Rutile
structure as shown in Fig. 16.7. The open circles are the F ions while the
black circles with spins denote the magnetic cations. The point group for this
structure in the paramagnetic state is D4h = D4⊗ i. In the antiferromagnetic
state, each unit cell has one spin up and one spin down cation. The chemical
and magnetic unit cells contain the atoms shown in Fig. 16.7. The space group
symmetry operations for D4h pertinent to the rutile structure are the 16
operations listed below:

1. {E|0} 9. {i|0}
2. {C2|0} 10. {σh|0} = {C2|0}{i|0}
3. {C2ξ|0} 11. {σdξ|0} = {C2ξ|0}{i|0}
4. {C2ν |0} 12. {σdν |0} = {C2ν |0}{i|0}
5. {C4|τ0} 13. {S−1

4 |τ0} = {C4|τ0}{i|0}
6. {C−1

4 |τ0} 14. {S4|τ0} = {C−1
4 |τ0}{i|0}

7. {C2x|τ0} 15. {σvx|τ0} = {C2x|τ0}{i|0}
8. {C2y|τ0} 16. {σvy|τ0} = {C2y|τ0}{i|0} ,

(16.36)

where the axes ξ = (110) and ν = (11̄0) denote twofold axes and the transla-
tion τ 0 = 1/2(a1+a2 +a3) is from the origin at the lower left hand corner of
the figure to the body center of the unit cell (see Fig. 16.7). The point group

Fig. 16.7. Common antiferromagnets MnF2, FeF2 and CoF2 crystallize in the rutile
structure with |a1| = |a2| = a; |a3| = c; c �= a. The diagram emphasizes the magnetic
unit cell for the rutile structure that has the magnetic point group D4h (D2d) which
describes the antiferromagnetic spin alignment of these magnetic materials
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D4h corresponding to these space group operations is found by setting τ0 = 0.
The character table for D4 is given in Table A.18 where D4h = D4 ⊗ i. The
operations listed in (16.36) correspond to the space group for the chemical
unit cell for the rutile structure.

The unitary subgroup that forms the symmetry group for antiferromag-
netic MF2 (M = magnetic cation) consists of the four elements of the symme-
try group D2 {E|0}, {C2|0}, {C2x|τ0}, {C2y|τ0} and four additional elements
formed by combining these with inversion. These eight elements constitute
{Ai} which corresponds to the group D2h = D2 ⊗ i (see Table A.7). From
Fig. 16.7 we see that the operations C2x and C2y invert the spins. The ap-
propriate Bravais lattice for MnF2 is the tetragonal Bravais lattice PI for the
magnetic groups (see Fig. 16.4). If we ignore the fluorine anions, the chem-
ical unit cell would be half as large containing only one magnetic cation.
The magnetic unit cell would then be twice as large as the chemical unit
cell. Nevertheless the magnetic point group for the antiferromagnetic chemi-
cal structure remains D4h (D2h). Further elaboration on this space group is
given in Problem 16.7.

As a third example we consider the magnetic states of EuSe because the
nearest and next-nearest exchange constants are of approximately equal mag-
nitude and of opposite sign, and for this reason EuSe exhibits several dif-
ferent and interesting magnetic phases, depending on the magnetic field and
temperature variables. In Figs. 16.8(a)–(c) we see, respectively, the spin ar-
rangement for the antiferromagnetic (AF-II) two spin (↑↓) phase, the ferri-

Fig. 16.8. Magnetic structure of EuSe in (a) the AF-II phase (↑↓), (b) the ferri-
magnetic phase (↑↑↓), and (c) the antiferromagnetic AF-I phase (↑↑↓↓) in which the
magnetic Eu spins are shown



426 16 Time Reversal Symmetry

magnetic three spin (↑↑↓) phase, and the antiferromagnetic (AF-I) four spin
(↑↑↓↓) phase.

