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Spin–Orbit Interaction

in Solids and Double Groups

The discussion of angular momentum and the rotation group has thus far
been limited to integral values of the angular momentum (see Chap. 5). The
inclusion of half integral angular momentum states requires the introduction
of the spin–orbit interaction and “double groups”, which are the focus of this
chapter.

14.1 Introduction

The spin angular momentum of an electron is half integral or Sz = �/2.
Furthermore, associated with each electron is a magnetic moment μB =
−|e|�/(2mc) = 0.927× 10−20 erg/gauss. The magnetic moment and spin an-
gular momentum for the free electron are related by

μ = − |e|
mc

S = − |e|
mc

�

2
S

|S| (14.1)

and μ and S are oppositely directed because of the negative charge on elec-
trons. This relation between the spin angular momentum and the magnetic
moment gives rise to an interaction, called the spin–orbit interaction, which
is important in describing the electronic structure of crystalline materials. In
this section we briefly review this interaction and then in the following sec-
tions of this Chapter, we consider the group theoretical consequences of the
half-integral spin and the spin–orbit interaction.

An electron in an atom sees a magnetic field because of its own orbital mo-
tion and consequently gives rise to the spin–orbit interaction whereby this in-
ternal magnetic field tends to line up its magnetic moment along the magnetic
field: HSO = −μ ·H . Substitution for H = −(v/c)×E and μ = −[|e|/(mc)]S
together with a factor of 1/2 to make the result correct relativistically yields

H′
SO =

1
2m2c2

(∇V × p) · S . (14.2)
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For an atom the corresponding expression is written as

H′
SO atom = ξ(r)L · S (14.3)

since ∇V ∼ r/r3 and where L is the orbital angular momentum. A detailed
discussion of the spin–orbit interaction is found in standard quantum mechan-
ics text books.

This spin–orbit interaction gives rise to a spin–orbit splitting of atomic
levels which are labeled by their total angular momentum quantum numbers,
as discussed below. As an example, consider an atomic p state (� = 1). Writing
the total angular momentum

J = L + S , (14.4)

where L and S are, respectively, the orbital angular momentum operator and
the spin angular momentum operator, we obtain for the dot product

J · J = (L + S) · (L + S) = L ·L + S · S + (L · S + S ·L) , (14.5)

in which the operators L and S commute since they operate in different coor-
dinate spaces. Since L and S are coupled through the spin–orbit interaction,
m� and ms are no longer good quantum numbers since they are coupled by
H′

SO, though � and s remain good quantum numbers. To find the magnitude
of the spin–orbit interaction in (14.2), we need to take the matrix elements
of H′

SO in the |j, �, s,mj〉 representation. Using (14.5) for the operators J , L
and S, we obtain for the diagonal matrix element of J · J

j(j + 1) = �(�+ 1) + s(s+ 1) + 2〈L · S〉/�2 , (14.6)

so that the expectation value of L·S in the |j, �, s,mj〉 representation becomes

〈L · S〉 =
�

2

2
[j(j + 1)− �(�+ 1)− s(s+ 1)] . (14.7)

For p states with spin–orbit interaction, we have � = 1, and s = 1/2 so that
j = 3/2 or 1/2

〈L · S〉 = �
2/2 for j = 3/2

〈L · S〉 = −�
2 for j = 1/2 . (14.8)

Thus the spin–orbit interaction introduces a splitting between the j = 3/2
and j = 1/2 angular momentum states of the p-levels.

From the expression for the expectation value of 〈L · S〉, we note that
the degeneracy of an s-state is unaffected by the spin–orbit interaction, and
remains two denoting a spin up and spin down state. On the other hand,
a d-state is split up into a D5/2 (sixfold degenerate) and a D3/2 (fourfold
degenerate) state. Thus, the spin–orbit interaction does not lift all the de-
generacy of atomic states. To lift the remaining degeneracy, it is necessary to
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Table 14.1. Spin–orbit interaction energies for some important cubic semiconduc-
tors (for the valence band at k = 0) [38,55]

semiconductor atomic number Γ -point splitting

diamond Z = 6 ΔE = 0.006 eV

silicon Z = 14 ΔE = 0.044 eV

germanium Z = 32 ΔE = 0.29 eV

InSb

{
In

Sb

Z = 49

Z = 51
ΔE = 0.9 eV

lower the symmetry further, for example, by the application of a magnetic
field. The magnitude of the spin–orbit interaction in atomic physics depends
also on the expectation value of ξ(r). For example,

〈n, j, �, s,mj |H′
SO|n, j, �, s,mj〉 = 〈j, �, s,mj|L · S|j, �, s,mj〉

×
∫ ∞

0

R∗n�ξ(r)Rn�dr , (14.9)

where Rn� (the radial part of the wave function) has an r dependence.
The magnitude of the integral in (14.9) increases rapidly with increasing
atomic number Z, approximately as Z3 or Z4. The physical reason be-
hind the strong Z dependence of 〈H′

SO〉 is that atoms with high Z have
more electrons to generate larger internal H fields and more electrons
with magnetic moments to experience the interaction with these magnetic
fields.

For most atomic species that are important in semiconducting materials,
the spin–orbit interaction plays a significant role. Some typical values for the
spin–orbit splitting energies ΔE for common cubic semiconductors are shown
in Table 14.1, where the ΔE listing gives the Γ -point valence band splittings.
We will see that in crystalline solids the spin–orbit splittings are k-dependent.
For example, at the L-point for cubic materials, the spin–orbit splittings are
typically about 2/3 of the Γ -point value.

The one-electron Hamiltonian for a solid including spin–orbit interaction is

H =
p2

2m
+ V (r)︸ ︷︷ ︸
H0

+
1

2m2c2
(∇V × p) · S︸ ︷︷ ︸
H′SO

. (14.10)

When the spin–orbit interaction is included, the wave functions consist of
a spatial part and a spin part. This means that the irreducible representations
that classify the states in a solid must depend on the spin angular momentum.
To show the effect of the k-dependence of the spin–orbit interaction on the
energy bands of a semiconductor, consider the energy bands for germanium
shown in Fig. 14.1(a) along the Δ(100) axis, Λ(111) axis and Σ(110) axes
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Fig. 14.1. Energy versus dimensionless wave vector for a few high-symmetry di-
rections in germanium using standard notation. (a) The spin–orbit interaction has
been neglected. (b) The spin–orbit interaction has been included and the bands are
labeled by the double group representations

for no spin–orbit interaction. Here we show the four bonding and the four
antibonding s- and p-bands. This picture is to be compared with the energy
bands for Ge including the spin–orbit interaction shown in Fig. 14.1(b). The
treatment of spin–orbit interaction in crystals that lack inversion symmetry
(e.g., such as III–V compounds which have Td symmetry) gives rise to the
“Dresselhaus spin–orbit” term [25] which is often referred to in the spintronics
literature. This topic is further discussed in Chap. 16 in connection with time
reversal symmetry.

We note that the Fermi level is between the top of the highest valence
band (the Γ25′ band) and the bottom of the lowest conduction band (the
L1 band). The energy band extrema for the more common semiconductors
usually occur at high symmetry points. The inclusion of the spin–orbit in-
teraction has two major effects on the energy band structure affecting both
the level degeneracies and the labeling of the energy bands. Note that the
(L±4 +L±5 ) and (Λ4+Λ5) are Kramers-degenerate doublet states, which means
that these bands stick together at high symmetry points and along high
symmetry directions, because of time reversal symmetry to be discussed in
Chap. 16. The Γ+

7 band which lies below the Γ+
8 valence band in Fig. 14.1(b)

is called the split-off band, and the separation between the Γ+
7 and the Γ+

8

bands is the Γ -point spin–orbit splitting energy ΔE given in Table 14.1
for Ge.
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14.2 Crystal Double Groups

Figure 14.1(b) shows energy bands that are labeled by the irreducible repre-
sentations of the double group for the diamond structure. Double groups come
into play when we are dealing with the electron spin, whereby half-integral
angular momentum states are introduced. In this section we discuss the dou-
ble group irreducible representations which arise when the electron spin is
introduced.

