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Application of Double Groups

to Energy Bands with Spin

In this chapter we apply the group theoretical background for the electron
spin and the spin–orbit interaction (which is discussed in Chap. 14) to the
treatment of electronic energy band models for solids (which is discussed in
Chaps. 12 and 13 for the case when the electron spin is neglected). By includ-
ing the spin–orbit interaction we can also discuss the effective g-factor, which
together with the effective mass tensor, characterize the properties of a semi-
conductor in a magnetic field. We also review the Slater–Koster method for
determination of the electronic energy band structure of crystalline solids by
interpolation and extrapolation of energy eigenvalues and eigenfunctions that
are accurately known at a few high symmetry points in the Brillouin zone
either from ab initio calculations or from experiments.

15.1 Introduction

The one-electron Hamiltonian including spin–orbit interaction is written as

H =
p2

2m
+ V (r) +

�

4m2c2
(∇V × p) · σ , (15.1)

where σ is the dimensionless spin operator [S = (�/2)σ]. The first two terms
of (15.1) denote the kinetic energy and periodic potential of the one-electron
Hamiltonian in a simple periodic potential V (r) that reflects the crystal sym-
metry, and the third term denotes the spin–orbit interaction H′

SO

H′
SO =

�

4m2c2
(∇V × p) · σ , (15.2)

where H = H0 + H′
SO. The Hamiltonian (15.1) is appropriate when the

spin–orbit splittings are significant compared with typical energy gaps. The
presence of the spin operator σ in the spin–orbit term H′

SO requires the use
of spin-dependent wave functions with double group symmetry designations
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for the energy bands. Since the magnitude of the spin–orbit interaction is
comparable to energy band gaps for many important electronic materials, it
is important in these cases to consider the spin–orbit interaction explicitly
when carrying out energy band calculations.

Thus explicit band calculations of E(k) with spin–orbit interaction have
been carried out using all the standard techniques for energy band calcula-
tions. Quite independent of the particular calculational technique that is used,
group theoretical techniques are introduced to classify the states and to bring
the secular equation into block diagonal form. To illustrate these points we
consider explicitly the use of group theory (i.e., double groups as discussed in
Chap. 14) to treat the electronic energy bands for several situations, including
the empty lattice, the nearly free electron approximation, for k · p perturba-
tion theory and the Slater–Koster method. These examples are also designed
to provide some experience with the handling of double groups.

15.2 E(k) for the Empty Lattice
Including Spin–Orbit Interaction

In this section the calculation of the empty lattice electronic energy dispersion
relations is considered in the presence of spin–orbit interaction following the
discussion in Chap. 12 for the case where the electron spin is neglected.

Referring to (15.2) we see that both V (r) and ∇V (r) vanish for the empty
lattice, and therefore it is only the change in irreducible representations from
single group to double group representations that needs to be considered.
Thus when considering the plane waves labeled by the reciprocal lattice vec-
tors {Kni} in Table 12.2, we should now use double group irreducible repre-
sentations, which are found by taking the direct product of each single group
irreducible representation Γi with the spinor D1/2. Here the spinor is demon-
strated for the cubic O group where D1/2 transforms as Γ6 and the pertinent
direct products are easily obtained from Table 14.7. As an example of the
effect of spin on the empty lattice, consider the E(k) diagram in Fig. 12.1 for
the FCC empty lattice. The ground state label would now become Γ6, and for
the next excited state we would have

Γ6 ⊗ Γ1 + Γ6 ⊗ Γ2′ + Γ6 ⊗ Γ15 + Γ6 ⊗ Γ25′ = 2(Γ6 + Γ7 + Γ8) ,

but the eigenstates now could be also labeled more completely by using also
the single group irreducible representations to which they relate:

[Γ6(Γ1) + Γ6(Γ15)] + [Γ7(Γ2′) + Γ7(Γ25′)] + [Γ8(Γ15) + Γ8(Γ25′)] .

A similar procedure could then be applied to all the labels in Fig. 12.1 using the
appropriate character tables for the various symmetry points in the Brillouin
zone. The curves in Fig. 12.1 would not change because both V (r) = 0 and
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∇V (r) = 0, and because the Kramers degeneracy applies. Introduction of spin
into the nearly free electron approximation requires the use of double groups.

15.3 The k · p Perturbation with Spin–Orbit Interaction

Schrödinger’s equation including the spin–orbit interaction can be written as
[
p2

2m
+ V (r) +

�

4m2c2
(∇V × p) · σ

]
ψnk(r) = En(k)ψnk(r) , (15.3)

in which the Bloch functions ψnk(r) for H′
SO include spinors ψnk↑(r) and

ψnk↓(r) rather than the simple wave functions considered in Chap. 13.
These spinor basis functions can be written in more expanded nota-
tion as

ψnk↑(r) = eik·runk↑(r)

ψnk↓(r) = eik·runk↓(r) , (15.4)

where the arrow in the subscript of ψnk↑(r) means that the state is
generally spin up or the expectation value of σz in this state is pos-
itive, and the down arrow gives a negative expectation value for σz so
that

〈ψnk↑|σz|ψnk↑〉 > 0

〈ψnk↓|σz|ψnk↓〉 < 0 . (15.5)

The Bloch states are only pure spin up or spin down states when the spin–
orbit interaction is neglected (H′

SO ≡ 0). The spin–orbit interaction mixes
the spin-up and spin-down partners, and, as was discussed in Chap. 14 for
the atomic case, the |j, �, s,mj〉 representation becomes the appropriate ir-
reducible representation for the spin–orbit coupled system rather than the
|�, s,m�,ms〉 representation.

Let us focus our attention on one of the periodic spinor unk(r) functions
(either of the components ↑ or ↓ in (15.4) which diagonalize the Schrödinger
equation (15.3)). Using k·p perturbation theory, the corresponding differential
equation for unk(r) is

[
p2

2m
+ V (r) +

�

4m2c2
(∇V × p) · σ

]
unk(r)

+
�k

m
·
(

p +
�

4mc2
σ ×∇V

)
unk(r)

=
[
En(k)− �

2k2

2m

]
unk(r)

(15.6)
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in which we have made use of the vector identities:

(A×B) ·C = (B ×C) ·A = (C ×A) ·B , (15.7)

or more explicitly

(∇V × p) · σeik·runk(r) = (σ ×∇V ) · p eik·runk(r) , (15.8)

and
peik·runk(r) = eik·r [�kunk(r) + punk(r)] . (15.9)

If we identify terms in (15.6) with an unperturbed Hamiltonian H0 and a per-
turbation Hamiltonian H′

k·p we obtain

H0 =
p2

2m
+ V (r) +

�

4m2c2
(∇V × p) · σ , (15.10)

and

H′
k·p =

�k

m
·
(

p +
�

4mc2
σ ×∇V

)
, (15.11)

so that Rayleigh–Schrödinger perturbation theory for energy bands near k =
0 yields the following expression for the nondegenerate state Γi [see (13.4)
and (13.9)]

EΓi
n (k) = EΓi

n (0) + (uΓi
n,0|H′|uΓi

n,0) +
∑
n′ �=n

(uΓi

n,0|H′|uΓj

n′,0)(u
Γj

n′,0|H′|uΓi

n,0)

EΓi
n (0)− E

Γj

n′ (0)
,

(15.12)
in which the unperturbed functions uΓi

n,0 are evaluated at k = 0 (the expansion
point for the k · p perturbation) and Γj labels the irreducible representations
for bands n′. The sum in (15.12) is over states Γj that couple to state Γi

through the k · p perturbation Hamiltonian given by (15.11). We note that
(15.12) has the same form as the corresponding expression without spin–orbit
interaction (13.9) except that in (15.12):

(a) The unperturbed Hamiltonian yielding the energy eigenvalues at k = 0
explicitly contains a spin–orbit term.

(b) The k · p perturbation Hamiltonian explicitly contains the spin operator
and a spin–orbit term.

(c) The irreducible representations Γi and Γj are both double group repre-
sentations.

In treating k·p perturbation theory without explicitly considering the electron
spin (see Chap. 13), we have three possibilities: nondegenerate levels, degen-
erate (or nearly degenerate) levels that are treated in first-order degenerate
perturbation theory, and degenerate levels that are treated in second-order de-
generate perturbation theory. In all three of these cases, we use group theory
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to determine which are the nonvanishing matrix elements of a vector operator
taken between double group states, and which of the nonvanishing matrix ele-
ments are equal to each other. More explicitly, for the case of a crystal with Oh

symmetry, all the Γi and Γj representations have either Γ±6 , Γ
±
7 and Γ±8 sym-

metry at k = 0 since the spatial part of the wavefunctions transform according
to one of the five ordinary irreducible representations and the direct product
of an ordinary irreducible representation with the spinor D+

6 yields one of the
double group representations. By inspection, we find that for the Oh group all
the irreducible representations Γi are at least twofold degenerate. But this de-
generacy is maintained for all k values and is lifted only by the application of
an external (or internal) magnetic field. This twofold degeneracy, know as the
Kramers degeneracy is generally found in the absence of a magnetic field. We
therefore look for this degeneracy when working practical problems, because
it greatly reduces the labor in dealing with problems involving spin. Because
of this Kramers degeneracy, we can effectively use nondegenerate perturbation
theory to deal with twofold levels such as the Γ±6 and Γ±7 levels occurring in
many applications.

