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Energy Band Models Based on Symmetry

Chapter 12 addressed the general application of space groups to the one-
electron energy bands in a periodic solid in the limit of vanishing periodic
potential [V (r) → 0]. This chapter deals with a model for which V (r) �= 0 is
present and where extensive use is made of crystal symmetry, namely k · p
perturbation theory. The Slater–Koster model, which also has a basic sym-
metry formalism, is discussed in Chap. 15, ater the spin–orbit interaction is
considered in Chap. 14.

13.1 Introduction

Just from the symmetry properties of a particular crystal, a good deal can
be deduced concerning the form of the energy bands of that crystal. Our
study of the group of the wave vector illustrates that some of the basic ques-
tions, such as band degeneracy and connectivity, are answered by group theory
alone. It is not necessary to solve Schrödinger’s equations explicitly to find
the degeneracies and the connectivity relations for En(k). An interpolation
or extrapolation technique for determining energy band dispersion relations
based on symmetry often provides the functional form of En(k) without actual
solution of Schrödinger’s equation. Such an approach is useful as an interpo-
lation scheme for experimental data or also for band calculations that are
carried out with great care at a few high symmetry points in the Brillouin
zone.

The interpolation/extrapolation method considered in this chapter is
called k · p perturbation theory (extrapolation or a Taylor’s series expansion
of E(k)). A related method called the Slater–Koster Fourier expansion [29]
(an interpolation or Fourier series expansion of E(k)) is the basis for sym-
metry formalism in the tight-binding method, and it will be discussed in
Chap. 15, after spin–orbit interaction is considered in Chap. 14. If the avail-
able experimental data are limited to one small region in the Brillouin zone
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Table 13.1. Irrreducible representations (IRs) of the cubic group Oh

even odd

Γ+
1 Γ1 Γ−1 Γ1′

Γ+
2 Γ2 Γ−2 Γ2′

Γ+
12 Γ12 Γ−12 Γ12′

Γ+
15 Γ15′ Γ−15 Γ15

Γ+
25 Γ25′ Γ−25 Γ25

and that is all that is known and under consideration, then k · p pertur-
bation theory is the appropriate method to use for describing E(k). This
is often the case in practice for semiconductors. If, however, the available
experimental data relate to several points or regions in the Brillouin zone,
then the Slater–Koster approach is more appropriate. Although such experi-
ments might seem to yield unrelated information about the energy bands, the
Slater–Koster approach is useful for interrelating the results of such experi-
ments.

The particular example used here to illustrate k ·p perturbation theory is
the electronic structure for a material with simple cubic symmetry. This dis-
cussion is readily extended to the electronic structure of semiconductors that
crystallize in the diamond structure (e.g., silicon) or the zincblende structure
(e.g., GaAs). The valence and conduction bands for these semiconductors are
formed from hybridized s- and p-bands.

We first consider cubic electronic energy band structures with inversion
symmetry. To emphasize inversion symmetry we will here use the notation
Γ±i to denote irreducible representations that are even and odd under the
inversion operator, when we write the irreducible representations of the cubic
Oh group, see Table 13.1 For the nonsymmorphic diamond structure, the s-
and p-functions at k = 0 in the Oh point group (at k = 0) transform as
the Γ+

1 and Γ−15 irreducible representations, respectively (see Sect. 10.8). In
the diamond structure there are 2 atoms per unit cell and Γ equiv at k = 0
transforms as Γ+

1 + Γ−2 (see Table 10.8). Thus we must consider eight bands
in discussing the valence and conduction bands formed by s- and p-bands for
the diamond structure. These bands have symmetries

Γ equiv ⊗ Γs-functions(Γ+
1 + Γ−2 )⊗ Γ+

1 = Γ+
1 + Γ−2

Γ equiv ⊗ Γp-functions(Γ+
1 + Γ−2 )⊗ Γ−15 = Γ−15 + Γ+

25 . (13.1)

We identify the Γ+
1 and Γ+

25 bands as the bonding s- and p-bands and the Γ−2
and Γ−15 bands as antibonding s- and p-bands. The reason why the bonding
p-band has Γ+

25 symmetry follows from the direct product Γ−2 ⊗ Γ−15 = Γ+
25

in (13.1). So long as the discussion of En(k) remains close to k = 0, the
nonsymmorphic nature of the energy bands is not important and the simple
discussion presented here remains valid.
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Our discussion starts with a brief review of k · p perturbation the-
ory in general (Sect. 13.2). An example of k · p perturbation theory
for a nondegenerate level is then given in Sect. 13.3. This is followed
by an example of degenerate first-order perturbation theory and a two-
band model (Sect. 13.4) which is then followed by degenerate second-
order k · p perturbation theory which is appropriate for describing the
p-bonding and antibonding levels in the diamond structure (Sect. 13.5).
In all of these cases, group theory tells us which are the nonvanishing
matrix elements, which bands couple to one another and which matrix
elements are equal to each other. The application of k · p perturba-
tion theory to the electronic energy bands at a Δ point is discussed in
Sect. 13.6, and to the valley-orbit interaction in semiconductors is given in
Sect. 13.8.

13.2 k · p Perturbation Theory

An electron in a periodic potential obeys the one-electron Hamiltonian:
[
p2

2m
+ V (r)

]
ψn,k(r) = En(k)ψn,k(r) , (13.2)

where the eigenfunctions of the Hamiltonian are the Bloch functions

ψn,k(r) = eik·run,k(r) (13.3)

and n is the band index. Substitution of ψn,k(r) into Schrödinger’s equation
gives an equation for the periodic function un,k(r)

[
p2

2m
+ V (r) +

�k · p
m

+
�

2k2

2m

]
un,k(r) = En(k) un,k(r) . (13.4)

In the spirit of the (k · p) method, we assume that En(k) is known at
point k = k0 either from experimental information or from direct solution
of Schrödinger’s equation for some model potential V (r). Assume the band
in question has symmetry Γi so that the function un,k0(r) transforms as the
irreducible representation Γi. Then we have

Hk0u
(Γi)
n,k0

= εn(k0) u
(Γi)
n,k0

, (13.5)

where

Hk0 =
p2

2m
+ V (r) +

�k0 · p
m

(13.6)

and

εn(k0) = En(k0)− �
2k2

0

2m
. (13.7)
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If εn(k0) and un,k0(r) are specified at k0, the k · p method prescribes the
development of the periodic un,k0(r) functions under variation of k. At point
k = k0 + κ, the eigenvalue problem becomes

Hk0+κun,k0+κ(r) =
(
Hk0 +

�κ · p
m

)
un,k0+κ(r)

= εn (k0 + κ)un,k0+κ(r) . (13.8)

In the spirit of the usual k · p perturbation theory, κ is small so that the
perturbation Hamiltonian is taken asH′ = �κ · p/m and the energy eigenvalue
at the displaced k vector εn(k0 + κ) is given by (13.7), and En(k0) is given
by (13.2). We will illustrate this method first for a nondegenerate band (a Γ±1
band for the simple cubic lattice) and then in Sect. 13.5 for a degenerate band
(a Γ±15 band for the simple cubic lattice).