The character tables for states of half-integral angular momentum are
constructed from the same basic formula as we used in Chap. 5 for finding the
characters for a rotation by an angle α in the full rotation group:

χj(α) =
sin(j + 1/2)α

sin(α/2)
. (14.11)

Not only is (14.11) valid for integral j (as we have discussed in Chap. 5) but
the formula is also valid for j equal to half-integral angular momentum states.
We will now discuss the special issues that must be considered for the case of
half-integral spin.

Firstly we note that (14.11) behaves differently under the transformation
α → (α + 2π) depending on whether j is an integral or half-integral angular
momentum state. This difference in behavior is responsible for the name of
double groups when j is allowed to assume half-integral values. Let us consider
how rotation by α+ 2π is related to a rotation by α:

χj(α+ 2π) =
sin(j + 1/2)(α+ 2π)

sin
(

α+2π
2

) =
sin(j + 1/2)α · cos(j + 1/2)2π

sin(α/2) · cosπ
,

(14.12)
since sin(j + 1/2)2π = 0 whether j is an integer or a half-integer. For integral
values of j, cos(j + 1/2)2π = −1 while for half-integral values of j, cos(j +
1/2)2π = +1. Therefore we have the important relation

χj(α+ 2π) = χj(α)(−1)2j , (14.13)

which implies that for integral j, a rotation by α, α ± 2π, α ± 4π, etc. yields
identical characters (integral values of j correspond to odd-dimensional rep-
resentations of the full rotation group), the dimensionality being given by
2j + 1. For half-integral values of j, corresponding to the even-dimensional
representations of the rotation group, we have

χj(α ± 2π) = −χj(α)

χj(α ± 4π) = +χj(α) , (14.14)

so that rotation by 4π is needed to yield the same character for χj(α). The
need to rotate by 4π (rather than by 2π) to generate the identity operation
leads to the concept of double groups which is the main theme of this chapter.
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Fig. 14.2. (a) A schematic diagram of the neutron interferometer used to establish
the phase of the electron wave function along the path AC along which the neutrons
are in a magnetic field B (500G) for a distance � (2 cm), while the path AB has no
magnetic field [72]. (b) The periodic interference pattern as a function of magnetic
field, implying a periodicity of 4π

Although the concept of double groups goes back to 1929 [11] experimental
evidence that wave functions for Fermions are periodic in 4π and not 2π was
not available until 1975 [72] when an ingenious experiment was carried out to
measure the phase shift of a neutron due to its precession in a magnetic field.
The experiment utilizes a neutron interferometer and determines the phase
shift of the neutron as it travels along path AC, where it sees a magnetic field
Bgap as opposed to path AB where there is no magnetic field, as shown in
Fig. 14.2(a). The phase shift measured by counters C2 and C3 shows an inter-
ference pattern that is periodic, as shown in Fig. 14.2(b), implying a magnetic
field precession with a periodicity of 4π. To account for this behavior of the
wave function, it is convenient to introduce a new group element (rotation by
2π) in dealing with symmetry properties of crystals for which half-integral val-
ues of the angular momentum arise as, for example, through the introduction
of the electron spin.

Let R denote a rotation by 2π, and now let us assume that R = ±E
or equivalently R2 = E, since the rotation by 4π leaves the characters for
the full rotation group invariant for both integral and half-integral j values.
Suppose that the elements of the symmetry group without the electron spin
are E,A2, A3, . . . , Ah. Then, with spin, we have twice as many group elements.
That is, we now have the same h elements of the type Ai that we had before
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the spin on the electron was considered, plus h new elements of the form
RAi. Just as the matrix representation for the identity operator E is the unit
matrix 1̂ and forRE it is ±1̂, the matrix representation for Ai isD(Γj)(Ai) and
for RAi it is ±D(Γj)(Ai), depending upon whether the representation Γj is
related by compatibility relations to even- or odd-dimensional representations
of the full rotation group. The introduction of this symmetry element R leads
to no difficulties with the quantum mechanical description of the problem,
since the wave functions ψ and −ψ describe the same physical problem and
the matrices ±D(Γj)(Ai) each produce the same linear combination of the
basis functions.

Because of the introduction of the symmetry element R, the point groups
of the crystal have twice as many elements as before. These point groups also
have more classes, but not exactly twice as many classes because some of
the elements RAi are in the same classes as other elements Ak. For example,
according to (14.11), when j assumes half-integral values, then we have for
a C2 operation

χj(π) =
sin(j + 1/2)π

sin(π/2)
= 0 (14.15)

and

χj(π ± 2π) =
sin(j + 1/2)(π ± 2π)

sin
(

π±2π
2

) =
0
−1

= 0 . (14.16)

As presented in Sect. 14.3, for some classes of twofold axes, the elements RC2

and C2 are, in fact, in the same class.

14.3 Double Group Properties

We will now state some properties of the even-dimensional representations
of the full rotation group and of double groups corresponding to the half-
integral angular momentum states. These properties are given here without
proof. More complete treatments can be found, for example, in Heine’s book
on group theory [37]. We list below four important rules for the properties of
double groups.

(a) If a set of symmetry operations {Ak} forms a class in the original point
group, then {Ak} and the corresponding symmetry operations for the
double group {RAk} form two different classes in the double group, except
in the case noted below under heading (b).

(b) The exceptions to property (a) are classes of rotations by π, if, and only
if, there is in addition to the operation C2 another twofold axis ⊥ to the
twofold axis C2 for all members of the class. In this case only, C2 and RC2

are in the same class.
(c) Any irreducible representation of the original group is also an irreducible

representation of the double group, with the same set of characters
[χ(RCk) = χ(Ck)].
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(d) In addition to the irreducible representations described in property (c),
there must be additional double group representations, so that we have as
many irreducible representations as there are classes. For these additional
irreducible representations, the characters for the class RCk are found
from the characters of class Ck according to the relation χ(RCk) = −χ(Ck).
The relation χ(Ck) = −χ(RCk) follows because the signs of the wavefunc-
tions change as a result of the symmetry operation RCk. In the special
case where property (b) applies and {Ak} and {RAk} are in the same
class, then

χ(Ck) = +χ(RCk) = −χ(RCk) = 0 , (14.17)

since both types of symmetry operations are in same class. Therefore, for
classes obeying property (b), it is always the case that Ck = C2 where
χ(C2) = 0.

We can now write down the characters for double group representations and
relate these results to the spin–orbit interaction. In a solid, without spin–orbit
coupling

H0 =
p2

2m
+ V (r) . (14.18)

Now if we include the electron spin, but still neglect the spin–orbit interaction,
the Bloch functions in the simplest case can be written as

ψ+
nk = eik·runk(r)α

ψ−nk = eik·runk(r)β , (14.19)

where α, β are the spin up and spin down eigenfunctions for spin 1/2, and
n, k denote the band index and wave number, respectively, and for a single
electron with Sz = ±1/2. Without spin–orbit coupling, each state is doubly
degenerate and is an eigenstate of Sz. If the spin–orbit interaction is included,
then the states are no longer eigenstates of Sz and the wave function becomes
some linear combination of the states given by (14.19)

ψnk = aψ+
nk + bψ−nk . (14.20)

The group theoretical way to describe these states is in terms of the
direct product Γi ⊗ D1/2 of the irreducible representation of the spa-
tial wave functions Γi with the irreducible representation of the spin
function of an electron which we will denote by D1/2 and is called the
Spinor.