Group theory can be used to greatly simplify the k ·p expansion for one of
the Γ±6 or Γ±7 levels. For example, take Γi = Γ+

6 and note that the generalized
momentum operator P including the spin–orbit interaction explicitly

P = p +
�

4mc2
σ ×∇V (15.13)

transforms like the Γ−15 irreducible representation. The generalized momentum
operator P transforms as Γ−15 whether or not the spin–orbit interaction is
included, since p is a vector and so is (σ ×∇V ), both being radial vectors.
Since Γ+

6 ⊗Γ−15 = Γ−6 +Γ−8 and since Γ+
6 is orthogonal to Γ−6 and Γ−8 , we have

no linear k term in the k · p expansion of (15.12). In the quadratic term we
can only have intermediate states with Γ−6 and Γ−8 symmetry. For example,
if the spin–orbit interaction is neglected for a crystal with Oh symmetry, then
a nondegenerate Γ+

1 state is coupled by the k·p perturbation Hamiltonian only
to a Γ−15 intermediate state (see Sect. 13.3). When the spin–orbit interaction
is included, the Γ+

1 and Γ−15 states become the following double group states
(see Table 14.7):

Γ+
1 → Γ+

6

Γ−15 → Γ−6 + Γ−8 , (15.14)

so that, with the spin–orbit interaction, a Γ+
6 band will couple to bands with

Γ−6 and Γ−8 symmetries. We note that bands with Γ−8 symmetry can arise
from single-group bands with Γ−12, Γ

−
15 and Γ−25 symmetries. In this sense the

spin–orbit interaction gives more possibilities for immediate states.
Again we can use group theory to show relations between the various

nonvanishing matrix elements of P , and as before, only a very small number
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of matrix elements are independent. To study these matrix elements we use
the basis functions for the double group irreducible representations discussed
in Sects. 14.5–14.7.

15.4 E(k) for a Nondegenerate Band
Including Spin–Orbit Interaction

In this section we discuss the form of E(k) for a nondegenerate band including
spin–orbit interaction while in Sect. 15.5 the corresponding discussion is given
for degenerate energy bands, which is followed by a discussion of the effective
g-factor in Sect. 15.6, which is a topic that arises because of the presence of
spin.

The form of E(k) for a nondegenerate band is developed in Sect. 15.3
through nondegenerate k · p perturbation theory see (15.12) by considering
the form of the k ·p matrix elements implied by group theory. Since p and P
both transform as Γ−15, the group theory is not changed and it is only in the
numerical evaluation of the specific terms that we need distinguish between p
and P . In this section, we illustrate the theory by an example, the nondegen-
erate Γ+

6 band for a cubic crystal with Oh symmetry for the group of the wave
vector at k = 0. From Sect. 14.5, we take as basis functions for the Γ+

6 state:

Γ+
6 :

{
1 ↑
1 ↓ . (15.15)

Within the framework of k·p perturbation theory, the Γ+
6 state couples only to

Γ−6 and Γ−8 since Γ+
6 ⊗Γ−15 = Γ−6 +Γ−8 . For the Γ−6 and Γ−8 states, we use the

basis functions derived from (14.41) and (14.46), together with the extension
Lx, Ly, Lz → x, y, z discussed in Sect. 14.7 so that for Γ−6 (Γ−15) we write

|j,mj〉 State Basis Function∣∣ 1
2 ,

1
2

〉 (
1√
3

)
[(x+ iy) ↓ −z ↑]∣∣ 1

2 ,− 1
2

〉 (
1√
3

)
[−(x− iy) ↑ +z ↓] ,

(15.16)

and for Γ−8 (Γ−15) we write

|j,mj〉 State Basis Function∣∣ 3
2 ,

3
2

〉 (
1√
2

)
(x+ iy) ↑∣∣ 3

2 ,
1
2

〉 (
1√
6

)
[(x+ iy) ↓ +2z ↑]∣∣ 3

2 ,− 1
2

〉 (
1√
6

)
[(x− iy) ↑ +2z ↓]∣∣ 3

2 ,− 3
2

〉 (
1√
2

)
(x− iy) ↓ .

(15.17)
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We can read off the basis functions relating the |j,mj〉 representation and
the |�sm�ms〉 representation for the Γ−6 (j = 1/2) and Γ−8 (j = 3/2) states
that are derived from the Γ−15 level directly from (15.16) and (15.17). The x, y
and z in (15.16) and (15.17) refer to the three partners of the Γ−15 state. For
this case there are no nonvanishing matrix elements in (15.12) in first-order
perturbation theory. In second-order, the nonvanishing terms are

(
1 ↑ |Px|

(
1√
2

)
(x+ iy) ↑

)
=
(

1√
2

)
(1|Px|x)

(
1 ↑ |Py |

(
1√
2

)
(x+ iy) ↑

)
=
(

i√
2

)
(1|Py|y)

(
1 ↑ |Pz |

(
1√
6

)
{(x+ iy) ↓ +2z ↑}

)
=
(

2√
6

)
(1|Pz|z)

(
1 ↑ |Px|

(
1√
6

)
{(x− iy) ↑ +2z ↓}

)
=
(

1√
6

)
(1|Px|x)

(
1 ↑ |Py |

(
1√
6

)
{(x− iy) ↑ +2z ↓}

)
= −

(
i√
6

)
(1|Py|y)

(
1 ↑ |Pz |

(
1√
3

)
{(x+ iy) ↓ −z ↑}

)
= −

(
1√
3

)
(1|Pz |z)

(
1 ↑ |Px|

(
1√
3

)
{(−x+ iy) ↑ +z ↓}

)
= −

(
1√
3

)
(1|Px|x)

(
1 ↑ |Py |

(
1√
3

)
{(−x+ iy) ↑ +z ↓}

)
=
(

i√
3

)
(1|Py|y) . (15.18)

Summing up the second-order terms and utilizing the equality

(1|Px|x) = (1|Py|y) = (1|Pz |z) , (15.19)

we obtain

EΓ+
6 (k) = EΓ+

6 (0) +
�

2|(1|Px|x)|2
m2Eg

{
1
3
k2

x +
1
3
k2

y +
1
3
k2

z

}

+
�

2|(1|Px|x)|2
m2(Eg +Δ)

{
1
2
k2

x +
1
2
k2

y +
2
3
k2

z +
1
6
k2

x +
1
6
k2

y

}

= EΓ+
6 (0) +

�
2k2

m2
|(1|Px|x)|2

{
1

3Eg
+

2
3(Eg +Δ)

}
, (15.20)

where Eg and Eg + Δ are defined in Fig. 15.1. One can note that the en-
ergy bands in (15.12) have subscripts n and n′ to denote their band index
identification. The EΓ+

6 (k) in (15.20) denotes the s-band lying low in the
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Fig. 15.1. Energy versus k at the Γ point showing the effect of the spin–orbit
interaction in splitting the p-level. The relevant bands are labeled by the double
group representations for a cubic group near k = 0 with Oh symmetry

valence band which through k · p perturbation theory is shown to couple to
the conduction band levels with Γ−6 and Γ−8 symmetries arising from the
conduction p bands (see Fig. 15.1).

15.5 E(k) for Degenerate Bands
Including Spin–Orbit Interaction

In dealing with k · p perturbation theory for degenerate states we again use
basis functions such as are given by (14.41) and (14.46) to classify the degen-
erate states. For example, instead of the (3× 3) secular equation for p-bands
(Γ−15 symmetry) without spin–orbit coupling that was discussed in Sect. 13.5,
inclusion of the spin–orbit interaction leads to solution of a (6 × 6) secu-
lar equation. This (6 × 6) equation assumes block diagonal form containing
a (4 × 4) block with Γ−8 symmetry and a (2 × 2) block with Γ−6 symmetry,
because the spin functions transform as D1/2 or Γ+

6 and because

Γ+
6 ⊗ Γ−15 = Γ−6 + Γ−8 , (15.21)

where Γ−6 corresponds to a j = 1/2 state and Γ−8 to a j = 3/2 state (see
Fig. 15.1). Thus the Γ−15 conduction band for the case of no spin becomes Γ−6
and Γ−8 when spin–orbit interaction is included (see Fig. 15.1).

An important application of degenerate k ·p perturbation theory including
the effects of spin–orbit interaction is to the valence band of the group IV
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and III–V compound semiconductors. A description of E(k) for the valence
band is needed to construct the constant energy surfaces for holes in these
semiconductors. The k · p perturbation theory method is useful for analysis
of cyclotron resonance measurements on holes in group IV and III–V semi-
conductors, which were studied in the 1950s and 1960s for 3D crystals and
40–50 years later these measurements are being used to study low-dimensional
nanostructured systems.