13.3 Example of k · p Perturbation Theory
for a Nondegenerate Γ +

1 Band

Suppose the energy of the Γ±1 band at k = 0 in a crystal with Oh point sym-
metry is established by the identification of an optical transition and mea-
surement of its resonant photon energy. The unperturbed wave function at

k = 0 is uΓ+
1

n,0(r) and its eigenvalue from (13.7) is ε(Γ
+
1 )

n (0) = E
(Γ+

1 )
n (0) since

k0 = 0. Away from k0 = 0, we use k · p perturbation theory [31, 45]:

ε
(Γ+

1 )
n (κ) = E

(Γ+
1 )

n (0) +
(
u

Γ+
1

n,0|H′|uΓ+
1

n,0

)

+
∑
n′ �=n

(
u

Γ+
1

n,0|H′|uΓi

n′,0

)(
uΓi

n′,0|H′|uΓ+
1

n,0

)

E
Γ+

1
n (0)− EΓi

n′ (0)
, (13.9)

where the sum is over states n′ which have symmetries Γi.
Now H′ = �κ · p/m transforms like a vector, since H′ is proportional to

the vector p, which pertains to the electronic system and κ is considered as
an external variable not connected to the electronic system. If we expand the
eigenfunctions and eigenvalues of (13.9) about the Γ point (k = 0), then H′

which transforms according to the vector, will transform as the irreducible
representation Γ−15 in Oh symmetry. In the spirit of k ·p perturbation theory,
the vector k0 determines the point symmetry group that is used to classify
the wave functions and eigenvalues for H′.

For the k ·p expansion about the Γ point, the linear term in k which arises

in first order perturbation theory vanishes when k0 = 0 since (uΓ+
1

n,0|H′|uΓ+
1

n,0)
transforms according to the direct product Γ+

1 ⊗ Γ−15 ⊗ Γ+
1 = Γ−15 which does

not contain Γ+
1 (see Sect. 6.7). The same result is obtained using arguments
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relevant to the oddness and evenness of the functions which enter the matrix
elements of (13.9). At other k points in the Brillouin zone, the k ·p expansion
may contain linear k terms since the group of the wave vector for that k · p
expansion point may not contain the inversion operation.

Now let us look at the terms
(
uΓi

n′,0|H′|uΓ+
1

n,0

)

that arise in second order perturbation theory. The productH′uΓ+
1

n,0 transforms
as Γ−15⊗Γ+

1 = Γ−15 so that Γi must be of Γ−15 symmetry if a nonvanishing matrix
element is to result. We thus obtain

ε
Γ+

1
n (κ) = E

Γ+
1

n (0)+Σn′ �=n (Γ−15)

(
u

Γ+
1

n,0|H′|uΓ−15
n′,0

)(
u

Γ−15
n′,0|H′|uΓ+

1
n,0

)

E
Γ+

1
n (0)− E

Γ−15
n (0)

+ · · · (13.10)

and a corresponding relation is obtained for the nondegenerate Γ−1 and Γ±2
levels. For a semiconductor that crystallizes in the diamond structure, the
symmetry Γ+

1 describes the valence band s-band bonding state, while sym-
metry Γ−2 describes the conduction band s-band antibonding state (see Prob-
lem 13.1).

Thus we see that by using group theory, our k · p expansion is greatly
simplified, since it is only the Γ−15 levels that couple to the Γ+

1 level by k · p
perturbation theory in (13.10). These statements are completely independent
of the explicit wave functions which enter the problem, but depend only on
their symmetry. Further simplifications result from the observation that for
cubic symmetry the matrix elements

(
u

Γ+
1

n,0|H′|uΓ−15
n′,0

)

can all be expressed in terms of a single matrix element, if uΓ−15
n′,0 is identified

with specific basis functions, such as p-functions (denoted by x, y, z for brevity)

and uΓ+
1

n,0 with an s-function (denoted by 1 for brevity). Thus for the Oh group,
the selection rules (see Sect. 6.6) give

(1|px|x) = (1|py|y) = (1|pz|z) , (13.11)

and all other cross terms of the form (1|px|y) vanish. This result, that the
matrix elements of p in Oh symmetry have only one independent matrix
element, also follows from the theory of permutation groups (see Chap. 17).
Combining these results with

ε
Γ+

1
n (κ) = E

Γ+
1

n (κ)− �
2κ2/2m
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we get

E
Γ+

1
n (κ) = E

Γ+
1

n (0) +
�

2κ2

2m
+

�
2κ2

m2

∑
n′ �=n

|(1|px|x)|2

E
Γ+

1
n (0)− E

Γ−15
n′ (0)

, (13.12)

where the sum is over all states n′ with Γ−15 symmetry. A similar expansion
formula is applicable to

E
Γ−2
n (k) ,

which corresponds to the conduction antibonding s-band in the diamond
structure. Equation (13.12) is sometimes written in the form

E
Γ+

1
n (κ) = E

Γ+
1

n (0) +
�

2κ2

2m∗
n

, (13.13)

where the effective mass parameter m∗
n is related to band couplings through

the momentum matrix element:

m

m∗
n

= 1 +
2
m

∑
n′ �=n

|(1|px|x)|2

E
Γ+

1
n (0)− E

Γ−15
n′ (0)

, (13.14)

in which the sum over n′ is restricted to states with Γ−15 symmetry. Consistent
with (13.12), the effective mass m∗

n is related to the band curvature by the
relation

∂2E
Γ+

1
n (κ)
∂κ2

=
�

2

m∗
n

. (13.15)

Thus m∗
n is proportional to the inverse of the band curvature. If the curva-

ture is large, the effective mass is small and conversely, and if the bands are
“flat” (essentially k-independent), the effective masses are large. Thus the k·p
expansion for a nondegenerate band in a cubic crystal leads to an isotropic
parabolic dependence of En(k) on k which looks just like the free electron dis-
persion relation except that the free electron mass m is replaced by m∗ which
reflects the effect of the crystalline potential on the motion of the electron.

For the case that the nondegenerate level with Γ+
1 symmetry is predom-

inantly coupled to a single degenerate band (such as one degenerate band
with Γ−15 symmetry which in this case relates to the p bonding state in the
conduction band), the effective mass formula (13.14) becomes

m

m∗
n

= 1 +
2
m

|(1|px|x)|2
εg

, (13.16)

which is useful for estimating effective masses, provided that we know the
magnitude of the matrix element and the band gap εg. On the other hand,
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if m∗ and εg are known experimentally, then (13.16) is useful for evaluating
|(1|px|x)|2. This is, in fact, the most common use of (13.16). The words matrix
element or oscillator strength typically refer to the momentum matrix element
(un,k|px|un′,k) when discussing the optical properties of solids.

The treatment given here for the nondegenerate bands is easily carried
over to treating the k · p expansion about some other high symmetry point
in the Brillouin zone for symmorphic structures. For arbitrary points in the
Brillouin zone, the diagonal term arising from first order perturbation theory
does not vanish. Also the matrix element(

u
Γ±

i

n,k0
|pα|uΓ∓

j

n,k0

)

need not be the same for each component α = x, y, z, and for the most gen-
eral case, six independent matrix elements would be expected. For example,
along the Δ and Λ axes, the matrix element for momentum ‖ to the high sym-
metry axis is not equal to the components ⊥ to the axis, and there are two
independent matrix elements along each of the Δ and Λ axes (see Sect. 13.6).

These two directions are called longitudinal (‖ to the axis) and transverse
(⊥ to the axis), and lead to longitudinal and transverse effective mass com-
ponents away from the Γ point. Furthermore, for the case of nonsymmorphic
structures like the diamond structure, the nonsymmorphic symmetry elements
involving translations must be considered in detail away from k = 0.

13.4 Two Band Model:
Degenerate First-Order Perturbation Theory

One of the simplest applications of k · p perturbation theory is to two-band
models for crystalline solids. These models are applicable to describe the en-
ergy dispersion E(k) about a point k0 for one of two bands that are strongly
coupled to each other and are weakly coupled to all other bands. The strongly
coupled set is called the nearly degenerate set (NDS) and, if need be, the
weakly coupled bands can always be treated in perturbation theory after the
problem of the strongly interacting bands is solved. Simple extensions of the
two-band model are made to handle three strongly coupled bands, such as
the valence band of silicon, germanium and related semiconductors, or even to
handle four strongly coupled bands as occur in graphite. We illustrate the pro-
cedure here for symmorphic systems, but for application to nonsymmorphic
groups, care with handling phase factors becomes important (see Sect. 12.5).