To illustrate how we write the characters for D1/2, let us consider cubic
crystals with an O symmetry point group. (The results for Oh are immedi-
ately obtained from O by taking the direct product Oh = O ⊗ i.) From the
rules given above, the classes of the double group for O are E,R, (3C2

4 +
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Table 14.2. Character for rotations by α for the full rotational symmetry group
and the j = 1/2 Spinor irreducible representation D1/2

α χ 1
2
(α) χ 1

2
(Rα)

0
α

α/2
= 2 −2

π 0 0

π

2

sin π
2

sin π
4

=
1
1√
2

=
√

2 −√2

π

3

sin 2π
3

sin π
3

=

√
3

2√
3

2

= 1 −1

3RC2
4 ), 6C4, 6RC4, (6C2 + 6RC2), 8C3, 8RC3. Having listed the classes (eight

in this case), we can now find the characters for D1/2 by the formula

χj(α) =
sin(j + 1/2)α

sin(α/2)
=

sinα
sin(α/2)

, (14.21)

since j = 1/2. For the Full Rotational Symmetry group, the characters for
a rotation by α for the double point group O are found using (14.21) and the
results are given in Table 14.2. This procedure for finding the characters for
the spinor D1/2 is general and can be done for any point group.

Now we will write down the complete character table for the double
group O. In O itself, there are 24 elements, and therefore in the double group
derived from O there are 24 × 2 = 48 elements. There are eight classes in
the double group O and therefore eight irreducible representations. We al-
ready have five of these irreducible representations (see Table 14.3 for group
O). These five irreducible representations are all even representations of the
group Oh (see Table D.1 for the corresponding basis functions). Using rule (b)
in Sect. 14.3 for the character tables of double group representations, we have
the following condition for the dimensionality of the three additional double
group representations (Γ6, Γ7, Γ8) that are not present in the original group O

∑
i

�2i = h (14.22)

12 + 12 + 22 + 32 + 32 + �26 + �27 + �28 = 48 , (14.23)

yielding the following restriction on the dimensionalities of the double group
irreducible representations:

�26 + �27 + �28 = 24 . (14.24)
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Table 14.3. Worksheet for the double group characters for the group O

E R 3C2
4 + 3RC2

4 6C4 6RC4 6C′2 + 6RC′′2 8C3 8RC3

Γ1 1 1 1 1 1 1 1 1

Γ2 1 1 1 −1 −1 −1 1 1

Γ12 2 2 2 0 0 0 −1 −1

Γ15′ 3 3 −1 1 1 −1 0 0

Γ25′ 3 3 −1 −1 −1 1 0 0

Γ6 2 −2 0
√

2 −√2 0 1 −1

Γ7 2 −2 0 0

Γ8 4 −4 0 0

Table 14.4. Characters used to find entries x and y for represenation Γ7

E 8C3 6C4

Γ6 2 1
√

2

Γ7 2 x y

Table 14.5. Characters used to find entries x′ and y′ for representation Γ8

E 8C3 6C4

Γ6 2 1
√

2

Γ7 2 1 −√2

Γ8 4 x′ y′

This allows us to fill in many of the entries in the double group character
table for group O (Table 14.3). For example, Γ6, Γ7 and Γ8 cannot have 5-
dimensional representations, because then �2j = 25 > 24. Among 1-, 2-, 3- and
4-dimensional irreducible representations, the only combination we can make
to satisfy (14.24) is

22 + 22 + 42 = 24 . (14.25)

We already have identified a 2-dimensional irreducible representation of the
double group, namely the “spinor” D1/2 (see Table 14.2). We see immediately
that D1/2 obeys all the orthogonality relations, and the characters for D1/2

can be added to the character table, using the notation D1/2 = Γ6.
In Table 14.3 we have also filled in zeros for the characters for all the

C2 classes in the special double group representations Γ6, Γ7 and Γ8. Using
orthogonality and normalization conditions which follow from the wonderful
orthogonality theorem on character, it is quite easy to complete this character
table. To get the Γ7 representation we have to consider the entries in Table 14.4
and orthogonality requires 4+8x+6

√
2y = 0 which is satisfied for x = ±1, and

y = −√2. Having filled in those entries it is easy to get the four-dimensional
representation (see Table 14.5). Orthogonality now requires: 8+8x′±√2y′ = 0
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Table 14.6. Double group character table for the group O

O E R 3C2
4 + 3RC2

4 6C4 6RC4 6C′2 + 6RC′′2 8C3 8RC3

Γ1 1 1 1 1 1 1 1 1

Γ2 1 1 1 −1 −1 −1 1 1

Γ12 2 2 2 0 0 0 −1 −1

Γ15′ 3 3 −1 1 1 −1 0 0

Γ25′ 3 3 −1 −1 −1 1 0 0

Γ6 2 −2 0
√

2 −√2 0 1 −1

Γ7 2 −2 0 −√2
√

2 0 1 −1

Γ8 4 −4 0 0 0 0 −1 1

Table 14.7. Direct products Γi ⊗ Γ+
6 for Oh symmetry

Γ+
1 ⊗ Γ+

6 = Γ+
6 Γ−1 ⊗ Γ+

6 = Γ−6

Γ+
2 ⊗ Γ+

6 = Γ+
7 Γ−2 ⊗ Γ+

6 = Γ−7

Γ+
12 ⊗ Γ+

6 = Γ+
8 Γ−12 ⊗ Γ+

6 = Γ−8

Γ+
15 ⊗ Γ+

6 = Γ+
6 + Γ+

8 Γ−15 ⊗ Γ+
6 = Γ−6 + Γ−8

Γ+
25 ⊗ Γ+

6 = Γ+
7 + Γ+

8 Γ−25 ⊗ Γ+
6 = Γ−7 + Γ−8

Γ+
6 ⊗ Γ+

6 = Γ+
1 + Γ+

15 Γ−6 ⊗ Γ+
6 = Γ−1 + Γ−15

Γ+
7 ⊗ Γ+

6 = Γ+
2 + Γ+

25 Γ−7 ⊗ Γ+
6 = Γ−2 + Γ−25

Γ+
8 ⊗ Γ+

6 = Γ+
12 + Γ+

15 + Γ+
25 Γ−8 ⊗ Γ+

6 = Γ−12 + Γ−15 + Γ−25

which is satisfied for x′ = −1, y′ = 0. So now we have the whole character
table, as shown in Table 14.6.

In practice, we do not have to construct these character tables because the
double group character tables have already been tabulated in the literature
[47,48,54] or via the website cited in Ref. [54]. An example of a double group
character table for O symmetry is given in Appendix D, Table D.1. Here you
will see that a symmetry element RCn is listed as Rn following the notation
in Koster’s book. Other examples of double group character tables are found
in Appendix D.

We will now apply the double group characters to a cubic crystal with Oh

symmetry at the Γ point, k = 0 and we make use of Table 14.6 or Table D.1
and Oh = O ⊗ i or Table D.1. The spin functions α and β transform as the
partners of the irreducible representation D1/2 which is written as Γ+

6 for the
double group Oh. Now we see that the appropriate double group representa-
tions (which must be used when the effects of the electron spin are included)
are obtained by taking the direct product of the irreducible representation Γi

with the spinor (D1/2) as shown in Table 14.7. Since group Oh = O ⊗ i, the
number of classes in the double group Oh is 2× 8 = 16 and the total number
of irreducible representations is 16, and each is labeled according to whether



348 14 Spin–Orbit Interaction in Solids and Double Groups

it is even or odd under the inversion operation, noting that Γ ′15 = Γ+
15 and

Γ ′25 = Γ+
25, while Γ15 = Γ−15 and Γ25 = Γ−25.

When the spin–orbit interaction is introduced into the description of the
electronic structure, then the energy bands are labeled by double group irre-
ducible representations (e.g., Γ±6 , Γ±7 and Γ±8 for the Oh group at k = 0).
Table 14.7 shows that the one-dimensional representations without the spin–
orbit interaction Γ±1 and Γ±2 all become doubly degenerate after taking the
direct product with the spinor D1/2. This result is independent of the sym-
metry group. When the spin–orbit interaction is introduced, all formerly non-
degenerate levels therefore become double degenerate as in Fig. 14.1(b). (This
effect is called the Kramers degeneracy.)