One way to solve for the energy levels of the valence band of a group IV
semiconductor about the valence band maximum k = 0 (Γ+

25 single group
level) is to start with the (6 × 6) matrix labeled by the double group basis
functions. The secular equation is constructed by considering

H = H0 +H′
k·p , (15.22)

in which the matrix elements forH′
k·p vanish in first-order. Therefore in degen-

erate second-order perturbation theory we must replace each matrix element
〈i|H′|j〉 by

〈i|H′|j〉+
∑
α

〈i|H′|α〉〈α|H′|j〉
Ei − Eα

, (15.23)

in which H′ denotes the k · p perturbation Hamiltonian (see Sect. 13.5), and
i, j, α all denote double group irreducible representations. In this case we ob-
tain the appropriate basis functions for the Γ+

7 and Γ+
8 states from the com-

bination that we previously derived using the raising operator J+ = L+ + S+

see (14.41) and (14.46) and making the transcription Lx, Ly, Lz → εx, εy, εz

discussed in Sect. 14.7. Thus for the Γ+
7 (Γ+

25) states, the basis functions are

|j,mj〉 State Basis Function∣∣1
2 ,

1
2

〉
μ1 = 1√

3
[(εx + iεy) ↓ −εz ↑]∣∣1

2 ,
1
2

〉
μ2 = 1√

3
[−(εx − iεy) ↑ +εz ↓] ,

(15.24)

and for the Γ+
8 (Γ+

25) states, the basis functions are

|j,mj〉 State Basis Function∣∣ 3
2 ,

3
2

〉
ν1 = 1√

2
(εx + iεy) ↑∣∣ 3

2 ,
1
2

〉
ν2 = 1√

6
[(εx + iεy) ↓ +2εz ↑]∣∣ 3

2 ,− 1
2

〉
ν3 = 1√

6
[(εx − iεy) ↑ +2εz ↓]∣∣ 3

2 ,− 3
2

〉
ν4 = 1√

2
(εx − iεy) ↓ ,

(15.25)

in which the states Γ+
7 and Γ+

8 are labeled by |j,mj〉 and the components of
the function εi relate to x, y, z partners according to
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εx = yz

εy = zx

εz = xy . (15.26)

In solving for E(k) for the valence band of a semiconductor, such as germa-
nium, we use the unperturbed and perturbed Hamiltonians given by (15.10)
and (15.11), respectively. The states used to solve the eigenvalue problem are
labeled by the wave functions that diagonalize the “unperturbed” Hamiltonian
H0 of (15.10). Since H′

k·p transforms as Γ−15 and since Γ−15 ⊗ Γ+
7 = Γ−7 + Γ−8 ,

we conclude that H′
k·p does not couple band Γ+

7 to band Γ+
7 . This same result

follows more easily just from parity arguments (i.e., the evenness and oddness
of states for systems exhibiting inversion symmetry).

A solution to the resulting (6× 6) secular equation involves explicit com-
putation of matrix elements as was done for the spinless case in Sect. 13.5. For
brevity, we will not include a detailed evaluation of all the matrix elements,
but we will instead just summarize the results. For the Γ+

7 (Γ+
25) level, the

dispersion relation (see Fig. 14.1) E(k) assumes the form

E(Γ+
7 ) = k2

(
�

2

2m
+ 4C1 +

4
3
C2 + C3

)
, (15.27)

where

C1 =
�

2

m2

⎧⎨
⎩

∑
Γ−8 (Γ−12)

|〈Γ+
7 |Px|Γ−8 〉|2
E0 − E�

+
∑

Γ−8 (Γ−25)

|〈Γ+
7 |Px|Γ−8 〉|2
E0 − E�

⎫⎬
⎭

C2 =
�

2

m2

∑
Γ−8 (Γ−15)

|〈Γ+
7 |Px|Γ−8 〉|2
E0 − E�

C3 =
�

2

m2

∑
Γ−7 (Γ−2 )

|〈Γ+
7 |Pz|Γ−7 〉|2
E0 − E�

, (15.28)

in which
P = p +

�

4m2c2
(σ ×∇V ) , (15.29)

and E� is an intermediate state with the indicated symmetries. Since bands
with Γ−12 and Γ−25 symmetries do not lie close to the valence band Γ+

25 in
a typical cubic semiconductor, we would expect C1 to be much smaller than
C2 or C3.

The solution for the Γ+
8 level in the valence band is a good deal more

complicated than that for the Γ+
7 level, and yields the result

E[Γ+
8 (Γ+

25)] = A k2 ±
√
B2k4 + C2(k2

xk
2
y + k2

yk
2
z + k2

zk
2
x) , (15.30)
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where

A = �
2

2m + 2
3E1 + 2E2 + E3 + 5E4 + 1

2E5

B2 = 4
9E

2
1 + 4E2

2 + 16E2
4 + 1

4E
2
5 − 8

3E1E2 + 16
3 E1E4

− 2
3E1E5 − 16E2E4 + 2E2E5 − 4E4E5

C2 = − 9
16E

2
5 + 16E1E2 − 32E1E4 + E1E5 − 9E2E5 + 18E4E5 ,(15.31)

and where

E1 =
�

2

m2

∑
Γ−6 (Γ−15)

|〈Γ+
8 |Px|Γ−6 〉|2
E0 − E�

E2 =
�

2

m2

∑
Γ−7 (Γ−2 )

|〈Γ+
8 |Px|Γ−7 〉|2
E0 − E�

E3 =
�

2

m2

∑
Γ−8 (Γ−15)

|〈Γ+
8 (Γ+

25)|Pz |Γ−8 (Γ−15)〉|2
E0 − E�

E4 =
�

2

m2

∑
Γ−8 (Γ−25)

|〈Γ+
8 (Γ+

25)|Pz |Γ−8 (Γ−25)〉|2
E0 − E�

E5 =
�

2

m2

∑
Γ−8 (Γ−12)

|〈Γ+
8 (Γ+

25)|Pz |Γ−8 (Γ−12)〉|2
E0 − E�

. (15.32)

In (15.32), E4 and E5 are expected to be small using arguments similar to
those given in (15.28) for the E[Γ+

7 (Γ+
25)] band dispersion. Because of the

E0 − E� denominator that enters second-order degenerate perturbation the-
ory, the most important contributions to k ·p perturbation theory come from
bands lying close in energy to the E0 level, which in this case refers to the
Γ -point valence band energy extrema. For germanium the levels lying rel-
atively close to the Fermi level have Γ+

25, Γ
+
1 , Γ

−
2 and Γ−15 symmetries (see

Fig. 14.1) so that only the double group states derived from these states will
contribute significantly to the sums in (15.32). The far-lying levels only con-
tribute small correction terms. See Problem 15.2 for more details on the so-
lutions to E[Γ+

8 (Γ+
25)] and E[Γ+

7 (Γ+
25)]. To construct E(k) throughout the

Brillouin zone as in Fig. 14.1, we use compatibility relations to move away
from k = 0, and then we use different compatibility relations to get to the BZ
boundary.

Although the spin–orbit perturbation term contained in H0 in (15.10)
does not depend on k, the resulting energy bands show a k-dependent
spin–orbit splitting. For example, in Fig. 14.1 we note that the spin–
orbit splitting of the Γ+

8 (Γ+
25) level is Δ = 0.29 eV at the Γ point in
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Ge while along the Λ axis, the splitting is only about 2/3 this value
and remains constant over most of the Λ axis. For the corresponding
levels along the Δ or (100) direction, the spin–orbit splitting is very
much smaller (see Fig. 14.1). When the spin–orbit interaction is weak,
it is convenient to deal with this interaction in perturbation theory. We
note that the spin–orbit interaction can be written in a diagonal form
using the |j,mj〉 representation. Therefore instead of writing the wave-
functions for the unperturbed problem in the |�, s,m�,ms〉 representa-
tion, as we did here, it is convenient to use the |j,mj〉 representation
for the whole perturbation theory problem. A classic work on spin–
orbit interaction in solids [33] has been applied to k · p perturbation
theory [31].

15.6 Effective g-Factor

One of the important applications of double groups in solid-state physics is
to the treatment of the effective g-factor which directly relates to the electron
spin. In calculating the effective g-factor (geff), we employ k · p perturbation
theory with spin, and show that in a magnetic field B, new terms arise in
the one-electron Hamiltonian. Some of these new terms have the symmetry
of an axial vector (e.g., the magnetic moment μeff), giving rise to an inter-
action μeff · B. We review first the origin of the effective g-factor in solid
state physics and show the important role of group theory in the evaluation
of the pertinent matrix elements. In this problem we consider three perturba-
tions:

(a) Spin–orbit interaction,
(b) k · p perturbation,
(c) Perturbation by a magnetic field.

We will see that the effective one-electron Hamiltonian for an electron in
a solid in an applied magnetic field can be written as

Heff =
1

2m∗
αβ

(
p− e

c
A
)2

− geffμBmsB , (15.33)

which implies that in effective mass theory, the periodic potential is replaced
by both an effective mass tensor and an effective g-factor. Just as the effective
mass of an electron can differ greatly from the free electron value, so can
the effective g-factor differ greatly from the free electron value of 2. To see
how this comes about, let us consider energy bands about a band extrema
in a crystal with Oh symmetry. The discussion given here follows closely
that given for k · p perturbation theory in Chap. 13, and as expanded in this
chapter by including the spin–orbit interaction.
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Every entry in the secular equation for the k · p Hamiltonian is of the fol-
lowing form since there are no entries in first-order that couple the degenerate
states:

�
2k2

2m
δn,n′ +

∑
n′′

〈n|H′|n′′〉〈n′′|H′|n′〉
En − En′′

, (15.34)

where
∑

n′′ denotes the sum over states outside the nearly degenerate set
(NDS, see Sect. 13.5) and where we are assuming that every member in
the NDS is of approximately the same energy, like the situation for degen-
erate p-bands or of strongly coupled s and p bands. The k · p perturba-
tion Hamiltonian is either H′ = (�/m)k · p for the spinless problem or it is
H′ = (�/m)k ·P for the problem with spin, where P = p+(�/4mc2)σ×∇V .
With this identification ofH′ we can rewrite the entries to the secular equation
(15.34) as

∑
αβ

Dnn′αβkαkβ =
∑
αβ

kαkβ

{
�

2

2m
δnn′δαβ +

�
2

m2

∑
n′′

〈n|Pα|n′′〉〈n′′|Pβ |n′〉
E

(0)
n − E

(0)
n′′

}
,

(15.35)

where
∑

αβ denotes a sum on components of the k vectors, and
∑

n′′ denotes
a sum over members outside the NDS, and where Dnn′αβ denotes the term
in curly brackets, and depends on the band indices n, n′. The eigenvalues are
found by solving the secular equation

∑
n′

⎡
⎣∑

αβ

Dnn′αβkαkβ − Eδnn′

⎤
⎦ fn′ = 0 . (15.36)

Equation (15.36) is the eigenvalue problem in zero magnetic field. The same
form for the secular equation also applies when B �= 0. This equation sym-
bolically represents the problem with spin if the fn′ functions are taken
to transform as irreducible representations of the crystal double group and
the P vectors are chosen so that they include the spin–orbit interaction
P = p + (�/4mc2)(σ ×∇V ).