The eigenvalue problem to be solved is
[
p2

2m
+ V (r) +

�k0 · p
m

+
�κ · p
m

]
un,k0+κ(r) = εn(k0 + κ)un,k0+κ(r) ,

(13.17)
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in which εn(k0) is related to the solution of Schrödinger’s equation En(k0) by
(13.7).

Let n = i, j be the two bands that are nearly degenerate. Using first-order
degenerate perturbation theory, the secular equation is written as

i j

i
j

∣∣∣∣∣
〈i|H0 +H′|i〉 − ε

〈j|H0 +H′|i〉
〈i|H0 +H′|j〉

〈j|H0 +H′|j〉 − ε

∣∣∣∣∣ = 0 , (13.18)

in which we have explicitly written i and j to label the rows and columns.
Equation (13.18) is exact within the two-band model, i.e., all the coupling

occurs between the nearly degenerate set and no coupling is made to bands
outside this set. For many cases where the two-band model is applied (e.g.,
PbTe), the unperturbed wave functions un,k0(r) are invariant under inversion.
Then because of the oddness of H′ = �κ · p/m, the matrix elements vanish

〈i|H′|i〉 = 〈j|H′|j〉 = 0 . (13.19)

Also since the “band edge” wave functions un,k0(r) are constructed to dia-
gonalize the Hamiltonian

H0un,k0(r) = εn(k0)un,k0(r) , (13.20)

there are no off-diagonal matrix elements of H0 or

〈i|H0|j〉 = 0 , for i �= j . (13.21)

We then write
〈i|H0|i〉 = E0

i and 〈j|H0|j〉 = E0
j , (13.22)

where for n = i, j

E0
n = En(k0)− �

2k2
0

2m
. (13.23)

In this notation the secular equation can be written as
∣∣∣∣∣

E0
i − ε (�/m)κ · 〈i|p|j〉

(�/m)κ · 〈j|p|i〉 E0
j − ε

∣∣∣∣∣ = 0 , (13.24)

where 〈i|p|j〉 �= 0 for the two-band model. The secular equation implied by
(13.24) is equivalent to the quadratic equation

ε2 − ε
[
E0

i + E0
j

]
+ E0

i E
0
j −

�
2

m2
κ · 〈i|p|j〉〈j|p|i〉 · κ = 0 . (13.25)

We write the symmetric tensor
↔
p2

ij coupling the two bands as
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Fig. 13.1. Two strongly coupled mirror bands separated by an energy εg at the
band extremum. This sketch is based on the concept that these two bands would
be degenerate at the center of the band gap but a strong interaction splits this
degeneracy at a high symmetry point and creates a band gap εg

↔
p2

ij= 〈i|p|j〉〈j|p|i〉 , (13.26)

where i and j in the matrix elements refer to the band edge wave functions
un,k0(r) and n = i, j. The solution to the quadratic equation (13.25) yields

ε(κ) =
E0

i + E0
j

2
± 1

2

√
(E0

i − E0
j )2 +

4�2

m2
κ·

↔
p2

ij ·κ . (13.27)

We choose our zero of energy symmetrically such that

E0
i = εg/2 , E0

j = −εg/2 (13.28)

to obtain the two-band model result (see Fig. 13.1):

ε(κ) = ±1
2

√
ε2g +

4�2

m2
κ·

↔
p2

ij ·κ , (13.29)

which at κ = 0 reduces properly to ε(0) = ±1/2εg.
Equation (13.29) gives a nonparabolic dependence of E upon κ. For

strongly coupled bands, the two-band model is characterized by its non-
parabolicity. In the approximation that there is no coupling to bands out-
side the nondegenerate set, these bands are strictly mirror bands, whereby
one band is described by an E(κ) relation given by the + sign; the other by
the identical relation with the − sign. For cubic materials there is only one
independent matrix element

↔
p2

ij= 〈i|pα|j〉〈j|pα|i〉 ≡ p2
ij , α = x, y, z , (13.30)
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and the
↔
p2

ij tensor assumes the form

↔
p2

ij=

⎛
⎜⎝
p2

ij 0 0
0 p2

ij 0
0 0 p2

ij

⎞
⎟⎠ . (13.31)

In applying the two-band model to cubic symmetry, the degeneracy of the
Γ+

25 valence bands or the Γ−15 conduction bands is often ignored. The two-
band model formula then becomes

ε(κ) = ±1
2

√
ε2g +

4�2κ2p2
ij

m2
, where κ2 = κ2

x + κ2
y + κ2

z . (13.32)

In this form, (13.32) is called the Kane two-band model. The generalization of
(13.32) to noncubic materials is usually called the Lax two-band model, and

in the case of bismuth the
↔
p2

ij tensor has the following form

↔
p2

ij=

⎛
⎜⎝
p2

xx 0 0
0 p2

yy p
2
yz

0 p2
yz p

2
zz

⎞
⎟⎠ , (13.33)

where the x axis is a binary axis ⊥ to the mirror plane in bismuth (space
group R3m, #166), and the matrix elements of (13.33) have four independent
components.

We now show that for small κ we recover the parabolic ε(κ) relations. For
example, for the Kane two-band model, a Taylor’s series expansion of (13.32)
yields

ε(κ) = ±1
2

√
ε2g +

4�2κ2p2
ij

m2
= ±εg

2

[
1 +

4�
2κ2p2

ij

ε2gm
2

]1/2

, (13.34)

which to order κ4 becomes

ε(κ) = ±
[
εg
2

+
�

2κ2p2
ij

εgm2
− �

4κ4p4
ij

ε3gm
4

+ · · ·
]
, (13.35)

where ε(κ) is given by (13.7), the momentum matrix elements, which reflect
group theoretical considerations, are given by

p2
ij = |(1|px|x)|2 , (13.36)

and the bandgap at the band extrema is given by En(k0)− En′(k0) = ±εg.
If the power series expansion in (13.35) is rapidly convergent (either be-

cause κ is small or the bands are not that strongly coupled – i.e., p2
ij is not
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too large), then the expansion through terms in κ4 is useful. We note that,
within the two-band model, the square root formula of (13.34) is exact and is
the one that is not restricted to small κ or small p2

ij . It is valid so long as the
two-band model itself is valid.