In the case of the Oh group, the twofold levels Γ±12 become fourfold de-
generate when spin is included as is shown in Table 14.7. However, something
different happens for the triply degenerate Γ±15 and Γ±25 states. These states
would become sixfold degenerate with spin, but the spin–orbit interaction
partly lifts this degeneracy so that these sixfold levels split into a twofold and
a fourfold level, just as in the atomic case. Group theory does not tell us the
ordering of these levels, nor the magnitude of the splitting, but it does give
the symmetry of the levels. By including the spin–orbit interaction in dealing
with the valence band of a semiconductor like germanium, the sixfold level
can be partially diagonalized; the (6 × 6) k · p effective Hamiltonian breaks
up into a (2× 2) block and a (4× 4) block.

Figure 14.1 shows the effect of the spin–orbit interaction on the energy
bands of germanium. We note that the magnitudes of the spin–orbit splittings
are k dependent. Spin–orbit effects are largest at k = 0, moderately large
along the (111) direction (Λ) and at the L-point, but much smaller along
the (100) direction (Δ) and at the X-point. Group theory does not provide
information on these relative magnitudes. As was mentioned above, the spin–
orbit interaction effects tend to be very important in the III–V compound
semiconductors. Since in this case the two atoms in the unit cell correspond
to different chemical species, the appropriate point group at k = 0 is Td and
the bonding and antibonding bands both have symmetries Γ1 and Γ15 for the
s and p states, respectively. The general picture of the energy bands for the
III–V compounds is qualitatively similar to that given in Fig. 14.1 except for
a generally larger spin–orbit splitting and for a linear k term to be discussed
with regard to time reversal symmetry (see Chap. 16).

Another important class of semiconductors where the spin–orbit interac-
tion is important is the narrow gap lead salts (e.g., PbTe). Since Pb has a high
atomic number, it is necessary to give a more exact theory for the spin-orbit
interaction in this case, by including relativistic correction terms [21]. How-
ever, the group theoretical considerations given here apply equally well when
relativistic corrections are included.

In writing down the double group irreducible representations, we see that
a particular representation may be associated with various single group rep-
resentations. For example, the direct products in Table 14.7 show that the
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Γ+
7 irreducible double group representation could be associated with either

a Γ+
2 or a Γ+

25 irreducible single group representation. In dealing with ba-
sis functions in the double group representations, it is often useful to know
which single group representation corresponds to a particular double group
representation. The standard notation used for this association is for exam-
ple Γ+

8 (Γ+
12), in which the appropriate single group representation is put in

parenthesis, indicating that the particular Γ+
8 basis functions of interest are

those arising from the direct product Γ+
12 ⊗ Γ+

6 rather than from one of the
other possibilities listed in Table 14.7.

14.4 Crystal Field Splitting
Including Spin–Orbit Coupling

In our treatment of crystal field splittings in solids in Chap. 5 we ignored
the spin–orbit coupling, thus providing a first approximation for describing
the crystal field levels for the impurity ions in a host lattice. To improve on
this, we consider in this chapter the effect of the spin–orbit interaction which
will allow us to treat crystal field splittings in host lattices with rare earth
ions (where the spin–orbit interaction is in fact larger than the crystal field
interaction), and also to obtain a better approximation to the crystal field
splittings for 3d transition metal ions that were first discussed in Chap. 5.

The introduction of a transition-metal ion in an atomic d-state into an oc-
tahedral crystal field gives rise to crystal field splittings, as shown in Fig. 14.3
(see also Sect. 5.3).

For a single d-electron, s = 1/2 and in Oh symmetry the appropriate
double group representation for the spinor is Γ+

6 . Thus when the spin–orbit
interaction is included in the crystal field problem, the d-levels are further
split. Thus the twofold crystal field level in Oh cubic symmetry transforms as

Γ+
12 ⊗ Γ+

6 = Γ+
8 (14.26)

and the threefold crystal field level in Oh symmetry is split according to

Γ+
25 ⊗ Γ+

6 = Γ+
7 + Γ+

8 . (14.27)

In (14.26) and (14.27), Γ+
12 and Γ+

25 denote spatial wave-functions and Γ+
6

denotes the spin wave-function. Here we see that the Eg (Γ+
12) level does not

split further by the spin-orbit interaction, but the T2g (Γ+
25) level splits into

a twofold and a fourfold level.
For the 2D state of the free 3d transition-metal ion, we use to Fig. 14.3

to show the splitting induced by a large crystal field and a small spin-orbit
interaction (where the number of states is given in parentheses and we use the
notation 2s+1XJ to denote the quantum numbers s and J while X denotes
the orbital angular momentum). The analysis in Fig. 14.3 is valid only if the
crystal field interaction is large compared with the spin–orbit splitting. This
situation describes the iron-group transition metal ions.
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Fig. 14.3. Schematic diagram of the crystal field splitting of a 2D state with
a tenfold degeneracy, followed by further splitting by the spin–orbit interaction.
This model is appropriate for a 3d transition metal ion in a crystal with Oh sym-
metry for which the crystal field perturbation is large compared to the spin–orbit
interaction. The degeneracy of each of the levels is indicated by the parentheses.
Also shown in this figure are the labels for the crystal field levels associated with
each of the Γ+

8 levels in the absence of the spin–orbit interaction. Below the crystal
field splitting diagram, the form of the crystal field Hamiltonian is indicated on
the left in the absence of the spin–orbit interaction, and on the right when the
spin–orbit interaction is included

When we move down the periodic table to the palladium group (4d) and
the platinum group (5d), the spin–orbit interaction becomes large compared
with the crystal field. In this case, we consider first the spin–orbit splitting of
the free ion state as the major perturbation (see Fig. 14.4). We now have to
consider the effect of the crystal field on levels described by half-integral j val-
ues. To compute the characters for the full rotation group, we use the formula

χj(α) =
sin(j + 1/2)α

sin(α/2)
. (14.28)

We then find the characters for the 2D5/2 and 2D3/2 states to see how they
split in the cubic field (see Table 14.8). Using Table 14.8 we see immediately
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Fig. 14.4. Schematic diagram of the spin–orbit splitting of a 2D level with a tenfold
degeneracy and of the subsequent crystal field splittings of these levels in a cubic
field for an ion with a spin–orbit interaction that is large compared to the crystal
field splittings (which might apply to a 4d or a 5d atomic level). The degeneracy of
each level is shown in parentheses

that the irreducible representations for 2D5/2 and 2D3/2 become

2D5/2 → Γ7 + Γ8 (14.29)

2D3/2 → Γ8 (14.30)

as indicated in Fig. 14.4. The symmetries in Figs. 14.3 and 14.4 for the levels
in the presence of both the spin–orbit interaction and the cubic field of the
crystalline solid are Γ+

7 +2Γ+
8 in both cases with the + parity coming from the

orbital angular momentum being a D-level (even parity state). In Fig. 14.4,
the crystal field splittings are small compared with the spin–orbit splittings,
in contrast to the case in Fig. 14.3.

Let us consider another example of crystal field levels that show some other
important features. Consider the levels of the holmium ion Ho3+ in a cubic
field (group O) for which the atomic configuration is 4f105s25p6 so that by
Hund’s rule the ground state, after the spin–orbit interaction is included,
becomes, s = 2, l = 6, j = 8 denoted by the spectroscopic notation 5I8 (see
page 404 of Ref. [45]). Since j = 8 is an integer, application of the formula

χj(α) =
{

sin(j + 1/2)α
sin(α/2)

}
(14.31)

gives only ordinary irreducible representations, even though the electron spin
is included. We thus get the characters for the ground state 5I8 given in
Table 14.9.