In an external magnetic field we replace the operator p → p − (e/c)A
(where A is the vector potential, and the magnetic field B is related to A by
B = ∇ ×A), in the Hamiltonian and from this it follows generally that in
(15.36) we must make the transcription

�k → �

i
∇− e

c
A , (15.37)

when a magnetic field is applied. The relation (15.37) is called the Kohn–
Luttinger transcription and is widely used in the solution of magnetic field
problems in semiconductor physics. As a result of (15.37), k in a magnetic
field becomes a noncommuting operator, rather than just a simple commuting
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operator in zero magnetic field. Let us, for example, select a gauge for the
vector potential

Ax = −By (15.38)

Ay = 0 (15.39)

Az = 0 , (15.40)

so that B = Bẑ, and from (15.37), �kz becomes

�kx =
�

i

∂

∂x
+
e

c
By , (15.41)

�ky =
�

i

∂

∂y
, (15.42)

so that kx and ky no longer commute and we obtain the commutation relation

[kx, ky] =
ieB

�c
. (15.43)

The commutation relation (15.43) tells us that the amount by which the
operators kx and ky fail to commute is proportional to B. We note that all
other pairs of wave vector components, such as [kx, kz], etc. still commute.
Since the order of operators is important in a magnetic field, we will need to
rewrite the secular equation (15.36) when B �= 0 in terms of a symmetric and
an antisymmetric part:

Dnn′αβkαkβ =
1
2
DS

nn′αβ {kα, kβ}︸ ︷︷ ︸
anticommutator

+
1
2
DA

nn′αβ [kα, kβ ]︸ ︷︷ ︸
commutator

, (15.44)

where the symmetric part is

DS
nn′αβ =

1
2

[Dnn′αβ +Dnn′βα] , (15.45)

and the antisymmetric part is

DA
nn′αβ =

1
2

[Dnn′αβ −Dnn′βα] , (15.46)

in which the commutator is [kα, kβ ] = kαkβ − kβkα and the anticommutator
is {kα, kβ} = kαkβ + kβkα. Thus the symmetric part DS

nn′αβ can be written
explicitly as

DS
nn′αβ =

�
2

2m
δnn′δαβ +

�
2

2m2

∑
n′′

〈n|Pα|n′′〉〈n′′|Pβ |n′〉+ 〈n|Pβ |n′′〉〈n′′|Pα|n′〉
En(0)− En′′(0)

(15.47)
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and gives the effective mass tensor through the relation

1
m∗

αβ

=
∂2En

�2∂kα∂kβ
. (15.48)

Since the electron spin is now included, the states in (15.47) are labeled by
irreducible representations of the double groups and P is a function of σ, as
seen in (15.11).

The antisymmetric part DA
nn′αβ is from the above definition:

DA
nn′αβ =

�
2

2m2

∑
n′′

〈n|Pα|n′′〉〈n′′|Pβ |n′〉 − 〈n|Pβ |n′′〉〈n′′|Pα|n′〉
En(0)− En′′(0)

. (15.49)

In the case of a spinless electron in a cubic crystal, DA
nn′αβ would vanish

identically because there is only one independent momentum matrix element
in cubic Oh symmetry in the absence of a magnetic field. If now we also include
the electron spin and the double group representations, these arguments do
not apply and we will find that DA

nn′αβ does not generally vanish and in fact
contributes strongly to the effective g-factor. By way of comparison, the zero
magnetic field eigenvalue problem is

∑
n′

⎡
⎣∑

αβ

Dnn′αβkαkβ − Eδnn′

⎤
⎦ fn′ = 0 , (15.50)

and the magnetic field eigenvalue problem then becomes

∑
n′

⎧⎨
⎩
∑
αβ

1
2
[
DS

nn′αβ{kα, kβ}+DA
nn′αβ [kα, kβ ]

]− μBσ ·B − Eδnn′

⎫⎬
⎭ fn′ = 0 ,

(15.51)
where μB is the Bohr magneton

μB = − |e|�
2mc

,

and σ = 2S/�. The term DS
nn′αβ gives rise to a replacement of the periodic

potential by an effective mass tensor. In computing m∗
αβ we ordinarily neglect

the difference between p and P .
In the presence of a magnetic field, the wavevectors k are operators which

act on the effective mass wave functions fn′ . From (15.43) we see that the
components of the wave vector operator do not commute, so that

[kα, kβ ] =
ieBγ

�c
, (15.52)

and the commutator in (15.52) vanishes in zero magnetic field, as it should.
Here the α, β, γ directions form a right-handed coordinate system. The term
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DA
nn′αβ vanishes if there is no spin. The commutator [kα, kβ ] transforms as

an axial vector. Because of the form of DA
nn′αβ given in (15.49), we see that

DA
nn′αβ also transforms as an axial vector. Therefore the term DA

nn′αβ has the
same symmetry properties as −μBσ and gives rise to an effective magnetic
moment different from the free electron value of the Bohr magneton μB. If we
now write

[kx, ky] =
ieBz

�c
= iBz

(
e�

2mc

)(
2m
�2

)
= iμBBz

2m
�2

, (15.53)

then

DA
N ′s[kx, ky] =

iBz

m
μB

∑
n′′

〈n|Px|n′′〉〈n′′|Py |n′〉 − 〈n|Py|n′′〉〈n′′|Px|n′〉
En(0)− En′′(0)

,

(15.54)
so that the effective magnetic moment of an electron in a crystal is

μ∗αβ = |μB|
[
δαβ +

i

m

∑
n′′

〈n|Pα|n′′〉〈n′′|Pβ |n〉 − 〈n|Pβ |n′′〉〈n′′|Pα|n〉
En(0)− En′′(0)

]
,

(15.55)
where the effective g-factor is related to μ∗αβ by

geff αβ = 2μ∗αβ/μB . (15.56)

We recall that the energy levels of a free electron in a magnetic field are

Ems = gμBmsB , (15.57)

so that for spin 1/2, the spin splitting of the levels is 2μBB. In a crystalline
solid, the spin splitting becomes 2μ∗B.

For comparison we include the corresponding formula for the effective mass
tensor component

1
m∗

αβ

=
δαβ

m
+

1
m2

∑
n′′

〈n|Pα|n′′〉〈n′′|Pβ |n〉+ 〈n|Pβ |n′′〉〈n′′|Pα|n〉
En(0)− En′′ (0)

, (15.58)

in which
P = p +

�

4mc2
σ ×∇V . (15.59)

Thus an electron in a magnetic field and in a periodic potential acts as if the
periodic potential can be replaced by letting m→ m∗

αβ and μB → μ∗αβ . Thus,
symbolically we would write an effective Hamiltonian as

Heff =
1

2m∗
(
p− e

c
A
)2

− μ∗σ ·B , (15.60)
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where
μ∗ = μBgeff/2 . (15.61)

In deriving the formula for the effective g-factor above, we did not pay much
attention to whether P was merely the momentum operator p or the more
complete quantity including the spin–orbit interaction

p +
�

4mc2
(σ ×∇V ) .

It turns out that it is not very important whether we distinguish between
matrix elements of p and of P since the matrix element of

�

4mc2
(σ ×∇V )

is generally quite small. However, what is important, and even crucial,
is that we consider the states n, n′, n′′ in the above expressions as states
characterized by the irreducible representations of the crystal double
groups.

Let us illustrate how we would proceed to calculate an effective g-factor
for a typical semiconductor. Let us consider the effective g-factor for ger-
manium at the Γ point (k = 0). In Fig. 15.2 we let Eg denote the en-
ergy gap between the conduction band and the uppermost valence band,
and we let Δ denote the spin–orbit splitting of the valence band. In ger-
manium Eg ∼ 0.8 eV and Δ ∼ 0.3 eV. We will assume in this simple exam-
ple that these are the only bands to be included in carrying out the sum
on n′′. Since the band extrema occur at k = 0, the effect of the transla-
tions τ = (a/4)(1, 1, 1) are not important for Ge in this limit and can be
neglected.

To evaluate μ∗ and m∗ in (15.55) and (15.58) we use the basis func-
tions discussed in Sects. 14.6 and 14.7 to find the nonvanishing matrix
elements of �k · p/m. We write the basis functions for Γ+

8 (Γ+
25) and

Γ+
7 (Γ+

25) in a symbolic form from (15.24) and (15.25) so that we can
make use of all the group theory ideas that were discussed in Sect. 13.5
in connection with the corresponding problem without spin. This ap-
proximation is valid if Δ � Eg and each double group level can be
clearly identified with the single group level from which it originates.
Otherwise the Γ+

8 levels mix appreciably with one another and all ma-
trix elements must be evaluated in the double group representation di-
rectly, so that the numerical estimates obtained here would have to be
revised.