Some interesting consequences arise from these nonparabolic features of
the dispersion relations. For example, the effective mass (or band curva-
ture) is energy or κ-dependent. Consider the expression which follows from
(13.35):

En(k0 + κ) � �
2|k0 + κ|2

2m
±
[
εg
2

+
�

2κ2p2
ij

εgm2
− �

4κ4p4
ij

ε3gm
4

]
. (13.37)

Take k0 = 0, so that

∂2E

∂κ2
=

�
2

m
±
[

2�
2p2

ij

εgm2
− 12κ2

�
4p4

ij

ε3gm
4

]
≡ �

2

m∗ . (13.38)

From this equation we see that the curvature ∂2E/∂κ2 is κ dependent. In fact
as we more further from the band extrema, the band curvature decreases, the
bands become more flat and the effective mass increases. This result is also
seen from the definition of m∗ (13.38)

m

m∗ = 1±
[

2
m

p2
ij

εg
− 12�

2κ2p4
ij

ε3gm
3

]
. (13.39)

Another way to see that the masses become heavier as we move higher
into the band (away from k0) is to work with the square root formula
(13.34):

ε = ±1
2

√
ε2g +

4�2κ2p2
ij

m2
. (13.40)

Squaring (13.40) and rewriting this equation, we obtain

(2ε− εg)(2ε+ εg) =
4�

2κ2p2
ij

m2
, (13.41)

(2ε− εg) =
4�

2κ2p2
ij

m2(2ε+ εg)
. (13.42)

For κ = 0 we have ε = εg/2, and we then write an expression for ε(κ):

ε(κ) =
εg
2

+
2�

2κ2p2
ij

m2(2ε+ εg)
=
εg
2

+
�

2κ2p2
ij

m2(ε+ εg
2 )

. (13.43)
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Therefore we obtain the nonparabolic two-band model relation

E(κ) =
εg
2

+
�

2κ2

2m

[
1 +

2p2
ij

m(ε+ εg
2 )

]
, (13.44)

which is to be compared with the result for simple nondegenerate bands
(13.12):

Ei(κ) = Ei(0) +
�

2κ2

2m

[
1 +

2p2
ij

mεg

]
. (13.45)

Equation (13.44) shows that for the nonparabolic two-band model, the effec-
tive mass at the band edge is given by

m

m∗ =

[
1 +

2p2
ij

mεg

]
, (13.46)

but the effective mass becomes heavier as we move away from k0 and as we
move up into the band. The magnitude of the k or energy dependence of the
effective mass is very important in narrow gap materials such as bismuth. At
the band edge, the effective mass parameter for electrons in Bi is ∼ 0.001m0

whereas at the Fermi level m∗ ∼ 0.008m0. The number of electron carriers
in Bi is only 1017 cm−3. Since the density of states for simple bands in a 3D
crystal has a dependence ∼ m∗3/2E1/2, we can expect a large increase in the
density of states with increasing energy in a nonparabolic band with a small
effective mass at the band edge. Since bismuth has relatively low symmetry,
the tensorial nature of the effective mass tensor must be considered and the
dispersion relations for the coupled bands at the L point in bismuth are
generally written as

ε(κ) = ±1
2

√
ε2g + 2�2εg

κ· ↔α ·κ
m

, (13.47)

in which
↔
α is a reciprocal effective mass tensor.

13.5 Degenerate second-order k · p Perturbation Theory

For many cubic crystals it is common to have triply degenerate energy bands
arising from degenerate p states, with extrema at k = 0. Such bands are of
great importance in the transport properties of semiconductors such as silicon,
germanium, and III–V compounds. The analysis of experiments such as cy-
clotron resonance in the valence band of semiconductors depends upon degen-
erate second-order k ·p perturbation theory which is discussed in this section.
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Second-order degenerate k · p perturbation theory becomes much more
complicated than the simpler applications of perturbation theory discussed
in Sect. 13.2–13.4. Group theory thus provides a valuable tool for the solu-
tion of practical problems. For example, we consider here how the degeneracy
is lifted as we move away from k = 0 for a Γ−15 level for a crystal with Oh

symmetry; a similar analysis applies for the Γ+
25 level, which pertains to the

degenerate p-band bonding states in the valence band in the diamond struc-
ture.

Suppose that we set up the secular equation for a Γ−15 level using degenerate
perturbation theory

x y z

x
y
z

∣∣∣∣∣∣∣
(x|H′|x) − ε

(y|H′|x)
(z|H′|x)

(x|H′|y)
(y|H′|y)− ε

(z|H′|y)

(x|H′|z)
(y|H′|z)

(z|H′|z)− ε

∣∣∣∣∣∣∣
= 0 , (13.48)

where the x, y and z symbols denote the (x, y, z) partners of the basis functions
in the Γ−15 irreducible representation derived from atomic p-functions and the
diagonal matrix elements for H′

0 are set equal to zero at the band extremum,
such as the top of the valence band. We notice that since H′ = �k · p/m,
then H′ transforms like the Γ−15 irreducible representation. Therefore we get
(Γ−15|H′|Γ−15) = 0, since

Γ−15 ⊗ Γ−15 = Γ+
1 + Γ+

12 + Γ+
15 + Γ+

25 , (13.49)

or more simply, since H′ is odd under inversion, each matrix element in
(13.48) vanishes because of parity considerations. Since each of the matrix
elements of (13.48) vanishes, the degeneracy of the Γ−15 level is not lifted
in first-order degenerate perturbation theory; thus we must use second-
order degenerate perturbation theory to lift this level degeneracy. We
show below the derivation of the form of the matrix elements for the off-
diagonal matrix elements in (13.48) showing that the vanishing H′

mn is
replaced by

H′
mn → H′

mn +
∑

α

H′
mαH′

αn

E
(0)
m − E

(0)
n

. (13.50)

We will see below that the states with symmetries given in (13.49) will serve
as the intermediate states α which arise in second-order perturbation theory.
In applying second-order degenerate perturbation theory, we assume that we
have a degenerate (or nearly degenerate) set of levels – abbreviated NDS.
We assume that the states inside the NDS are strongly coupled and those
outside the NDS are only weakly coupled to states within the NDS (see
Fig. 13.2).

The wave function for a state is now written in terms of the unperturbed
wave functions and the distinction is made as to whether we are dealing with
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Fig. 13.2. NDS ≡ nearly degenerate set. We use Roman letter subscripts for levels
within the NDS (such as n) and Greek indices for levels outside the NDS (such as α)

a state inside or outside of the NDS. If we now expand the wavefunction ψn′

in terms of the unperturbed band edge states, we obtain

ψn′ =
∑

n

anψ
(0)
n +

∑
α

aαψ
(0)
α , (13.51)

where ψ
(0)
n and ψ

(0)
α are, respectively, the unperturbed wavefunctions in-

side (n) and outside (α) of the nearly degenerate set. Substitution into
Schrödinger’s equation yields

Hψn′ = Eψn′ =
∑

n

an(E0
n +H′)ψ(0)

n +
∑
α

aα(E(0)
α +H′)ψ(0)

α . (13.52)

We multiply the left-hand side of (13.52) by ψ(0)∗
m0 and integrate over all space,

making use of the orthogonality theorem
∫
ψ

(0)∗
m ψ

(0)
n dr = δmn to obtain the

iterative relation between the expansion coefficients (Brillouin–Wigner Per-
turbation Theory)

[E − E(0)
m ]am = amH′

mm +
∑

n′ �=m

an′H′
mn′ +

∑
α

aαH′
mα , (13.53)

where the sum over n′ denotes coupling to states in the NDS and the sum
over α denotes coupling to states outside the NDS (see Fig. 13.2). A similar
procedure also leads to a similar equation for levels outside the NDS:

[E − E(0)
α ]aα = aαH′

αα +
∑

n

anH′
αn +

∑
β �=α

aβH′
αβ . (13.54)

We now substitute (13.54) for the coefficients aα outside the NDS in (13.53)
to obtain
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[E − E(0)
m ]am = amH′

mm +
∑

n′ �=m

an′H′
mn′ (13.55)

+
∑
α

H′
mα

E − E
(0)
α

⎧⎨
⎩
∑

n

anH′
αn + aαH′

αα +
∑

β

aβH′
αβ

⎫⎬
⎭ .