Decomposition of the Γ (5I8) level into irreducible representations of O
yields

Γ (5I8) → Γ1 + 2Γ12 + 2Γ15 + 2Γ25 , (14.32)
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Table 14.8. Decomposition into double group Oh representations for a � = 2 level

E R 3C2
4 + 3RC2

4 6C4 6RC4 6C2 + 6RC2 8C3 8RC3

χ(2D5/2) 6 −6 0 −√2
√

2 0 0 0

χ(2D3/2) 4 −4 0 0 0 0 −1 1

Table 14.9. Characters for the 5I8 and 4I15/2 states in O symmetry

E 3C2
4 6C4 6C2 8C3

Γ (5I8) 17 1 1 1 −1

Γ (4I15/2) 16 0 0 0 −1

where there are seven levels for 17 states. Finding the crystal field splittings
for a 17-fold level would be a very difficult problem without group theory. As
another example, let us consider the erbium ion Er3+ in a host crystal. This
ion is the basis for applications of amplification capabilities in optical fibers.
We consider the level splitting for the rare earth ion Er3+ in a 4f115s2p6

which gives a 4I15/2 ground state. The characters for the j = 15/2 state are
given in Table 14.9 and the splitting of these states in a cubic O field is also
included in this table. The j = 15/2 state in cubic O symmetry splits into

Γ (4I15/2) → Γ6 + Γ7 + 3Γ8 .

In dealing with the crystal field problem, we often encounter a situation where
a perturbation is applied to lower the crystal symmetry. In such cases we fol-
low the procedure which we have used many times before – the irreducible
representation of the high symmetry group is treated as a reducible represen-
tation for the lower symmetry group and we look for the irreducible repre-
sentations contained therein. The only difference in including the spin–orbit
interaction is the use of double groups for all point groups – both for the
high symmetry and the low symmetry groups. It is the case that the sin-
gle group irreducible representations in a group of higher symmetry will al-
ways go into single group irreducible representations of the lower symmetry
group. For example, the level Γ8 in point group O goes into Γ4 + Γ5 + Γ6

in point group D3, when the symmetry is lowered (see Table D.7 in Ap-
pendix D.)

In considering optical transitions in semiconductors which are described
by either single or double group representations, the electromagnetic interac-
tion Hamiltonian will in all cases transform as the vector within the single
group representations. Suppose that we consider the application of an elec-
tromagnetic light wave on a Ge crystal where we are considering the coupling
of light to the Γ−7 conduction band at the center of the Brillouin zone. Then
we can write

Γ−15 ⊗ Γ−7 = Γ+
7 + Γ+

8 , (14.33)
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and see that light couples the conduction band at k = 0 to the valence
band and to its related split-off band. Thus, if single group states had been
considered instead, such as the Γ−2 conduction band in Ge without spin–
orbit interaction, the coupling of the Γ−2 band by light would be found
by (Γ−15 ⊗ Γ−2 = Γ+

25), which tells us that the Γ−7 conduction band and
the Γ+

25 valence band are in this case also coupled by light. Then (14.33)
shows that the corresponding double group conduction band state (Γ−7 ) is
optically coupled to the corresponding double group valence band states
(Γ+

7 + Γ+
8 ).

Whereas the wave function for a single electron transforms as D1/2 (or
Γ+

6 for Oh symmetry), a two-electron wavefunction transforms as the direct
product D1/2 ⊗D1/2. For Oh symmetry, we have for this direct product

Γ+
6 ⊗ Γ+

6 = Γ+
1 + Γ+

15 , (14.34)

where Γ+
1 is the singlet s = 0 state and the Γ+

15 corresponds to the triplet
s = 1 level which has three values of ms. More explicitly, using ↑ and ↓ to
denote the two spin states and the numerals 1 and 2 to denote each of the
two electrons, we can denote the s = 0 state by 1/

√
2(↑1↓2 − ↓1↑2) and the

three partners of s = 1 by (↑1↑2), 1/
√

2(↑1↓2 + ↓1↑2), and (↓1↓2). We note
that in both cases, the levels have integral values of spin angular momentum
and thus the state transforms as a single group irreducible representation.
Finally, we note that for a D3/2 in full rotational symmetry generated by
two p-electrons, the double group representation in cubic symmetry for two
p electrons yields D+

1/2 ⊗ Γ−15 = Γ−6 + Γ−8 . For the Γ−8 level, the mj values
are 3/2, 1/2, −1/2 and −3/2 with very different wave functions than arise for
the case of two electrons in s states. The D−

1/2 level is made up of p states
with mj = 1/2 and −1/2 values. These topics are further considered in the
following sections.

14.5 Basis Functions for Double Group Representations

We will use the following notation for single electron spin states:

↑ = spin up =
(

1
0

)

↓ = spin down =
(

0
1

)
. (14.35)

The states in (14.35) are the states for the spinor D1/2 irreducible represen-
tation. For the cubic group O this spinor is denoted by the double group
representation Γ6 and for the Oh group by Γ+

6 . Operation by the Pauli spin
matrices σx, σy and σz
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σx =
(

0 1
1 0

)

σy =
(

0 −i
i 0

)

σz =
(

1 0
0 −1

)
(14.36)

on the pure spin up and spin down states yields

σx ↑ = ↓
−iσy ↑ = ↓
σz ↑ = ↑
σx ↓ = ↑

−iσy ↓ = − ↑
σz ↓ = − ↓ . (14.37)

The Pauli spin matrices σx, σy, σz together with the (2× 2) unit matrix

1̂ =
(

1 0
0 1

)
(14.38)

span a 2 × 2 space, so that every 2 × 2 matrix can be expressed in terms
of these four matrices, 1̂, σx, −iσy, σz. Also the raising σ+ and lowering σ−
operators are defined by

σ± = σx ± iσy , (14.39)

so that
1
2
σ− ↑=↓ and

1
2
σ+ ↓=↑ . (14.40)

One set of basis functions for Γ+
6 is the pair ↑, ↓ which form partners

for Γ+
6 relevant to spinors. This pair is also referred to as [φ(1/2, 1/2)

and φ(1/2,−1/2)] denoting the s and ms values for each partner. Any
other pair can be found from multiplication of this pair by another ba-
sis function such as Γ+

1 , since Γ+
6 = Γ+

1 ⊗ Γ+
6 . We will see below how

very different-looking basis functions can be used for Γ+
6 depending on

the single group representation with which Γ+
6 is connected, such as a Γ+

1

or a Γ+
15 state. Thus, it is convenient to label the basis functions for any

double group representation with the single group representation from
which it comes. Thus the pair ↑, ↓ would be associated with a Γ+

6 (Γ+
1 )

state, whereas Γ+
6 (Γ+

15) would have a different significance as discussed be-
low.

To understand this notation better, consider the Γ+
8 (Γ+

15) state which
comes from the direct product Γ+

15 ⊗ Γ+
6 = Γ+

6 + Γ+
8 . For the Γ+

15 state
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we may select the basis functions Lx, Ly, Lz (angular momentum compo-
nents). Then the six functions Lx↑, Lx↓, Ly↑, Ly↓, Lz↑, Lz↓ make up
basis functions for the combined Γ+

6 and Γ+
8 representations, assuming

no spin–orbit interaction. However, when the spin–orbit interaction is in-
cluded, we must now find the correct linear combinations of the above
six functions so that two of these transform as Γ+

6 and four transform
as Γ+

8 . The correct linear combinations are found by identifying those
basis functions which arise in the electronic energy band problem with
by making use of angular momentum states as discussed in Sect. 14.6.
The principles of group theory tell us that if the group theory problem
is solved for angular momentum functions, then the same group theoret-
ical solution can be applied to the electronic energy band eigenfunctions
with the same symmetry. This approach is utilized in the following two
sections.

14.6 Some Explicit Basis Functions

In this section, we will generate the basis functions for the j = 3/2, � = 1,
s = 1/2 states and for the j = 1/2, � = 1, s = 1/2 states. For the an-
gular momentum functions in the |�sm�ms〉 representation, the six eigen-
functions correspond to the orbital states � = 1, m� = 1, 0,−1 and the
spin states s = 1/2, ms = 1/2,−1/2. The transformations we are looking
for will transform these states into j = 3/2, mj = 3/2, 1/2,−1/2,−3/2
and j = 1/2, mj = 1/2,−1/2. The matrices which carry out these
transformations generate what are known as the Clebsch–Gordan coeffi-
cients. Tables of Clebsch–Gordan coefficients are found in quantum me-
chanics and group theory books for many of the useful combinations
of spin and orbital angular momentum that occur in practical prob-
lems [20].