Now let us evaluate the matrix elements that go into (15.55) for μ∗. One
set of matrix elements have the form:〈

γ− ↑ |px|32 ,
3
2

〉
=
〈
γ− ↑ |px| 1√

2
(εx + iεy) ↑

〉
. (15.62)
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Fig. 15.2. Level ordering at the Γ point in Ge for the energy bands near the Fermi
level

For the Γ−7 state we take the basis functions to be (γ− ↑, γ− ↓) where γ−

is a basis function for the Γ−2 representation. For the basis functions for Γ+
8

(Γ+
25) we use

|j,mj〉 State Basis Function∣∣3
2 ,

3
2

〉
ν1 = 1√

2
(εx + iεy) ↑∣∣3

2 ,
1
2

〉
ν2 = 1√

6
[(εx + iεy) ↓ +2εz ↑]∣∣3

2 ,− 1
2

〉
ν3 = 1√

6
[(εx − iεy) ↑ +2εz ↓]∣∣3

2 ,− 3
2

〉
ν4 = 1√

2
(εx − iεy) ↓ .

(15.63)

From Sect. 13.5 we have (Γ±2 |H′|Γ∓25,α) = A2�kα/m, where A2 =
(Γ±2 |px|Γ∓25,x) is the only independent matrix element connecting these sym-
metry types, where we note that the basis function for Γ−2 symmetry is xyz.
Using the basis functions for Γ+

8 (Γ+
25) given by (15.63) we obtain

〈
γ− ↑∣∣ px

∣∣∣∣32 ,
3
2

〉
=

1√
2
A2

〈
γ− ↑∣∣ px

∣∣∣∣32 ,
1
2

〉
= 0

〈
γ− ↑∣∣ px

∣∣∣∣32 ,−
1
2

〉
=

1√
6
A2

〈
γ− ↑∣∣ px

∣∣∣∣32 ,−
3
2

〉
= 0 ,
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where we consider the ortho-normality of both the spin and orbital states. For
the py matrix, the same procedure gives

〈
γ− ↑∣∣ py

∣∣∣∣32 ,
3
2

〉
=

i√
2
A2

〈
γ− ↑∣∣ py

∣∣∣∣32 ,
1
2

〉
= 0

〈
γ− ↑∣∣ py

∣∣∣∣32 ,−
1
2

〉
= − i√

6
A2

〈
γ− ↑∣∣ py

∣∣∣∣32 ,−
3
2

〉
= 0 .

To find the contribution to μ∗/μB, we sum (15.55) over the four Γ+
8 levels to

obtain
∑

i

[〈γ− ↑ |px|νi〉〈νi|py|γ− ↑〉 − 〈γ− ↑ |py|νi〉〈νi|px|γ− ↑〉]
Eg

=
1
Eg

[{
A2√

2

}{
− iA

∗
2√
2

}
+
{
A2√

6

}{
iA∗2√

6

}

−
{
iA2√

2

}{
A∗2√

2

}
−
{
− iA2√

6

}{
A∗2√

6

}]

=
|A2|2
Eg

[
−2i

3

]
. (15.64)

We thus obtain for the contribution from the Γ+
8 (Γ+

25) levels to (μ∗/μB)
a value of

i

m

(
−2i

3

) |A2|2
Eg

=
2|A2|2
3mEg

. (15.65)

Let us now find the contribution to μ∗/μB from the spin–orbit split-off bands.
Here we use the basis functions for Γ+

7 (Γ+
25)

|j,mj〉 State Basis Function∣∣1
2 ,

1
2

〉
μ1 = 1√

3
[(εx + iεy) ↓ −εz ↑]∣∣1

2 ,− 1
2

〉
μ2 = 1√

3
[−(εx − iεy) ↑ +εz ↓] ,

(15.66)

so that the matrix elements for px and py become

〈
γ− ↑∣∣ px

∣∣∣∣12 ,
1
2

〉
= 0

〈
γ− ↑∣∣ px

∣∣∣∣12 ,−
1
2

〉
= − 1√

3
A2
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〈
γ− ↑∣∣ py

∣∣∣∣12 ,
1
2

〉
= 0

〈
γ− ↑∣∣ py

∣∣∣∣12 ,−
1
2

〉
=

i√
3
A2 .

We thus obtain the contribution of

i
m(Eg +Δ)

[
2i
3
|A2|2

]
= −2

3
|A2|2

m(Eg +Δ)
(15.67)

to μ∗/μB in (15.55) from the Γ+
7 (Γ+

25) levels. Adding up the two contributions
from (15.65) and (15.67) we finally obtain

(
μ∗

μB

)
orbital

= −2|A2|2
3m

[
1

Eg +Δ
− 1
Eg

]
+ 1 , (15.68)

where +1 in (15.68) is the free electron contribution.
We can now evaluate |A2|2 in terms of the conduction band effective mass

using the symmetric contribution DS
nn′αβ and for this term we can use the

relation
m

m∗ = 1 +
2
m

∑
n

|〈γ− ↑ |px|n〉|2
EΓ2′ (0)− En(0)

. (15.69)

Evaluating the matrix elements in (15.69), we thus obtain

m

m∗ = 1 +
2
m

[ |A2|2
2Eg

+
|A2|2
6Eg

+
|A2|2

3(Eg +Δ)

]
≈ 2

3m
|A2|2

[
2
Eg

+
1

Eg +Δ

]
,

(15.70)

where the free electron term of unity is usually small compared to other terms
in the sum in (15.70) and can be neglected in many cases. Neglecting this term,
we now substitute for |A2|2 in terms of m∗ to obtain

geff =
2μ∗

μB
= 2− 2m

m∗

(
Δ

3Eg + 2Δ

)
. (15.71)

In the limit, Δ → 0, then g → 2 in agreement with the results for the free
electron g-factor. In the limit Δ� Eg

geff → 2− m

m∗ , (15.72)

which implies geff → −m/m∗ for carriers with very light masses.
For germanium, for which m∗/m ∼ 0.12, Δ ∼ 0.3 eV, and Eg ∼ 0.8 eV, the

effective g-factor mostly cancels the free electron contribution:
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Fig. 15.3. Landau levels in InSb showing the spin splitting resulting from the large
negative effective g-factor

geff = 2
[
1−

(
1

0.12

)
0.3

3(0.8) + 2(0.3)

]
= 2

[
1− 1

1.2

]
� 1

3
. (15.73)

For InSb the spin–orbit splitting is large compared with the direct band gap
m∗/m ∼ 0.013, Δ ∼ 0.9 eV, and Eg ∼ 0.2 eV

geff ∼ 2
[
1−

(
1

0.013

)
0.9

3(0.2) + 2(0.9)

]
∼ 2(1− 28) � −54 (15.74)

leading to the picture for InSb shown in Fig. 15.3. In InSb, the spin splitting
is almost as large as the Landau level separation. However, the geff has the
opposite sign as compared with the free electron spin g-value, where we note
that because of the negative sign of the charge on the electron and on the Bohr
magneton, the free electron spin state of lowest energy is aligned antiparallel
to the applied field. Sometimes it is convenient to define the spin effective
mass by the relation

μ∗

μB
=

m

m∗
s

, (15.75)

where m∗
s denotes spin effective mass, so that geff = 2m/m∗

s [19,52,62,74,77].
In general, the spin and orbital effective masses will not be the same.

If they are (see Fig. 15.4), the Landau level spacing is equal to the spacing
between spin levels. The physical reason why these masses are not expected
to be equal is that the orbital mass is determined by a momentum matrix
element (which transforms as a radial vector). Since the spin mass depends
on the coupling between electronic energy bands through an operator which
transforms as an axial vector, different energy bands with different symmetries
are coupled for the two cases.

In treating cyclotron resonance transitions, the transitions are spin con-
serving and the g-factors usually cancel out. They are, however, important for
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Fig. 15.4. Strict two-band model where the Landau level separation is equal to the
spin splitting, as occurs for the case of a free electron gas. This limit applies quite
well to the L-point Landau levels for the conduction band in bismuth

interband Landau level transitions even though the transitions are spin con-
serving, since the g-factors in the valence and conduction bands can be differ-
ent. Thus spin up and spin down transitions can occur at different energies.
The effective g-factors are directly observed in spin resonance experiments
which occur between the same Landau level but involve a spin flip.

Of interest also is the case where the spin effective mass and the orbital
effective mass are equal to one another. In a strict two-band model this must be
the case. For bismuth, the strongly coupled two-band model is approximately
valid and m∗

s � m∗ (see Fig. 15.4). Landau level separations equal to the spin
splitting also occur for the free electron magnetic energy levels. However, for
band electrons, the Landau level separations are proportional to the inverse
cyclotron effective mass rather than the inverse free electron mass.

For high mobility (low effective mass) materials with a small spin–orbit
interaction, the Landau level separation is large compared with the spin split-
ting (see Fig. 15.3). On the other hand, some high mobility narrow gap semi-
conductors with a large spin–orbit interaction can have spin splittings larger
than the Landau level separations; such a situation gives rise to interesting
phenomena at high magnetic fields.