A ferromagnetic phase is also found upon application of a high applied
magnetic field. In all four magnetically ordered phases, the spins in a given
(11̄1) plane are parallel to each other and are oriented along the [011] direction.
The resulting magnetic space group has very low symmetry. For the AF-II
phase, the symmetry elements are {E|0}, {i|0}, T̂{E|τ0}, T̂{i|τ0} in which
the vector τ 0 takes the spins from one sublattice to the other

τ 0 =
1
4
(ax, 0, az) . (16.37)

Thus the magnetic point group is S2 ⊗ T̂ .
If, however, the spins were oriented instead along [11̄1] and [1̄11̄] directions

in alternate (111) planes, then the magnetic symmetry of the group increases
and is C3 ⊗ T̂ . Thus the spin direction is important in determining the mag-
netic point group and the magnetic space group. We note that the number
of sublattices (1, 2, 3, or 4) is also important in determining the symmetry
operations in the magnetic space groups. For some cases it is useful to ignore
the spin directions and just to consider each atom on a given sublattice as
a colored atom. Such groups are called color groups [43]. Color groups have
more symmetry than the magnetic groups.

16.5.6 Effect of Symmetry on the Spin Hamiltonian
for the 32 Ordinary Point Groups

The n lowest energy states for electrons in a paramagnetic center where an
external magnetic field H has been applied can be described by an Effective
Spin Hamiltonian Hspin generally given by [59]:

Hspin = HZ +HF +Hhf +Hshf +HZN +HQ , (16.38)

where the contributions from the electronic Zeeman effect HZ , the fine inter-
action HF , the hyper-fine interaction Hhf , the super-hyper-fine interactions
Hshf , the nuclear Zeeman effect HZN and the nuclear quadrupole interac-
tion HQ are taken into account. Each of these contributions are represented
by tensors, and the symmetries of the system can be used to evaluate the
nonzero and the independent terms in Hspin. The group theory procedure for
dealing with general tensors is discussed in Chap. 18.

It is however interesting to comment here on the influence of symmetries
in the spin Hamiltonian. If we limit ourselves to spin operators S transforming
like angular momentum (invariant under spatial inversion and odd under time
reversal symmetry), it is clear that different Hamiltonians related to each
other by the spatial inversion are identical. Therefore, two groups obtained
from each other by the direct multiplication with the inversion operator will
indeed give the same Hspin. They will be magnetically equivalent.
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Table 16.7. Categories of magnetic equivalence for the 32 ordinary point groups

categories 1 2 3 4 5 6 7 8 9 10 11

C1 C2 D2 C3 D3 C4 D4 C6 D6 T O

S2 C1h C2v S6 C3v S4 C4v C6h C6v Th Td

C2h D2h D3d C4h D2d C3h D3h Oh

D4h D6h

Considering the 32 ordinary point groups, Table 16.7 gives the 11 cate-
gories of magnetically equivalent groups. It is enough to find Hspin for the
lowest symmetry point groups for each of the 11 categories, and the spin
Hamiltonian for the higher symmetry groups will be identical.

Selected Problems

16.1. Consider the space group D4
6h (#194) which we discussed in connec-

tion with the lattice modes for graphite (see Problem 11.1). We will now
concern ourselves with the electronic structure of graphite. Since the Fermi
surfaces are located close to the HK axes in the Brillouin zone, it is im-
portant to work with the group of the wave vector at points H , K and A
(see Fig. 16.9).

(a) Using Appendix D and other literature references [47,54] give the charac-
ter table including double groups for the group of the wave vector at point
K. Classify each of the irreducible representations according to whether
they behave as a, b or c under time reversal symmetry.

(a) Find the compatibility relations as we move away from K toward H .

16.2. Now consider a 2D graphene sheet, which by definition is one atomic
layer of 3D graphite.

(a) What are the symmetry operations for this structure and what is the
appropriate 2D space group?

Fig. 16.9. Brillouin zone and Fermi surfaces for electrons and holes of semimetallic
graphite
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(b) Give the character table for the group of the wave vector at the Γ point
(center of the Brillouin zone), and include the time reversal classification
for the cases where the spin–orbit interaction is neglected and where it is
included.

(c) Repeat part (b) for the group of the wave vector at the K point where the
valence and conduction band are degenerate right at theK point (corner of
the Brillouin zone) and have a linear k dependence as we move away from
the K point. What is the relation between the K and K ′ points in the 2D
Brillouin zone under time reversal symmetry? Consider the symmetry rela-
tion between E↑(k) and E↓(k) in the vicinity of the K andK ′ points for the
linear k bands and for those coming into points K and K ′ with zero slope.