A basis set that is appropriate for � = 1, s = 1/2 is given below for a Γ+
8

double group state derived from a Γ+
15 single group state (see also Sect. 14.9)

|j,mj〉State Basis Function

|32 , 3
2 〉 ξ1 = 1√

2
(Lx + iLy) ↑

| 32 , 1
2 〉 ξ2 = 1√

6
[(Lx + iLy) ↓ +2Lz ↑]

|32 ,− 1
2 〉 ξ3 = 1√

6
[(Lx − iLy) ↑ +2Lz ↓]

|32 ,− 3
2 〉 ξ4 = 1√

2
(Lx − iLy) ↓ .

(14.41)

These basis functions are obtained using the fundamental relations for raising
operators

L+|�,m�〉 =
√

(�−m�)(� +m� + 1) |�,m� + 1〉

J+|j,mj〉 =
√

(j −mj)(j +mj + 1) |j,mj + 1〉 . (14.42)
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We further note that the state |j = 3/2,mj = −3/2〉 is identical with the
state for � = 1, s = 1/2 and |m� = −1,ms = −1/2〉. Therefore, we start with
the j = 3/2, mj = −3/2 state and apply the raising operator to obtain the
other states:

J+

∣∣∣∣j =
3
2
,mj = −3

2

〉
=

√(
3
2

+
3
2

)(
3
2
− 3

2
+ 1

) ∣∣∣∣j =
3
2
,mj = −1

2

〉

= (L+ + S+)
∣∣∣∣m� = −1,ms = −1

2

〉

=
√

(1 + 1)(1− 1 + 1)
∣∣∣∣m� = 0,ms = −1

2

〉
(14.43)

+

√(
1
2

+
1
2

)(
1
2
− 1

2
+ 1

)∣∣∣∣m� = −1,ms =
1
2

〉
.

Collecting terms, we obtain
∣∣∣∣j =

3
2
,mj = −1

2

〉
=
√

2
3

∣∣∣∣m� = 0,ms = −1
2

〉
+

1√
3

∣∣∣∣m� = −1,ms =
1
2

〉
.

(14.44)
We make the identification:

m� = +1 → 1√
2
(Lx + iLy)

m� = 0 → Lz

m� = −1 → 1√
2
(Lx − iLy)

ms =
1
2
→ ↑

ms = −1
2
→ ↓ ,

from which we obtain the basis functions

|j,mj〉State Basis Function

|32 ,− 3
2 〉 1√

2
(Lx − iLy) ↓

|32 ,− 1
2 〉 1√

6
[(Lx − iLy) ↑ +2Lz ↓] .

(14.45)

Similarly, operation of J+ on the state |j = 3/2,mj − 1/2〉 results in
a state |j = 3/2,mj = 1/2〉 and operation of L+ + S+ on the correspond-
ing functions of |m� = 0,ms = −1/2〉 and |m� = −1,ms = 1/2〉
results in states |m� = 0,ms = 1/2〉 and |m� = +1,ms = −1/2〉.
In this way we obtain all the basis functions for Γ+

8 (Γ+
15) given in

(14.41).
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We will now proceed to obtain the basis functions for Γ+
6 (Γ+

15) which are

|j,mj〉State Basis Function

|12 , 1
2 〉 λ1 = 1√

3
[(Lx + iLy) ↓ −Lz ↑]

|12 ,− 1
2 〉 λ2 = 1√

3
[−(Lx − iLy) ↑ +Lz ↓] .

(14.46)

The notation “ξi” was used in (14.41) to denote the four Γ+
8 (Γ+

15) basis func-
tions for j = 3/2 and “λi” for the two Γ+

6 (Γ+
15) basis functions for j = 1/2.

This notation “ξi” and “λi” is arbitrary and is not standard in the literature.
To obtain the Γ+

6 (Γ+
15) basis functions we note that the appropriate

(m�,ms) quantum numbers corresponding to j = 1/2 and mj = ±1/2 are

m� = 0 , ms = ±1
2
,

m� = 1 , ms = −1
2
,

m� = −1 , ms = +
1
2
,

so that the corresponding basis functions are completely specified by making
them orthogonal to the |j = 3/2,mj = +1/2〉 and |j = 3/2,mj = −1/2〉
states. For example, the function orthogonal to

√
2
3

∣∣∣∣m� = 0,ms = −1
2

〉
+

1√
3

∣∣∣∣m� = −1,ms = +
1
2

〉
(14.47)

is the function

1√
3

∣∣∣∣m� = 0,ms = −1
2

〉
−
√

2
3

∣∣∣∣m� = −1,ms = +
1
2

〉
, (14.48)

which yields the basis functions for the |j = 1/2,mj = −1/2〉 state:

1√
3
|Lz ↓ −(Lx − iLy) ↑〉 . (14.49)

Similarly the basis function for the |j = 1/2,mj = +1/2〉 state can be
found by application of the raising operators J+ and (L+ + S+) to the
|j = 1/2,mj = −1/2〉 state, or alternatively by requiring orthogonality to
the |j = 3/2,mj = +1/2〉 state. Applying the raising operator to the state
(14.48) yields

1√
3

∣∣∣∣m� = 0,ms = +
1
2

〉
−
√

2
3

∣∣∣∣m� = +1,ms = −1
2

〉

=
1√
3
[(Lx + iLy) ↓ −Lz ↑] , (14.50)
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which is seen to be orthogonal to

1√
6
[(Lx + iLy) ↓ +2Lz ↑] . (14.51)

In finding the basis functions for Γ+
8 (Γ+

15) we have made use of the sym-
metry properties of the angular momentum operators. As far as the sym-
metry properties are concerned, it makes no difference whether L is an
angular momentum function or an electronic energy band wave function
with Γ+

15 symmetry. This concept allows us to write down wave functions
with Γ+

8 symmetry derived from other single group states, and examples
of such results are given in Sect. 14.7, and others are taken from the liter-
ature [47] or elsewhere (see also Appendix D for tables of these coupling
coefficients).

14.7 Basis Functions for Other Γ +
8 States

Basis functions for the Γ±8 state derived from Γ−8 (Γ−15), Γ
+
8 (Γ+

25), Γ
−
8 (Γ−25),

etc. can be found from Γ+
8 (Γ+

15) and Γ+
6 (Γ+

15), as explained below. To
obtain the basis functions for Γ−8 (Γ−15), all we have to do is to re-
place

Lx, Ly, Lz → x, y, z

in (14.41) of Sect. 14.6. This set of basis functions is also considered in
Sect. 14.8 using tables available from the literature. Likewise to obtain
Γ+

8 (Γ+
25), we have to replace

Lx, Ly, Lz → εx, εy, εz ,

where εx = yz, εy = zx, εz = xy. By using this prescription, the basis func-
tions for Γ±8 will be of the same form for all symmetry-related partners,
whether the basis functions are derived from a Γ±15 or a Γ±25 single group
representation. This correspondence is a highly desirable feature for working
practical problems.

We note that the Γ+
8 (Γ+

12) representation can also be produced by con-
sidering the electron spin for a Γ+

12 spinless level: Γ+
6 ⊗ Γ+

12 = Γ+
8 . We

can always make a set of four basis functions for this representation out of
f1 ↑, f1 ↓, f2 ↑, f2 ↓ where f1 = x2 +ωy2 +ω2z2, f2 = f∗1 and ω = exp(2πi/3).
This makes up a perfectly good representation, but the actual functions that
are partners look very different from those of Γ+

8 (Γ+
15) or Γ+

8 (Γ+
25). We can,

however, make a unitary transformation of these four functions so that they
look like the Γ+

8 (Γ+
15) set.

We can make use of these double group basis functions in many ways.
For example, these basis functions are used to determine the nonvanishing
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k · p matrix elements (uΓi
n,0|H′|uΓj

n,0) (see Chap. 15 and (15.12)). These basis
functions also determine which of the nonvanishing matrix elements are equal
to each other for a given group of the wave vector.