Summarizing, the effective mass Hamiltonian was considered in the pres-
ence of a magnetic field, taking into account the spin on the electron. In this
case, we form the following symmetrized combinations of wave vectors:

Γ+
1 → k2

x + k2
y + k2

z

Γ+
12 → k2

x + ωk2
y + ω2k2

z , k
2
x + ω2k2

y + ωk2
z ,

Γ+
25 → ({ky, kz}, {kz, kx}, {kx, ky})
Γ+

15 → ([ky , kz], [kz , kx], [kx, ky ]) (15.76)
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in which the wave vector is taken as an operator. These symmetrized forms
of the wave vector are used in connection with the effective g-factor for an
electron in a periodic solid to which a magnetic field is applied [19,52,62,74,77].

We will return to the g-factor in semiconductors in Chap. 16 where we
discuss time reversal symmetry. Since a magnetic field breaks time reversal
symmetry, the form of E(k) is sensitive to spin and time reversal symmetry.
These considerations are very important to the field of spintronics.

15.7 Fourier Expansion of Energy Bands:
Slater–Koster Method

The Slater–Koster technique uses group theory to provide the most general
form for the energy bands throughout the Brillouin zone which is consistent
with the crystal symmetry. The method is used when experiments or theory
provide information relevant to E(k) at different points in the Brillouin zone.
The method provides the best fit to the form of E(k) consistent with the
experimental or theoretical constraints. Like the k·p method, it is an approach
whereby the energy bands can be determined from experimental data without
recourse to a definite energy band model or to a specific crystal potential. In
contrast to k·p perturbation theory which makes use of the group of the wave-
vector for an expansion of E(k) about a specific point in the Brillouin zone
such as k = 0, the Slater–Koster method considers the entire Brillouin zone
and makes use of the full space group symmetry to form E(k) on an equal
basis. The original work done by Slater and Koster provided an interpolation
formula for calculating energy bands at high symmetry points in the Brillouin
zone [66], and the method was later applied to silicon and germanium [29].
We will illustrate the method here for a simple cubic lattice [27].

Because of the periodicity of the lattice, the energy bands En(k) are peri-
odic in the extended Brillouin zone

En(k + Kni) = En(k) , (15.77)

where Kni is a reciprocal lattice vector so that Kni · Rm = 2πp, with p
an integer. The energy bands En(k) are furthermore continuous across a zone
boundary and they approach this boundary with zero slope (giving the elec-
trons zero velocity at a zone boundary). We make use of this periodicity as
follows. Suppose that we have a function V (r) which is periodic in the three-
dimensional lattice. This function reflects the full symmetry of the crystal and
symmetry operations of the space group. The function V (r) can be Fourier
expanded in the reciprocal lattice

V (r) =
∑
Kni

v(Kni)e
iKni

·r (15.78)

in which the summation is over all reciprocal lattice vectors. In the extended
zone scheme, the energy En(k) is periodic in a three-dimensional space defined
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by the reciprocal lattice vectors. Therefore it is possible to Fourier expand
En(k) in a space “reciprocal” to the reciprocal lattice, i.e., in the direct lattice,
to obtain:

En(k) =
∑

d

εn(d)eik·d , (15.79)

where d = Rm are Bravais lattice vectors and εn(d) can be interpreted
as an overlap integral in the tight binding approximation. What is im-
portant here is that the tight binding wave functions reflect the symme-
try operations of the space group. Crystal symmetry restricts the num-
ber of independent expansion coefficients εn(d) following the principles that
govern the determination of the number of independent nonvanishing ma-
trix elements (see Sect. 6.6). Provided that the Fourier series of (15.79) is
rapidly convergent, it is possible to describe En(k) in terms of a small num-
ber of expansion parameters εn(d). The number of εn(d) is determined by
group theory and their values, in principle, can be determined by experi-
ment.

For example, let us consider a nondegenerate, isolated s-band in a simple
cubic crystal. Such a band has Γ+

1 symmetry and is invariant under the point
group operations of the cubic group. The Fourier expansion would then take
the form of the tight binding functions and relate to linear combinations of
plane waves (see Sect. 12.2):

En(k) = εn(0) + εn(1) [cos akx + cos aky + cos akz]

+εn(2) [cos a(ky + kz) + cos a(ky − kz) + cos a(kz + kx)

+ cosa(kz − kx) + cos a(kx + ky) + cos a(kx − ky)]

+εn(3) [cos a(kx + ky + kz) + cos a(kx − ky − kz)

+ cosa(−kx + ky − kz) + cos a(−kx − ky + kz)] + · · · (15.80)

where d = 0 is the zeroth neighbor at a(0, 0, 0)
d = 1 is the nearest neighbor at a(1, 0, 0)
d = 2 is the next nearest neighbor at a(1, 1, 0)
d = 3 is the next–next nearest neighbor at a(1, 1, 1), etc.

In the tight binding approximation, the expansion coefficients appear as over-
lap integrals and transfer integrals of various kinds. Thus, the tight bind-
ing form is written to satisfy the symmetry of the space group and is of
the Slater–Koster form. Now suppose that ab initio calculations provide
the energy levels and wave functions with high accuracy at a few points
in the Brillouin zone. The Slater–Koster method allows all these solutions
to be brought together to give E(k) throughout the Brillouin zone, con-
sistent with space group symmetry. For example in Ge, we could have ex-
perimental data relevant to the Γ point from measurements of the hole
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constant energy surfaces at the Γ point, and electron constant energy sur-
faces about the L points in the Brillouin zone [29] and optical transitions
at both the Γ point and the L point. The Slater–Koster method provides
a framework that allows use of each of these experiments to aid in the de-
termination of the electronic energy band structure throughout the Brillouin
zone [27].

Now for energy bands of practical interest, we will not have isolated non-
degenerate bands, but rather coupled bands of some sort. We can express the
eigenvalue problem for n coupled bands in terms of an (n×n) secular equation
of the form

|〈i|H|j〉 − En(k)δij | = 0 . (15.81)

In (15.81) the indices i and j denote Bloch wave functions which diagonalize
the Hamiltonian

H =
p2

2m
+ V (r) , (15.82)

and are labeled by the wave vector k. The matrix elements 〈i|H|j〉 thus con-
stitute a k-dependent matrix. But at each k point, these matrix elements
are invariant under the symmetry operations of the group of the wave vector
at k. The Hamiltonian at k = 0 has Γ+

1 symmetry just like its eigenvalues
En(k). This matrix is also periodic in the reciprocal lattice in the extended
zone scheme and therefore can be Fourier expanded.

The expansion is carried out in terms of a complete set of basis matrices
which are taken as angular momentum matrices in the spirit of Sect. 14.6. For
example, a (2 × 2) Hamiltonian including the electron spin (i.e., the double
group representations Γ±6 or Γ±7 in Chap. 14) would be expanded in terms
of four basis matrices 1, Sx, Sy and Sz , representing the angular momentum
matrices for spin 1/2. A (3 × 3) Hamiltonian, such as would be used to de-
scribe the valence bands of many common semiconductors, is expanded in
terms of the nine linearly independent basis matrices which span this space,
namely, 1̂, Sx, Sy, Sz , S2

x, S2
y , {Sz, Sy}, {Sz, Sx} and {Sx, Sy}, in which 1̂

is a (3 × 3) unit matrix, Sx, Sy, Sz are angular momentum matrices for
spin 1, and {Si, Sj} denotes the anticommutator for matrices Si and Sj .
Under the point group operations of the group of the wave vector, the an-
gular momentum matrices Si transform as an axial vector – i.e., at k = 0,
Si transforms as Γ+

15, while the matrix Hamiltonian still is required to be
invariant. Therefore, it is necessary to take products of symmetrized combi-
nations of the n basis matrices with appropriate symmetrized combinations
of the Fourier expansion functions so that an invariant matrix Hamiltonian
results.

The (n×n) matrix Hamiltonian which is denoted byDΓ1(k) can be Fourier
expanded in terms of these basis function matrices in the form

DΓ1(k) =
∑

d

αd,Γj CΓj (d) · SΓj , (15.83)
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which is a generalization of (15.79). In (15.83), SΓj denotes a collection of basis
matrices which transforms as Γj , and these symmetrized products of angular
momentum matrices are given in Table 15.1 for the simple cubic lattice (space
group #221). The distance d denotes the order of the expansion in (15.83)
and corresponds to the distance of neighbors in the Fourier expansion in the
tight binding sense, so that orders 0, 1, 2, . . ., etc. correspond to d = 0 or
d = 1 (nearest neighbor terms) or d = 2 (next nearest neighbor terms), etc.
The angular momentum matrices in Table 15.1 are given by

Sx =

⎛
⎝ 0 0 0

0 0 i
0 −i 0

⎞
⎠ , Sy =

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠ , Sz =

⎛
⎝ 0 i 0
−i 0 0
0 0 0

⎞
⎠ . (15.84)

Products of the dimensionless angular momentum matrices Si are listed rep-
resentations of cubic group in Table 15.1, using an abbreviated notation.
For example, S(x)

Γ+
15

(1) denotes the x component of a three component vec-

tor Sx, Sy, Sz and all three components would appear in (15.83). Similarly,
S(i)

Γ+
12

(2) is a two component vector with partners

S2
x + ωS2

y + ω2S2
z

and

S2
x + ω2S2

y + ωS2
z ,

and only one of the partners is listed in Table 15.1, where several other
three component matrices are found, such as S(α)

Γ+
25

(2) for which the x com-

ponent is the anticommutator {Sy, Sz} and the y and z components of
S(α)

Γ+
25

(2) are found by cyclic permutation of the indices x, y, z. It is worth

Table 15.1. Symmetrized products of angular momenta for the cubic group

order representation notation symmetrized products

0 Γ+
1 S

Γ+
1

(0) 1

1 Γ+
15 Sx

Γ+
15

(1) Sx

2 Γ+
12 S(1)

Γ+
12

(2) S2
x + ωS2

y + ω2S2
z

Γ+
25 S(x)

Γ+
25

(2) {Sy , Sz}
3 Γ+

2 S
Γ+
2

(3) SxSySz + SxSzSy

Γ+
15 S(x)

Γ+
15

(3) S3
x

Γ+
25 S(x)

Γ+
15

(3) {Sx, (S
2
y − S2

z )}
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mentioning that all of the S matrices in (15.83) are 3× 3 matrices which are
found explicitly by carrying out the indicated matrix operations. For exam-
ple:

{Sy, Sz} = SySz + SzSy =

⎛
⎝0 0 0

0 0 0
0 −1 0

⎞
⎠+

⎛
⎝0 0 0

0 0 −1
0 0 0

⎞
⎠ =

⎛
⎝0 0 0

0 0 −1
0 −1 0

⎞
⎠ .