If we neglect terms in (13.56) which couple states outside the NDS to other
states outside the NDS, we obtain

am(E(0)
m − E) +

∑
n

anH′
mn +

∑
n

an

∑
α

H′
mαH′

αn

E
(0)
m − E

(0)
α

= 0 , (13.56)

in which the first sum is over all n without restriction, and for E in the
denominator of the second-order perturbation term in (13.56) we replace E
by E(0)

m in the spirit of perturbation theory. Equation (13.56) then implies the
secular equation

n∑
n=1

an

[
(E(0)

m − E)δmn +H′
mn +

∑
α

H′
mαH′

αn

E
(0)
m − E

(0)
α

]
= 0 , (13.57)

which yields an n× n secular equation with each matrix element given by

H′
mn +

∑
α

H′
mαH′

αn

E
(0)
m − E

(0)
α

, (13.58)

as indicated in (13.50).In degenerate k ·p perturbation theory, we found that
H′

mn = 0 for a Γ−15 level, and it was for this precise reason that we had to go
to degenerate second -order perturbation theory. In this case, each state in the
NDS couples to other states in the NDS only through an intermediate state
outside of the NDS.

In second-order degenerate perturbation theory (13.49) shows us that for
a threefold Γ−15 level k · p degenerate perturbation theory will involve only
states of Γ+

1 , Γ
+
12, Γ

+
15, or Γ+

25 symmetry as intermediate states. In our discus-
sion of nondegenerate k ·p perturbation theory (see Sect. 13.3), we found that
there was only one independent matrix element of p coupling a Γ+

1 state to
a Γ−15 state. To facilitate the use of (13.48) and its more explicit form (13.58),
we include in Table 13.2 a useful list of matrix elements of p between states of
different symmetries for Γ point levels in cubic crystals. These matrix elements
are found using the basis functions for each of the irreducible representations
of Oh given in Table 10.2 and appearing also in Tables C.17 and 10.9 for the
Γ point and Δ point of the diamond structure. Table 13.2 lists the nonvanish-
ing matrix elements appearing in the k · p perturbation theory for electronic
energy bands with cubic Oh symmetry.

For the matrix element A2 in Table 13.2 we note with the help of Ta-
ble 10.2 that the pertinent basis functions are Γ−2 = xyz and Γ+

25,x = yz. For
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Table 13.2. Matrix elements for H′ = �k · p/m in cubic Oh symmetry, where H′

transforms as Γ−15

(Γ±1 |H′|Γ∓15,α) = A1
�

m kα A1 = (Γ±1 |px|Γ∓15,x)

(Γ±2 |H′|Γ∓25,α) = A2
�

m kα A2 = (Γ±2 |px|Γ∓25,x)

(Γ±12,1|H′|Γ∓15,x) = A3
�

m kx

(Γ±12,1|H′|Γ∓15,y) = A3
�

m kyω2

(Γ±12,1|H′|Γ∓15,z) = A3
�

m kzω

}
A3 = (Γ±12|px|Γ∓15,x)

f1 = f∗2 = x2 + ωy2 + ω2z2

(Γ±12,2|H′|Γ∓15,x) = A∗3
�

m kx ω = exp(2πi/3)

(Γ±12,2|H′|Γ∓15,y) = A∗3
�

m kyω

(Γ±12,2|H′|Γ∓15,z) = A∗3
�

m kzω2

(Γ±12,1|H′|Γ∓25,x) = A4
�

m kx A4 = (Γ±12|px|Γ∓25,x)

(Γ±12,1|H′|Γ∓25,y) = A4
�

m kyω2 f1 = f∗2 = x2 + ωy2 + ω2z2

(Γ±12,1|H′|Γ∓25,z) = A4
�

m kzω

(Γ±12,2|H′|Γ∓25,x) = A∗4
�

m kx

(Γ±12,2|H′|Γ∓25,y) = A∗4
�

m kyω

(Γ±12,2|H′|Γ∓25,z) = A∗4
�

m kzω2{
(Γ±15,x|H′|Γ∓15,x) = 0

(Γ±15,x|H′|Γ∓15,y) = −A5
�

m kz

(Γ±15,x|H′|Γ∓15,z) = A5
�

m ky

A5 = (Γ±15,y |px|Γ∓15,z)

{
(Γ±15,y |H′|Γ∓15,x) = A5

�

m kz

(Γ±15,y |H′|Γ∓15,y) = 0

(Γ±15,y |H′|Γ∓15,z) = −A5
�

m kx{
(Γ±15,z |H′|Γ∓15,x) = −A5

�

m ky

(Γ±15,z |H′|Γ∓15,y) = A5
�

m kx

(Γ±15,z |H′|Γ∓15,z) = 0{
(Γ±15,x|H′|Γ∓25,x) = 0

(Γ±15,x|H′|Γ∓25,y) = A6
�

m kz

(Γ±15,x|H′|Γ∓25,z) = A6
�

m ky

A6 = (Γ±15,x|py|Γ∓25,z)

{
(Γ±15,y |H′|Γ∓25,x) = A6

�

m kz

(Γ±15,y |H′|Γ∓25,y) = 0

(Γ±15,y |H′|Γ∓25,z) = A6
�

m kx{
(Γ±15,z |H′|Γ∓25,x) = A6

�

m ky

(Γ±15,z |H′|Γ∓25,y) = A6
�

m kx

(Γ±15,z |H′|Γ∓25,z) = 0{
(Γ±25,x|H′|Γ∓25,x) = 0

(Γ±25,x|H′|Γ∓25,y) = −A7
�

m kz

(Γ±25,x
|H′|Γ∓25,z

) = A7
�

m ky

A7 = (Γ±25,x|py|Γ∓25,z)

{
(Γ±25,y |H′|Γ∓25,x) = A7

�

m kz

(Γ±25,y |H′|Γ∓25,y) = 0

(Γ±25,y |H′|Γ∓25,z) = −A7
�

m kx{
(Γ±25,z |H′|Γ∓25,x) = −A7

�

m ky

(Γ±25,z |H′|Γ∓25,y) = A7
�

m kx

(Γ±25,z
|H′|Γ∓25,z

) = 0

+ denotes even and − denotes odd states under inversion,

except for f1 ≡ f+
1 and f2 ≡ f−1 .

See Table 10.2 for explicit forms for the basis functions for the Oh group
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A4 we note that the basis function Γ−25,z = z(x2 − y2) gives C2Γ
−
25,z = −Γ−25,z

where C2 denotes a rotation of π around the (011) axis. For A5 we use as
basis functions: Γ−15,x = x and Γ+

15,x = yz(z2 − y2) which is odd under the
interchange y ↔ z. For A6 we use as basis functions: Γ+

25,x = yz and Γ−15,x = x,
where A6 = (Γ±15,x|py|Γ∓25,z). For A7 we use as basis functions: Γ+

25,x = yz;
Γ−25,x = x(y2 − z2); Γ−25,z = z(x2 − y2).

Let us make a few general comments about Table 13.2. Since H′ is odd,
only states of opposite parity are coupled. For each of the seven symmetry type
couplings given in the table, there is only one independent matrix element.
For example, the coupling between the Γ+

12 and Γ−15 representations involve 2×
3×3 = 18 matrix elements, but there is only one independent matrix element:

(x|px|f1) = (x|px|f2) = ω(y|py|f1) = ω2(y|py|f2) = ω2(z|pz|f1) = ω(z|pz|f2)
and all others vanish. Here we write

f1 = x2 + ωy2 + ω2z2

f2 = x2 + ω2y2 + ωz2

}
(13.59)

as the basis functions for the Γ+
12 representation. For Γ+

25 symmetry we can
take our basis functions as

⎧⎨
⎩
yz
zx
xy

which in the table are denoted by

⎧⎪⎨
⎪⎩

(Γ+
25,x)

(Γ+
25,y)

(Γ+
25,z) .

The three Γ+
25 basis functions are derived from three of the five atomic d func-

tions, the other two being Γ+
12 functions. Using these results for the matrix

elements, the secular equation (13.48) can be written as a function of kx, ky

and kz to yield the dispersion relations for the degenerate Γ−15 bands as we
move away from the Γ point k = 0 in the Brillouin zone.