16.3. Consider the zinc blende space group (#227) which lacks inversion sym-
metry. For an energy band with two fold degeneracy, time reversal symmetry
gives the relation E(k, ↑) = E(−k, ↓)) (see Sect. 16.4)

(a) What is the form of E(k) as we move away from k = 0?
(b) What is the form of the constant energy surface for the case where the car-

rier concentration is 1017 carriers/cm3? Does time reversal symmetry have
an effect on the constant energy surface at the Fermi level? What happens
in the presence of a magnetic field for which μ∗B > EF and μ∗B < EF?

16.4. Consider the symmetry operations of the arrangement of the chains of
magnetic and nonmagnetic atoms in Fig. 16.5.

(a) What are the symmetry operations of the chain shown in Fig. 16.5(a)?
What type of magnetic group would be applicable to the group of the
wave vector for k = 0, using the classifications in Sect. 16.5.3.

(b) Repeat (a) for the case of the chain shown in Fig. 16.5(b). Fig. 16.5 for
E(k, ↑) under spatial and time inversion symmetry?

16.5. (a) For the ferromagnetic structure in Fig. 16.6, what is the difference
between the chemical and magnetic unit cell [51]? What are the differences
in the symmetry operations when the system is in the ferromagnetic state
as compared to the paramagnetic states?

(b) What difference do you expect for E(k) for the two cases in (a)? What is
the effect of the time reversal operator on E(k)? Do you expect a change
in E(k) when a phase transition from a paramagnetic to a ferromagnetic
state occurs?

(c) Suppose now that the spins were all aligned by a high magnetic field
along the a axis. What would be the new magnetic group? On physical
arguments, would you expect this to be a stable configuration when you
turn off the magnetic field? Why? What information does group theory
provide regarding this question?

16.6. Suppose that we have a magnetic compound MX (where M is the
magnetic species) that crystallizes in the zinc-blende structure. Suppose that
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Fig. 16.10. In the chalcopyrite structure for ZnGeP2, the lattice is compressed
slightly along the vertical direction and the phosphorus atoms are slightly displaced
from the positions they would have in the zinc blende structure

at the Neél temperature the magnetic species undergo a magnetic phase
transition to an antiferromagnetic two sublattice phase such that by treating
the M↑ and M↓ as different species, the magnetic crystal is described by the
chalcopyrite structure (Fig. 16.10).

(a) Reconfigure the prototype chalcopyrite structure, shown in Fig. 16.10 for
ZnGeP2, to correspond to the antiferromagnetic MX compound with the
two spin states. What is the space group for this structure?

(b) Find the change in the Raman spectra associated with this magnetic phase
transition from the zinc-blende to the chalcopyrite structures shown in
Fig. 16.10.

16.7. Consider the structure shown for MnF2 in Fig. 16.7.

(a) What are the classes formed by the elements in (16.36)? What is the effect
of time reversal symmetry on each of these classes?

(b) What is the appropriate space group for MnF2 in the paramagnetic state?
What changes occur at the magnetic phase transition to an antiferromag-
netic state?

(c) The Raman effect probes certain lattice modes in this structure. Find the
Raman active modes in the paramagnetic phase?

(d) What changes would you expect to see in the Raman spectra when the
MnF2 undergoes a magnetic phase transition to the magnetic D4h(D2d)?

16.8. The ferrites (XFe2O4, X2+ = metallic ion) are important magnetic ma-
terials belonging to the cubic Fd3m (O7

h) space group. To calculate the spin
Hamiltonian Hspin for this material, it is enough to obtain Hspin for one of
the ordinary point groups of class 11 in Table 16.7. Show that the spin Hamil-
tonian can be written in the following form [3, 15, 34, 41]:
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Hspin = gμH ·S−gNμNH ·I +AI ·S +B40(O40 +5O44)+B60(O60 +21O64) ,
(16.39)

where

O40 = 35S4
z + 25S3

z − 30S(S + 1)S2
z + 3S2(S + 1)2 − 6S(S + 1) ,

O44 = (1/2)(S4
+ + S4

−) ,
O60 = 231S6

z − 315S(S + 1)S4
z + 735S4

z + 105S2(S + 1)2S2
z − 525S(S + 1)S2

z

+294S2
z − 5S3(S + 1)3 + 40S2(S + 1)2 − 60S(S + 1) ,

O64 = (1/2)(S4
+ + S4

−)(11S2
z − S(S + 1)− 38) .