(15.85)
Also useful for carrying out matrix operations are the definitions:

Sx =
�

i

(
y
∂

∂z
− z

∂

∂y

)
(15.86)

so that

Sx

⎛
⎝x
y
z

⎞
⎠ =

�

i

⎛
⎝ 0
−z
y

⎞
⎠ . (15.87)

Another point worth mentioning about Table 15.1 concerns the terms that do
not appear. For example, in second-order we could have terms like S2

x+S2
y+S2

z

but this matrix is just the unit matrix which has already been listed in the
table. Similarly, the commutators [Sy, Sz] which enter in second-order are
matrices that have already appeared in first-order as iSx.

We give below the nine basis matrices that span the (3 × 3) matrices for
spin 1, where we note that (Γ+

15 ⊗ Γ+
15) = Γ+

1 + Γ+
12 + Γ+

15 + Γ+
25:

SΓ+
1

=

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ , (15.88)

S(1)

Γ+
12

=

⎛
⎝−1 0 0

0 1 + ω2 0
0 0 1 + ω

⎞
⎠ =

⎛
⎝−1 0 0

0 −ω 0
0 0 −ω2

⎞
⎠ , (15.89)

S(2)

Γ+
12

=

⎛
⎝−1 0 0

0 1 + ω 0
0 0 1 + ω2

⎞
⎠ , (15.90)

S(x)

Γ+
15

=

⎛
⎝0 0 0

0 0 i
0 −i 0

⎞
⎠ , (15.91)

S(y)

Γ+
15

=

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠ , (15.92)
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S(z)

Γ+
15

=

⎛
⎝ 0 i 0
−i 0 0
0 0 0

⎞
⎠ , (15.93)

S(x)

Γ+
25

=

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠ , (15.94)

S(y)

Γ+
25

=

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠ , (15.95)

S(z)

Γ+
25

=

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ , (15.96)

Any arbitrary (3× 3) matrix can be written as a linear combination of these
nine matrices.

Table 15.1 however was constructed to be more general than just to de-
scribe interacting p-bands in a 3×3 matrix formulation. The table can equally
well be used to form the appropriate 16 basis matrices which are needed to
deal with interacting s and p bands, such as would arise in semiconductor
physics. Such interacting s and p bands give rise to a 4 × 4 matrix Hamil-
tonian and therefore 16 basis matrices are needed to span the space for the
secular equation in this case. The symmetries involved for order 0, 1, 2, 3, . . .
correspond to the symmetries of the angular momentum matrices in cubic
symmetry.

Now let use return to the Fourier expansion of (15.83). For each neighbor
distance |d| there are several lattice vectors that enter, just as in the plane
wave problem of Chap. 12 where we considered sets of Kni vectors of equal
magnitude. The terms in (15.83) can be labeled by their symmetry types so
that the sum on d breaks up into a sum on the magnitude |d| and on the
symmetry type Γj occurring at distance d. The linear combinations of the
exponential functions exp(ik ·d) which transform as the pertinent irreducible
representations of the cubic group are given in Table 15.2 out through third
nearest neighbor distances. Once again, if a representation is one-dimensional,
the basis function itself is given. For the two-dimensional representations,
only one of the functions is listed, the partner being the complex conjugate
of the listed function. For the three-dimensional representations, only the x-
component is listed; the partners are easily found by cyclic permutations of
the indices.

The combinations of plane waves and basis functions that enter the Fourier
expansion of (15.83) are the scalar products of these symmetrized Fourier
functions CΓj (d) and the basis functions SΓj (d). This means that for the
two-dimensional representations, we write

C(1)

Γ+
12

(
S(1)

Γ+
12

)∗
+ C(2)

Γ+
12

(
S(2)

Γ+
12

)∗
, (15.97)
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Table 15.2. Symmetrized Fourier functions for a simple cubic lattice

d repr. notation symmetrized Fourier functions

a(0, 0, 0) Γ+
1 C

Γ+
1

(000) 1

a(1, 0, 0) Γ+
1 C

Γ+
1

(100) cos akx + cos aky + cos akz

Γ+
12 C(1)

Γ
+
12

(100) cos akx + ω cos aky + ω2 cos akz

Γ−15 C(x)

Γ−15
(100) sin akx

a(1, 1, 0) Γ+
1 C

Γ+
1

(110) cos a(ky + kz) + cos a(ky − kz) + cos a(kz + kx)
+cos a(kz−kx)+cos a(kx +ky)+cos a(kx−ky)

Γ+
12 C(1)

Γ
+
12

(110) [cos a(ky + kz) + cos a(ky − kz)]
+ ω[cos a(kz + kx) + cos a(kz − kx)]
+ ω2[cos a(kx + ky) + cos a(kx − ky)]

Γ−15 C(x)

Γ−15
(110) sin a(kx + ky) + sin a(kx − ky)

+ sin a(kx + kz) + sin a(kx − kz)

Γ−25 C(x)

Γ−25
(110) sin a(kx + ky) + sin a(kx − ky)

− sin a(kx + kz)− sin a(kx − kz)

Γ+
25 C(x)

Γ+
25

(110) cos a(ky + kz)− cos a(ky − kz)

a(1, 1, 1) Γ+
1 C

Γ+
1

(111) cos a(kx + ky + kz) + cos a(kx − ky − kz)
+ cos a(−kx + ky − kz) + cos a(−kx − ky + kz)

Γ−2 C
Γ−2

(111) sin a(kx + ky + kz) + sin a(kx − ky − kz)
+ sin a(−kx + ky − kz) + sin a(−kx − ky + kz)

Γ−15 C(x)

Γ−15
(111) sin a(kx + ky + kz) + sin a(kx − ky − kz)

− sin a(−kx + ky − kz)− sin a (−kx − ky + kz)

Γ+
25 C(x)

Γ+
25

(111) cos a(kx + ky + kz) + cos a (kx − ky − kz)
− cos a(−kx + ky − kz)− cos a (−kx − ky + kz)

ω = exp(2πi/3) and a is the lattice constant

where the second term is the complex conjugate of the first so that the sum is
real. For the three-dimensional representations we write for the scalar product

CxSx + CySy + CzSz . (15.98)

Finally, the Fourier expansion parameters αd,Γj are just numbers that give the
magnitude of all the terms which enter the Fourier expansion. By taking the
CΓi and SΓi to transform according to the same irreducible representation,
the direct product will contain Γ1 which is invariant under the symmetry op-
erations of the group. These coefficients are often evaluated from experimental
data.

Now suppose that we are going to do a Fourier expansion for p-bands. If
the spin–orbit interaction is neglected, the p-bands have Γ−15 symmetry. We
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ask what symmetry types can we have in the coupling between p-bands –
clearly only the symmetries that enter into the direct product

Γ−15 ⊗ Γ−15 = Γ+
1 + Γ+

12 + Γ+
15 + Γ+

25 . (15.99)

We will now indicate the terms which contribute at each neighbor distance to
(15.83).

15.7.1 Contributions at d = 0

From Table 15.2 we can have only Γ+
1 symmetry at d = 0 for which the basis

matrix is ⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ , (15.100)

and the symmetrical Fourier function is the number 1, so that the net contri-
bution to (15.83) is

α0,Γ+
1

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ . (15.101)

15.7.2 Contributions at d = 1

For Γ+
1 symmetry the contribution is in analogy to (15.101)

α1,Γ+
1
CΓ+

1
(100)

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ , (15.102)

while for Γ+
12 symmetry, the contribution is

α1,Γ+
12
C(1)

Γ+
12

⎛
⎝ω + ω2 0 0

0 1 + ω2 0
0 0 1 + ω

⎞
⎠+ α1,Γ+

12
C(2)

Γ+
12

⎛
⎝ω + ω2 0 0

0 1 + ω 0
0 0 1 + ω2

⎞
⎠ ,

(15.103)
where we have used the relation S

(1)
Γ12

= S2
x + ωS2

y + ω2S2
z to obtain the

appropriate matrices. We also use the relations 1 + ω + ω2 = 0 for the cube
roots of unity to simplify (15.103). We note that both terms in (15.103) have
the same expansion parameter α1,Γ+

12
.