Since Γ−15 ⊗ Γ−15 = Γ+
1 + Γ+

12 + Γ+
15 + Γ+

25, and from (13.57), the secular
equation (13.48) for the Γ−15 levels involves the following sums:

F =
�

2

m2

∑
Γ+

1 (n′)

|(x|px|1)|2

E
Γ−15
n (0)− E

Γ+
1

n′ (0)
,

G =
�

2

m2

∑
Γ+

12(n′)

|(x|px|f1)|2
E

Γ−15
n (0)− E

Γ+
12

n′ (0)
,

H1 =
�

2

m2

∑
Γ+

25

|(x|py |xy)|2
E

Γ−15
n (0)− E

Γ+
25

n (0)
,

H2 =
�

2

m2

∑
Γ+

15

|(x|py|xy(x2 − y2))|2

E
Γ−15
n (0)− E

Γ+
15

n (0)
. (13.60)
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We are now ready to solve the secular equation (13.48) using (13.57) to in-
clude the various terms which occur in second-order degenerate perturbation
theory. Let us consider the diagonal entries first, as for example the xx entry.
We can go from an initial Γ−15,x state to the same final state through an
intermediate Γ+

1 state which brings down a k2
x term through the F term in

(13.60). We can also couple the initial Γ−15 state to itself through an interme-
diate Γ+

12,1 or Γ+
12,2 state, in either case bringing down a k2

x term through the
G contribution – so far we have Fk2

x + 2Gk2
x. We can also go from a Γ−15,x

state and back again through a Γ+
25,y or Γ+

25,z state to give a (k2
y + k2

z)H1

contribution and also through a Γ+
15,y or Γ+

15,z state to give a (k2
y + k2

z)H2

contribution. Therefore on the diagonal xx entry we get

Lk2
x +M(k2

y + k2
z) , where L = F + 2G and M = H1 +H2 . (13.61)

Using similar arguments, we obtain the results for other diagonal entries yy
and zz, using a cyclic permutation of indices.

Now let us consider an off-diagonal entry such as (x|H′|y), where we start
with an initial Γ−15,x state and go to a final Γ−15,y state. This can be done
through either of four intermediate states:

Intermediate state Γ+
1 gives kxkyF

Intermediate state Γ+
12 gives (ω2 + ω)kxkyG = −kxkyG

Intermediate state Γ+
15 gives − kxkyH2

Intermediate state Γ+
25 gives kxkyH1 .

Therefore we get Nkxky = (F −G+H1 −H2)kxky for the total xy entry.
Using the same procedure we calculate the other four independent en-

tries to the secular equation. Collecting terms we have the final result for
the Taylor expansion of the secular equation for the Γ−15 degenerate p-
band:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Lk2
x +M(k2

y + k2
z) Nkxky Nkxkz

−ε(k)
Nkxky Lk2

y +M(k2
z + k2

x) Nkykz

−ε(k)
Nkxkz Nkykz Lk2

z +M(k2
x + k2

y)
−ε(k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 . (13.62)

The secular equation (13.62) is greatly simplified along the high symmetry
directions. For a [100] axis, ky = kz = 0, and kx = κ, then (13.62) re-
duces to ∣∣∣∣∣∣∣

Lκ2 − ε(κ) 0 0

0 Mκ2 − ε(κ) 0

0 0 Mκ2 − ε(κ)

∣∣∣∣∣∣∣
= 0 , (13.63)
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which has the roots

ε(κ) = Lκ2

ε(κ) = Mκ2 twice . (13.64)

The result in (13.64) must be consistent with the compatibility relations
about the k = 0 (Γ -point) whereby

Γ+
15 → Δ1′ +Δ5 , (13.65)

in which the Δ1′ level is nondegenerate and the Δ5 level is doubly degener-
ate.

Along a Λ [111] axis, kx = ky = kz = κ and the general secular equation
of (13.62) simplifies into
∣∣∣∣∣∣∣
(L+ 2M)κ2 − ε(κ) Nκ2 Nκ2

Nκ2 (L+ 2M)κ2 − ε(κ) Nκ2

Nκ2 Nκ2 (L+ 2M)κ2 − ε(κ)

∣∣∣∣∣∣∣
= 0 , (13.66)

which can readily be diagonalized to give

ε(κ) =
L+ 2M + 2N

3
κ2 once (Λ2 level) ,

ε(κ) =
L+ 2M −N

3
κ2 twice (Λ3 level) , (13.67)

where the Λ2 level is nondegenerate and the Λ3 level is doubly degenerate.
The secular equation for a general κ point is more difficult to solve, but it

can still be done in closed form by solving a cubic equation. In practice, the
problem is actually simplified by including the effects of the electron spin (see
Chap. 15). For each partner of the Γ−15 levels we get a spin up state and a spin
down state so that the secular equation is now a (6 × 6) equation. However,
we will see that spin–orbit interaction simplifies the problem somewhat and
the secular equation can be solved analytically.

The band parameters L,M , and N , which enter the secular equation
(13.62), express the strength of the coupling of the Γ−15 levels to the vari-
ous other levels. In practice, these quantities are determined from experimen-
tal data. The cyclotron resonance experiment carried out along various high
symmetry directions provides accurate values [31] for the band curvatures and
hence for the quantities L,M and N . In the spirit of the k · p perturbation
theory, solution of the secular equation provides the most general form al-
lowed by symmetry for E(k) about k = 0. The solution reduces to the proper
form along the high symmetry directions, Δ,Λ and Σ. However, group theory
cannot provide information about the magnitude of these coefficients. These
magnitudes are most easily obtained from experimental data.
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The k·p method has also been used to obtain the energy bands throughout
the Brillouin zone for such semiconductors as silicon and germanium [17]. In
the k · p approach of Cardona and Pollack, seven other bands outside this
“nearly degenerate set” of eight (Γ+

1 , Γ
−
2 , Γ

−
15, Γ

+
25) bands are allowed to couple

to this nearly degenerate set of bands.
New features in the electronic energy band problem arise in going from

points of lower symmetry to points of higher symmetry. For example, the k ·p
expansion can be used to connect a Λ point to an L point, along the Λ or
(111) axis. The k · p method has been made to work well in this context,
to parametrize theoretical calculations at high symmetry points and axes for
use in regions of the Brillouin zone adjoining the locations for which the
calculations were carried out. This use of k · p perturbation theory for a high
symmetry point in the interior of the Brillouin zone is illustrated in the next
section.

13.6 Nondegenerate k · p Perturbation Theory
at a Δ Point

Figure 13.3 shows that important aspects of the electronic band structure
for many cubic semiconductors occurs at k points away from k = 0 in the
Brillouin zone, examples being the location of band extrema, of energy gaps
and of carrier pockets for electrons and holes. In this section we illustrate
how k · p perturbation theory is used both as an interpolation method and
as an extrapolation method for the solution of the energy eigenvalues and
eigenfunctions for an unperturbed crystal for k points of high symmetry away
from k = 0. In Sect. 13.7 we will show how k · p perturbation theory is used
to interpret experiments where a probe is used to interact with a sample to
study the electronic structure of the perturbed electronic system (from a group
theory standpoint, the procedure is quite similar).

Let us consider the use of k · p perturbation theory for the group of the
wave vector for a Δ point rather than about a Γ point, which was consid-
ered in Sects. 13.3–13.5. The momentum operator p in the k · p Hamiltonian
transforms as a vector. For the group of the wave vector at a Δ point, the
vector transforms as Δ1 for the longitudinal component x and as Δ5 for the
transverse components y, z.