One technique that can be used to determine the number of nonvanish-
ing matrix elements in cases involving multidimensional representations is
as follows. If the relevant matrix element is of the form (Γi|Γinteraction|Γj)
then the number of independent matrix elements is the number of times
the identity representation (Γ+

1 ) is contained in the triple direct product
Γi ⊗ Γinteraction ⊗ Γj . For example, the direct product of the matrix element
(Γ+

1 |Γ−15|Γ−15) is

Γ+
1 ⊗ Γ−15 ⊗ Γ−15 = Γ+

1 + Γ+
12 + Γ+

15 + Γ+
25 , (14.52)

and since all nonvanishing matrix elements must be invariant under all
symmetry operations of the group, only the Γ+

1 term leads to a nonva-
nishing matrix element. This triple direct product then tells us that of
the nine possible combinations of partners, there is only one indepen-
dent nonvanishing matrix element, and therefore all nine possible com-
binations of partners must be related to this nonvanishing matrix ele-
ment.

For the case of double groups, the matrix element (Γ+
6 |Γ−15|Γ−6 ) has 2×3×

2 = 12 possible combinations. Now Γ+
6 ⊗Γ−15⊗Γ−6 = Γ+

1 +Γ+
15+Γ

+
12+Γ+

15+Γ
+
25,

so that once again there is only one independent matrix element. Finally, for
the case (Γ+

6 |Γ−15|Γ−8 ) there are 24 possible combinations. The direct product
Γ+

6 ⊗ Γ−15 ⊗ Γ−8 = Γ+
1 + Γ+

2 + Γ+
12 + 2Γ+

15 + 2Γ+
25, and once again there is one

independent matrix element. Furthermore, if Γ−6 and Γ−8 are both related
through a Γ−15 interaction term, then the same independent matrix element
applies to both (Γ+

6 |Γ−15|Γ−6 ) and (Γ+
6 |Γ−15|Γ−8 ).

14.8 Comments on Double Group Character Tables

At this point, it is important to address the reader to Appendix D, which
contains much information and many illustrative tables pertinent to dou-
ble groups. This appendix provides an interface between this chapter and
the literature [48, 54] and various sources of information about double
groups.

In dealing with electronic energy bands for which the spin–orbit interac-
tion is included, we use the |j�smj〉 representation, and this in general requires
a transformation from the basis functions in the |�sm�ms〉 representation to
the |j�smj〉 representation. Table D.4 in Appendix D gives us the following
relations between the pertinent basis functions for the two representations for
the double group Oh:
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ψ6
−1/2 =

∣∣∣∣12 ,−
1
2

〉
= −(i/

√
3)(u4

x − iu4
y) ↑ +(i/

√
3)u4

z ↓

ψ6
1/2 =

∣∣∣∣12 ,
1
2

〉
= −(i/

√
3)(u4

x + iu4
y) ↓ −(i/

√
3)u4

z ↑

ψ8
−3/2 =

∣∣∣∣32 ,−
3
2

〉
= (i/

√
2)(u4

x − iu4
y) ↓

ψ8
−1/2 =

∣∣∣∣32 ,−
1
2

〉
= (i/

√
6)(u4

x − iu4
y) ↑ +(i

√
2/
√

3)u4
z ↓

ψ8
1/2 =

∣∣∣∣32 ,
1
2

〉
= −(i/

√
6)(u4

x + iu4
y) ↓ +(i

√
2/
√

3)u4
z ↑

ψ8
3/2 =

∣∣∣∣32 ,
3
2

〉
= −(i/

√
2)(u4

x + iu4
y) ↑ . (14.53)

In Table D.4, Γ−15 is denoted by Γ4, and (u4
x, u

4
y, u

4
z) are the three partners

of Γ4, while the spinor partners are denoted by ↑= v6
1/2 and ↓= v6

−1/2, thus
constituting the |�sm�ms〉 representations. The linear combinations given in
(14.53) and written above are basically the Clebsch–Gordan coefficients in
quantum mechanics [20]. We make use of these equations in Sect. 14.9 when
we discuss the introduction of spin and the spin–orbit interaction into the
plane wave relations describing the energy eigenvalues and eigenfunctions of
the empty lattice for an electron with spin.

Table D.1 gives the point group character tables for group O and group
Td including double groups, while Table D.7 gives the compatibility relations
showing the decomposition of the irreducible representations of Td and O into
the irreducible representations of the appropriate lower symmetry groups.
Note in Table D.7 that E refers to the electric field and H to the magnetic
field. The table can be used for many applications, such as finding the re-
sulting symmetries under crystal field splittings as for example Oh → D3 (see
Sect. 14.4). The decomposition of the irreducible representations of the full ro-
tation group into irreducible representations of groupsO and Td for the s, p, d,
. . . functions, etc. is given in Tables D.8 andD.9. Note that all the irreducible
representations of the full rotation group D±

j are listed, with the ± sign de-
noting the parity (even or odd under inversion) and the subscript giving the
angular momentum quantum number (j), so that the dimensionality of the
irreducible representation D±

j is (2j + 1).

14.9 Plane Wave Basis Functions
for Double Group Representations

In Chap. 12 we discussed the nearly free electron approximation for the en-
ergy bands in crystalline solids, neglecting the electron spin. In this case, the
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electron wave functions were expressed in terms of symmetrized linear combi-
nations of plane waves transforming according to irreducible representations
of the group of the wave vector. In the present section, we extend the pre-
sentation in Chap. 12 by giving an explicit example for Oh symmetry (space
group #221 for the simple cubic lattice) focusing on the plane wave solutions
at k = 0 for the corresponding situation where the spin of the electron is
included and the wave functions are described in terms of the double group
irreducible representations.

It is relatively simple to include the effect of the electron spin for the
irreducible representations Γ±1 and Γ±2 because there are no splittings induced
by the spin–orbit coupling. Thus the basis functions in this case are simple
product functions given by Γ±6 = Γ±1 ⊗ Γ+

6 and Γ±7 = Γ±2 ⊗ Γ+
6 or more

explicitly

ΨΓ±6
(Kni) = ψΓ±1

(Kni)
(
α
β

)

ΨΓ±7
(Kni) = ψΓ±2

(Kni)
(
α
β

)
, (14.54)

in which the Kni denote reciprocal lattice vectors while ψΓ±1
(Kni) and

ψΓ±2
(Kni) denote the symmetrized plane wave combinations considered in

Chap. 12, but in that case ignoring the effect of the electron spin, while α
and β here denote spin up and spin down functions, respectively, which form
partners of the Γ+

6 double group irreducible representation.
For the degenerate plane wave combinations, such as those with Γ±12, Γ

±
15

and Γ±25 symmetries, one method to find an appropriate set of basis functions
when the electron spin is included is to use the tables presented in Appendix D.
For example, basis functions for the four partners for Γ±8 = Γ±3 ⊗ Γ+

6 can be
found in the Table D.5. Consider that the functions u3

1, u
3
2 for Γ3 in this table

transform as

u3
1 ∝ 3z2 − r2

u3
2 ∝

√
3(x2 − y2) (14.55)

and the spinor functions are given by

v6
+1/2 ∝ α

v6
−1/2 ∝ β . (14.56)

Then the application of Table D.5 gives

ΨΓ±8
(Kni) =

1√
2

⎛
⎜⎜⎝

√
3(x2 − y2)α

(3z2 − r2)β
−(3z2 − r2)α
−√3(x2 − y2)β

⎞
⎟⎟⎠ . (14.57)
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A more symmetric set of basis functions for Γ±8 = Γ±12 ⊗ Γ+
6 is

ΨΓ±8
(Kni) =

1√
2

⎛
⎜⎜⎜⎜⎜⎝

[ω2ψ∗
Γ±12

(Kni) + ωψΓ±12
(Kni)]α

−i[ω2ψ∗
Γ±12

(Kni)− ωψΓ±12
(Kni)]β

i[ω2ψ∗
Γ±12

(Kni)− ωψΓ±12
(Kni)]α

−[ω2ψ∗
Γ±12

(Kni) + ωψΓ±12
(Kni)]β

⎞
⎟⎟⎟⎟⎟⎠
, (14.58)

in which ψΓ+
12

(Kni) = x2 + ωy2 + ω2z2 and ψ∗
Γ+

12
(Kni) = x2 + ω2y2 + ωz2.