These are all the contributions for d = 1. The symmetry type Γ−15 does not
enter into this sum since there are no basis matrices with symmetries Γ−15 for
d = 1 (see Table 15.1). This symmetry would however enter into treating the
interaction between s and p bands. Group theory thus tells us that we get no
off-diagonal terms until we go to second-neighbor distances. This should not
be surprising to us since this is exactly what happens in the k · p treatment
of p bands. In fact, the Fourier expansion technique contains in it a k · p
expansion for every point in the Brillouin zone.
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15.7.3 Contributions at d = 2

At the second-neighbor distance Table 15.2 yields contributions from Γ+
1 , Γ+

12

and Γ+
25 symmetries. These contributions at d = 2 are:

Γ+
1 symmetry α2,Γ+

1
CΓ+

1
(110)

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ , (15.104)

Γ+
12 symmetry α2,Γ+

12

⎡
⎣C(1)

Γ+
12

(110)

⎛
⎝−1 0 0

0 −ω 0
0 0 −ω2

⎞
⎠+ c.c.

⎤
⎦ (15.105)

Γ+
25 symmetry α2,Γ+

25

⎛
⎜⎜⎝

0 C(z)

Γ+
25

(110) C(y)

Γ+
25

(110)

C(z)

Γ+
25

(110) 0 C(x)

Γ+
25

(110)

C(y)

Γ+
25

(110) C(x)

Γ+
25

(110) 0

⎞
⎟⎟⎠ (15.106)

Terms with Γ−15 and Γ−25 symmetries in Table 15.2 do not enter because there
are no basis matrices with these symmetries.

15.7.4 Summing Contributions through d = 2

Symmetries Γ+
1 and Γ+

25 contribute and these are written down as above. To
get the matrix Hamiltonian we add up contributions from (15.101)–(15.106).
There are six parameters αd,Γj that enter into the Fourier expansion through
second-neighbor terms (d = 0, 1, 2). The Γ+

1 representation at d = 0 con-
tributes to the (1,1) position in the secular equation a term in α0,Γ+

1
and at

d = 1 contributes a term α1,Γ+
1

(cos akx + cos aky + cos akz) in which the two
coefficients α0,Γ+

1
and α1,Γ+

1
will have different numerical values. The other

entries into the (3×3) matrix are found similarly. The resulting (3×3) matrix
Hamiltonian is then diagonalized and the eigenvalues are the En(k) we are
looking for. This En(k) properly expresses the crystal symmetry at all points
in the Brillouin zone.

It is instructive to write out this matrix Hamiltonian in detail along the
(100), (110) and (111) directions and to verify that all connectivity relations
and symmetry requirements are automatically satisfied. It is directly shown
that near k = 0, the Hamiltonian of (15.83) is of the k · p form previously
derived. As stated above, the Fourier expansion approach contains the k · p
form for all expansion points k0 in the Brillouin zone.

15.7.5 Other Degenerate Levels

The Fourier expansion can also be applied to the twofold Γ+
12 levels in cubic

symmetry arising from d-bands, or to Γ±12 levels more generally. Of particular
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interest is application of the Slater–Koster method [66] to coupled s and p-
bands as has been done for silicon and germanium, both of which crystallize
in the diamond structure. In the case of coupled s and p bands, the 3 × 3
expansion in Sect. 15.7 and the s-band expansion are coupled with the Fourier
terms from Table 15.2 having symmetries Γi⊗Γ−15. We give an outline in this
section for setting up the secular equation to solve the Fourier expansion for
these two interesting cases.

The four 2×2 matrices that are used as basis matrices for Fourier expand-
ing the Γ±12 levels are implied by Γ±12 ⊗ Γ±12 = Γ+

1 + Γ+
2 + Γ+

12:

for Γ+
1 symmetry SΓ+

1
=
(

1 0
0 1

)
, (15.107)

for Γ+
2 symmetry SΓ+

2
=
(

1 0
0 −1

)
, (15.108)

for Γ+
12 symmetry SΓ+

12,1
=
(

0 1
0 0

)
, (15.109)

where the partner of SΓ+
12,1

is the Hermitian transpose

SΓ+
12,2

= S∗
Γ+

12,1
= S†

Γ+
12,1

=
(

0 0
1 0

)
. (15.110)

Using these matrices we see that

SΓ+
12,1
S†

Γ+
12,1

+ SΓ+
12,2
S†

Γ+
12,2

=
(

1 0
0 1

)
= SΓ+

1
, (15.111)

and

SΓ+
12,1
S†

Γ+
12,1

− SΓ+
12,2
S†

Γ+
12,2

=
(

1 0
0 −1

)
= SΓ+

2
. (15.112)

The dispersion relation of E(k) for a band with Γ+
12 symmetry at k = 0 can

then be Fourier expanded throughout the Brillouin zone in terms of the basis
functions in (15.107)–(15.110) as

EΓ±12
(k) =

∑
d

αd,Γ+
1
CΓ+

1
(d)

(
1 0
0 1

)
+
∑

d

αd,Γ+
2
CΓ+

2
(d)

(
1 0
0 −1

)

+
∑

d

αd,Γ+
12
C(1)

Γ±12
(d)

(
0 1
0 0

)
+
∑

d

αd,Γ+
12
C(2)

Γ±12
(d)

(
0 0
1 0

)
,

(15.113)

where C(2)

Γ±12
(d) = C(1)∗

Γ±12
(d) and the CΓ±

i
(d) functions are found in Table 15.2.
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For the case of interacting s (Γ+
1 ) and p (Γ−15) bands, the interaction terms

have Γ+
1 ⊗ Γ−15 = Γ−15 symmetry so the 4 × 4 expansion matrices must be

supplemented by the matrices

Sx
Γ−15

=

⎛
⎜⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ , (15.114)

and the two partners

Sy

Γ−15
=

⎛
⎜⎜⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ , Sz

Γ−15
=

⎛
⎜⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎟⎟⎠ . (15.115)

The detailed treatment of the Fourier expansion for the eight coupled s and p
bonding and antibonding bands in the nonsymmorphic diamond structure has
been presented [29] and was used to describe the Si and Ge bands throughout
the Brillouin zone. The nonsymmorphic diamond structure requires certain
restrictions on the energy bands, as discussed in Sect. 12.5 and in Appendix C.
The same basic treatment without the s bands was used to treat the lattice
dynamics for the diamond structure [30].

Selected Problems

15.1. Consider the empty lattice E(k) diagram in Fig. 12.1 for an FCC struc-
ture, but now also including the electron spin.

(a) Find the symmetry designations and energy for the lowest nonzero double
group energy level which arises from the single group L1 and L2′ levels.

(b) Then find the symmetry designations and energy for the next lowest en-
ergy level which is derived from the X1 and X4′ levels.

(c) What are the corresponding basis functions for these levels?
(d) What is the difference between these lowest energy levels for the case of the

diamond structure in comparison to the symmorphic FCC space group?
The character tables for the group of the wave vector for the diamond
structure can be found in Appendix C.

15.2. (a) Give more details to show how group theory leads to the form of
E(Γ+

7 ) given by (15.27).
(b) Similarly, give more details to show how the form of E(k) for the four-fold

degenerate valence band of Ge is obtained.
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(c) The derivation given in Sect. 15.5 was for a symmorphic cubic group. How-
ever, Ge is described by the space group #227 which is nonsymmorphic.
What is the effect of the screw axis in the diamond structure on the forms
of E(Γ+

7 ) and E(Γ+
8 ) discussed in (a) and (b)? When would the sticking

together of bands discussed in Sect. 12.5 become important? You may find
the character tables for the diamond structure in Appendix C useful for
this problem.

15.3. Find the form of E(k) including the spin–orbit interaction for a non-
degenerate valence band level in a column IV semiconductor (2 atoms/unit
cell) with a simple symmorphic hexagonal structure (space group #191) at
the Γ point and at the K point in the Brillouin zone using k · p perturbation
theory. Assume that at k = 0, the energy bands have D6h symmetry and that
the nondegenerate band in this problem is derived from the fully symmetric
single group irreducible representation Γ1.

15.4. Apply the formalism in Sect. 15.6 to find the effective g-factor for a car-
rier pocket at the Γ point for a nondegenerate valence band for a crystal with
hexagonal symmetry (space group #191) as in Problem 15.3.

15.5. (a) Using the procedure in Sect. 15.7, write down the matrices for Sx,
Sy and Sz for angular momentum 3/2. Products of these matrices and
the (4× 4) unit matrix form the 16 matrix basis functions which span the
vector space for the (4× 4) Slater–Koster secular equation for coupled s
and p bands for a simple cubic lattice. Find these 16 matrices and indicate
the combination of Sx, Sy and Sz used and indicate the symmetry type
of each.

(b) Returning to the Slater–Koster (3 × 3) secular determinant for a simple
cubic lattice, write the explicit expression for this matrix along a (100)
direction. Show that by doing a Taylor’s expansion of the Slater–Koster
Hamiltonian about the X point, the proper k ·p Hamiltonian is obtained
at the X point.

15.6. (a) Using the Slater–Koster technique [66], find the form for E(k) for
the lowest two levels for a face centered cubic lattice at the X point, the
L point and the K point (see Table C.6).

(b) Using your results in (a), expand E(k) about the L-point in a Taylor
expansion and compare your results with those obtained using k · p per-
turbation theory.