Typically for semiconductors the conduction bands are nondegenerate. In
most cases the conduction band extrema are at k = 0 but for silicon the
conduction band extrema are located at the six equivalent (Δ, 0, 0) locations,
where Δ is 85% of the distance from Γ to X . The nondegenerate level in the
conduction band at k = 0 has Γ−2 symmetry, but has Δ2′ symmetry as we
move away from k = 0 in a (100) direction (see the compatibility relations for
cubic groups in Sect. 10.7 and the character table for the group of the wave
vector at a Δ point in Table 10.9 for the diamond structure).
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Fig. 13.3. Important details of the band structure of typical group IV and III–V
semiconductors are found to occur both at k = 0 and for k points elsewhere in the
Brillouin zone, including the location of conduction and valence band extrema and
the location of carrier pockets

We now consider matrix elements of the form (Δ2′ |px|Δ2′) which enter
the expression for E(k) about the Δ point. In first-order perturbation theory,
we can have a nonvanishing contribution along kx of the form (Δ2′ |px|Δ2′)
since Δ1 ⊗ Δ2′ = Δ2′ . Thus, there is in general a linear k term for E(k)
in the longitudinal direction. However, at the band extremum this matrix
element vanishes (not by symmetry but because of the band extremum). We
show below that the transverse matrix elements (Δ2′ |py|Δ2′) and (Δ2′ |pz |Δ2′)
vanish by symmetry along the Δ-axis. The second-order contributions to E(k)
are as follows:

E(k) = E(k0) +
�

2k2
x

2m∗
�

+
�

2(k2
y + k2

z)
2m∗

t

. (13.68)

The longitudinal terms (Δ2′ |Δ1|Δj) require that the intermediate state Δj

transforms as Δ2′ according to the compatibility relations, or else the matrix
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element vanishes. States with Δ2′ symmetry at a Δ point arise by compati-
bility relations from Γ+

25, Γ
−
2 , and Γ−12 states at k = 0 and all of these inter-

mediate states make contributions to a quadratic term in k2
x in the dispersion

relation given by (13.68). For the transverse ky and kz terms, the matrix el-
ement (Δ2′ |Δ5|Δj) requires the intermediate state Δj to transform as Δ5.
States with Δ5 symmetry arise from Γ±25 levels at k = 0.

Since the basis function for Δ2′ is yz (see Table 10.3), the vector com-
ponent Δ5,y couples to the z component of the intermediate state with sym-
metry Δ5,z while the vector component Δ5,z couples to the y component of
the intermediate state with symmetry Δ5,y. Therefore there cannot be any
nonvanishing matrix elements of the form (Δ2′ |Δ5|Δ2′) for either a Δ5,y or
a Δ5,z component of the vector.

However, in second-order we can have nonvanishing matrix elements about
band extremum at k0 of the form (Δ2′ |Δ5,y|Δ5,z) and (Δ2′ |Δ5,z|Δ5,y) and
therefore E(k) about the Δ point extremum must be of the form of (13.68),
in agreement with the expression used in solid state physics textbooks. As we
move away from the Δ point extremum along the (100) axis, a linear term
kx in the E(k) relation develops, but this term (allowed by group theory) is
generally too small to be of significance to the constant energy contours ap-
plicable to practical situations, even for high doping levels and carrier pockets
of larger volumes in k space.

The ellipsoidal form of E(k) given by (13.68) is very common in semi-
conductor physics as we move away from k = 0. The case of the conduc-
tion band of silicon was shown here as an illustration, but similar ellip-
soidal constant energy surfaces occur for germanium at the zone boundary
L point and for other common III–V semiconductors at the X-point. These
arguments given above can then be extended to other points in the Bril-
louin zone, and to two-band and three-band models for materials with cubic
symmetry (see Problems 13.3 and 13.4). The k · p perturbation theory ap-
proach can of course also be extended to crystals described by other space
groups.

13.7 Use of k · p Perturbation Theory
to Interpret Optical Experiments

To carry out experiments in solid state crystalline physics, a probe is normally
used to interrogate the materials system under investigation. These probes in-
teract weakly with the system, causing perturbations that we measure in some
way to provide information about the electronic structure of the solid state
system. In this section we show how k ·p perturbation theory is used to study
the perturbation imposed on a material by an electromagnetic field and how
information is provided by studying this perturbation with an electromagnetic
(optical) probe.
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The Hamiltonian in the presence of electromagnetic is discussed in
Sect. 6.1, and the optical perturbation terms H′

opt are

H′
opt = − e

mc
A · p +

e2A2

2mc2
, (13.69)

in which the lowest order term is

H′
opt

∼= − e

mc
p ·A , (13.70)

where the vector potential A relates to the optical fields and is not strongly
affected by the crystal, while p relates directly to the momentum of electrons
in the crystal and is strongly affected by the symmetry of the crystal. There-
fore the momentum matrix elements 〈v|p|c〉 coupling valence and conduction
states mainly determine the strength of optical transitions in a low-loss (but
finite loss) crystal. It is of interest that this same momentum matrix element
governs k ·p perturbation theory within a crystal and also governs the magni-
tudes of the effective mass components. With regard to the spatial dependence
of the vector potential in (13.70) we can write

A = A0 exp[i(kni · r − ωt)] , (13.71)

where for a loss-less medium described by a propagation constant kn =
ñω/c = 2πñ/λ is a slowly varying function of r, since 2πñ/λ is much smaller
than typical wave vectors in solids. Here ñ, ω, and λ are, respectively, the
real part of the index of refraction, the optical frequency, and the wavelength
of light. Thus, to the extent that we neglect the small spatial dependence
of the optical propagation constant kn, it is only the momentum matrix ele-
ment 〈v|p|c〉 coupling the valence and conduction bands that is important to
lowest order perturbation theory. We note that electromagnetic interactions
with a crystal involve the same matrix element that is connected with the
effective mass components of the effective mass tensor for the unperturbed
crystal. Group theory thus shows us that optical fields provide a very sensi-
tive probe of the symmetry of a crystal by providing a way to measure this
matrix element which is closely related to the effective mass tensor in the
solid.

13.8 Application of Group Theory
to Valley–Orbit Interactions in Semiconductors

In this section, we shall discuss the application of group theory to the im-
purity problem of a multivalley semiconductor, such as occurs in the donor
carrier pockets in silicon and germanium. In the case of silicon, the lowest
conduction bands occur at the six equivalent (Δ, 0, 0) points where Δ = 0.85
on a scale where the Γ point is at the origin and the X point is at 1. In the
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case of germanium, the conduction band minima occur at the L points so
that the Fermi surface for electrons consists of eight equivalent half-ellipsoids
of revolution (four full ellipsoids). Other cases where valley–orbit interactions
are important are multivalley semiconductors, such as PbTe or Te, where the
conduction and valence band extrema are both away from k = 0.

Group theory tells us that the maximum degeneracy that energy levels or
vibrational states can have with cubic symmetry is a threefold degeneracy.
Cubic symmetry is imposed on the problem of donor doping of a semiconduc-
tor through the valley–orbit interaction which causes a partial lifting of the
n-fold degeneracy of an n-valley semiconductor. In this section we show how
group theory prescribes the partial lifting of this n-fold degeneracy. This effect
is important in describing the ground state energy of a donor-doped n-valley
semiconductor.

Our discussion of the application of group theory to the classification of
the symmetries of the impurity levels in a degenerate semiconductor proceeds
with the following outline:

(a) Review of the one-electron Hamiltonian and the effective mass Hamilto-
nian for a donor impurity in a semiconductor yielding hydrogenic impurity
levels for a single-valley semiconductor.

(b) Discussion of the impurity states for multivalley semiconductors in the
effective mass approximation.