Since the three-dimensional levels Γ±15 and Γ±25 split under the spin–orbit
interaction

Γ±15 ⊗D1/2 = Γ±6 + Γ±8

Γ±25 ⊗D1/2 = Γ±7 + Γ±8

the basis functions for these levels are somewhat more complicated, but the
coupling coefficients can be found in Table D.4 for the case of Γ±15⊗D1/2 and
in Table D.6 for the case of Γ±25 ⊗D1/2. In these tables, (u4

x, u4
y, u

4
z) and (u5

x,
u5

y, u5
z) are the three partners of Γ±15 (Γ4) and Γ±25 (Γ5), respectively, and from

these tables we obtain for the twofold levels:

ΨΓ±6
(Kni) =

1√
3

⎛
⎜⎝
[
−i

(
ψx

Γ±15
(Kni)− iψy

Γ±15
(Kni)

)
α+ iψz

Γ±15
(Kni)β

]
[
−i

(
ψx

Γ±15
(Kni) + iψy

Γ±15
(Kni)

)
β − iψz

Γ±15
(Kni)α

]
⎞
⎟⎠

ΨΓ±7
(Kni) =

1√
3

⎛
⎜⎝
[
−i

(
ψx

Γ±25
(Kni)− iψy

Γ±25
(Kni)

)
α+ iψz

Γ±25
(Kni)β

]
[
−i

(
ψx

Γ±25
(Kni) + iψy

Γ±25
(Kni)

)
β − iψz

Γ±25
(Kni)α

]
⎞
⎟⎠ .

(14.59)

Problem 14.3 considers the corresponding fourfold levels obtained from taking
the direct products of Γ±15(Γ

±
4 )⊗ Γ+

6 and Γ±25(Γ
±
5 )⊗ Γ+

6 .

14.10 Group of the Wave Vector
for Nonsymmorphic Double Groups

In the case of nonsymmorphic space groups, we found in Sect. 12.5 that bands
are often required to stick together at certain high symmetry points on the
Brillouin zone boundary where the structure factor vanishes. In Sect. 12.5 it
was explicitly shown that for the diamond structure the nondegenerate Δ1
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and Δ2′ levels come into the X point with equal and opposite nonzero slopes,
so that in the extended Brillouin zone, the E(k) curves together with all their
derivatives, pass through the X point continuously as they interchange their
symmetry designations. It was shown in Sect. 12.5 that the physical basis for
bands sticking together in this way is that the structure factor vanishes. In
such cases it is as if there were no Brillouin zone boundary so that the energy
eigenvalues continue through the symmetry point without interruption.

In this section, we consider the corresponding situation including the elec-
tron spin and the spin–orbit interaction. Here we explicitly illustrate the
sticking together of energy bands in terms of another space group #194 for
the hexagonal close packed structure. Another objective of this section is to
gain further experience with using double group irreducible representations.
Space group #194 was previously discussed in Problems 9.6 and 10.6 and in
Sect. 11.4.3 in relation to the lattice modes in graphite. In the case of lat-
tice modes, we only make use of the single group representations. Mention
of space group #194 was also made in Sect. 12.5 in connection with bands
sticking together at the zone boundary in cases where the structure factor
vanishes for nonsymmorphic groups, but in Sect. 12.5 the electron spin and
the spin–orbit interaction was neglected. We here consider the case where
energy bands for the nonsymmorphic hexagonal close packed lattice stick to-
gether and the spin–orbit interaction is included [26] so that double groups
must be considered.

Let us consider the wave vector to going from a high symmetry point (Γ )
(see Fig.C.7) to a lower symmetry point (Δ) to the point A at the BZ bound-
ary. The double group character tables for these three high symmetry points
Γ , Δ and A are found in Tables D.10, D.11 and D.13, respectively. At the A
point there are six classes for the group of the wave vector and six irreducible
representations, three of which are ordinary irreducible representations ΓA

1 ,
ΓA

2 , ΓA
3 and three of which are double group representations (ΓA

4 , ΓA
5 , ΓA

6 ).
The compatibility relations between the irreducible representations at A

and at Δ:

(A) 1 2 3 4+5 6
↓ ↓ ↓ ↓ ↓

(Δ) (1+3) (2+4) (5+6) 2(9) (7+8)

show that in the vicinity of the A point, we have band crossings for all the sin-
gle group bands with A1, A2 and A3 symmetry. These band crossings, shown
in Fig. 14.5, are based on these compatibility relations. The energy bands pass
through the A point without interruption and merely change their symmetry
designations, as for exampleΔ1 → A1 → Δ3. Bands for the doubly degenerate
double group irreducible representations Δ7 and Δ8 stick together as an A6

band at the A point. At the A point (kz = π/c) the phase factor exp[i(c/2)kz ],
associated with the symmetry operations containing τ = (c/2)((0, 0, 1) such
as {C6|τ}, becomes eiπ/2 = i. Energy bands with double group representa-
tions A4 and A5 have complex characters and are complex conjugates of each
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Fig. 14.5. Energy band dispersion relations for various irreducible representations
for group #194 near the A point. The energy bands go through the A point without
interruption because of the vanishing structure factor at the A point. Note that A4,
A5, A6, Δ7, Δ8 and Δ9 are double group representations. The A4 and A5 levels
stick together because of time reversal symmetry discussed in Chap. 16

other. In Chap. 16 we will see that such bands stick together because of time
reversal symmetry. Thus two Δ9 levels come into the A point to form A4 +A5

levels and leave the A point with the same Δ9 symmetry (see Fig. 14.5).

Selected Problems

14.1. (a) Following the procedure in Sect. 14.3, find the double group char-
acter table for the point group D6. First find the number of classes and
the number of irreducible representations. Then identify the classes as
listed in the character table, and the dimensionality of each irreducible
representation. Finally find the entries in the character table.

(b) Use the results in (a) to obtain the double group character table for the
group of the wave vector at k = 0 for space group #194 which is a non-
symmorphic group. Check your results against Table D.10.

(c) To which double group states do the states Γ+
7 , Γ+

8 , and Γ+
9 couple opti-

cally through electric dipole transitions?
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14.2. Consider an Er3+ rare earth ion entering an insulating ionic crystal in
a position with point group symmetry D4h.

(a) Find the double group irreducible representations of the crystal field (D4h

point group symmetry) corresponding to the ground state configuration
for the free ion. Compare with the crystal field splitting that would occur
for icosahedral point group symmetry Ih.

(b) Use Hund’s rules (see page 404 of Ref. [45]) to identify the lowest energy
optical transitions that can be induced from the ground state level of
the free Er3+ ion. Using group theory, find the lowest energy transitions
expected for an Er3+ ion in a crystal with D4h point group symmetry.

(c) What changes in the spectra (b) are expected to occur if a stress is applied
along the fourfold symmetry axis? in the direction along a twofold axis
perpendicular to the fourfold axis?

(d) Now suppose that a Dy3+ rare earth ion is introduced into the same lattice
instead of the Er3+ ion. What are the symmetry types for levels to which
optical transitions can be induced from a multiplet corresponding to the
ground state level of the free Dy3+ ion. (Use Hund’s rule to obtain the
ground state energies.) Work the problem only for the D4h point group
symmetry. Comment on the expected differences in the optical spectrum
for the Dy3+ and the Er3+ ions in part (c).

14.3. Using the linear combinations for plane waves given in Chap. 12 and the
coupling coefficients in Appendix D (see Sect. 14.9), find the linear combina-
tion of the appropriate partners for Γ±8 (kni) for the fourfold levels obtained
from Γ+

5 ⊗ Γ+
6 for a material crystallizing in the simple cubic structure.