(c) Discussion of the valley–orbit interaction. In this application we consider
a situation where the lower symmetry group is not a subgroup of the
higher symmetry group.

13.8.1 Background

In this section, we briefly review the one-electron Hamiltonian, effective mass
approximation and the hydrogenic impurity problem for a single-valley semi-
conductor. We write the one-electron Hamiltonian for an electron in a crystal
which experiences a perturbation potential U(r) due to an impurity:[

p2

2m
+ V (r) + U(r)

]
Ψ(r) = EΨ(r) , (13.72)

in which V (r) is the periodic potential. In the effective mass approximation,
the perturbing potential due to an impurity is taken as U(r) = −e2/(εr)
where ε is the dielectric constant and the origin of the coordinate system is
placed at the impurity sites. This problem is usually solved in terms of the
effective mass theorem to obtain[

p2

2m∗
αβ

+ U(r)

]
fj(r) = (E − E0

j )fj(r) , (13.73)

where m∗
αβ is the effective mass tensor for electrons in the conduction band

about the band extremum at energy E0
j , and fj(r) is the effective mass wave
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function. We thus note that by replacing the periodic potential V (r) by an ef-
fective mass tensor, we have lost most of the symmetry information contained
in the original periodic potential. This symmetry information is restored by
introducing the valley–orbit interaction, as in Sects. 13.8.2 and 13.8.3.

The simplest case for an impurity in a semiconductor is that for a shal-
low substitutional impurity level described by hydrogenic impurity states in
a nondegenerate conduction band, as for example a Si atom substituted for
a Ga atom in GaAs, a direct gap semiconductor with the conduction band
extremum at the Γ point (k = 0). To satisfy the bonding requirements in
this case, one electron becomes available for conduction and a donor state is
formed. The effective mass equation in this case becomes[

p2

2m∗ −
e2

εr

]
f(r) = (E − E0

j )f(r) , (13.74)

where U(r) = −e2/(εr) is the screened Coulomb potential for the donor
electron, ε is the low frequency dielectric constant, and the donor energies
are measured from the band edge E0

j . This screened Coulomb potential is
expected to be a good approximation for r at a sufficiently large distance from
the impurity site, so that ε is taken to be independent of r. The solutions to
this hydrogenic problem are the hydrogenic levels

En − E0
j = − e2

2εa∗0n2
n = 1, 2, . . . , (13.75)

where the effective Bohr radius is

a∗0 =
ε�2

m∗e2
. (13.76)

Since (En − E0
j ) ∼ m∗/ε2, we have shallow donor levels located below the

band extrema, because of the large value of ε and the small value of m∗ in
many semiconductors of interest.

Group theoretical considerations enter in the following way. For many
III–V compound semiconductors, the valence and conduction band extrema
are at k = 0 so that the effective mass Hamiltonian has full rotational sym-
metry. Since the hydrogenic impurity is embedded in a crystal with a periodic
potential, the crystal symmetry (i.e., Td point group symmetry) will perturb
the hydrogenic levels and cause a splitting of various degenerate levels:

s levels → Γ1 (no splitting) ,

p levels → Γ15 (no splitting) ,

d levels → Γ12 + Γ15 (splitting occurs) ,

f levels → Γ2 + Γ15 + Γ25 (splitting occurs) .

In principle, if a multiplet has the same symmetry as an s or p level, then an
interaction can occur giving rise to an admixture of states of similar symme-
tries. In practice, the splittings are very small in magnitude and the effects of
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the crystal field are generally unimportant for shallow donor levels in single
valley semiconductors.

13.8.2 Impurities in Multivalley Semiconductors

Group theory plays a more important role in the determination of impurity
states in multivalley semiconductors than for the simple hydrogenic case de-
scribed in Sect. 13.8.1. A common example of a multivalley impurity state is
an As impurity in Si (or in Ge). In Si there are six equivalent valleys for the
carrier pockets while for Ge there are four equivalent valleys. The multivalley
aspect of the problem results in two departures from the simple hydrogenic
series.

The first is associated with the fact that the constant energy surfaces
are ellipsoids rather than spheres. We then write Schrödinger’s equation for
a single valley in the effective mass approximation as

[
p2

x + p2
y

2mt
+

p2
z

2ml
− e2

εr

]
= E f(r) , (13.77)

in which mt is the transverse mass component, ml is the longitudinal mass
component, and the energy E is measured from the energy band extremum.
The appropriate symmetry group for the effective mass equation given by
(13.77) is D∞h rather than the full rotation group which applies to the hy-
drogenic impurity levels. This form for the effective mass Hamiltonian follows
from the fact that the constant energy surfaces are ellipsoids of revolution,
which in turn is a consequence of the selection rules for the k · p Hamilto-
nian at a Δ point (group of the wave vector C4v) in the case of Si, and at
an L point (group of the wave vector D3d) in the case of Ge. The anisotropy
of the kinetic energy terms corresponds to the anisotropy of the effective
mass tensor. For example in the case of silicon ml/m0 = 0.98 (heavy mass),
mt/m0 = 0.19 (light mass). This anisotropy in the kinetic energy terms re-
sults in a splitting of the impurity levels with angular momentum greater
than 1, in accordance with the irreducible representations of D∞h. For ex-
ample, in D∞h symmetry we have the following correspondence with angular
momentum states:

s states → Σ+
g = A1g ,

p states → Σ+
u + πu = A2u + E1u ,

d states → Δg + πg +Σ+
g = A1g + E1g + E2g .

We note that s and d states are even (g) and p states are odd (u) under in-
version in accordance with the character table for D∞h (see Table A.34.).
Thus a 2p level with an angular momentum of one splits into a twofold
2p±1 level and a nondegenerate 2p0 level in which the superscripts denote
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the nl component of the angular momentum. Furthermore in D∞h symme-
try, the splitting of d-levels gives rise to the same irreducible representation
(Σ+

g ) that describes the s-levels, and consequently a mixing of these levels
occurs.

Referring back to (13.77), we note that the effective mass equation cannot
be solved exactly if ml �= mt. Thus, the donor impurity levels in these indirect
gap semiconductors must be deduced from some approximate technique such
as a variational calculation or using perturbation theory. The effective mass
approximation itself works very well for these p-states because |ψp|2 for p
states vanishes for r = 0; consequently, for r values small enough for central
cell corrections to be significant, the wave function has a small amplitude and
thus small r values do not contribute significantly to the expectation value of
the energy for p-states.

13.8.3 The Valley–Orbit Interaction

The second departure from the hydrogenic series in a multivalley semiconduc-
tor is one that relates closely to group theory. This effect is most important
for s-states, particularly for the 1s hydrogenic state.

For s-states, a sizable contribution to the expectation value for the en-
ergy is made by the perturbing potential for small r. The physical picture of
a spherically symmetric potential U(r) for small r cannot fully apply because
the tetrahedral bonding must become important for |r| ≤ a. This tetrahe-
dral crystal field which is important within the central cell lifts the spherical
symmetry of an isolated atom. Thus we need to consider corrections to the
effective mass equation due to the tetrahedral crystal field. This tetrahedral
crystal field term is called the valley–orbit effective Hamiltonian, H′

valley−orbit,
which couples equivalent conduction band extrema in the various conduction
band valleys.

To find the wave functions for the donor states in a multivalley semicon-
ductor, we must find linear combinations of wave functions from each of the
conduction band valleys that transform as irreducible representations of the
crystal field about the impurity ion. For example, in silicon, the symmetrized
linear combination of valley wave functions is in the form

ψγ(r) =
6∑

j=1

Aγ
j fj(r)uj,kj

0
(r)eikj

0·r , (13.78)

in which ψγ(r) denotes one of six possible linear combinations of the wave
functions for the six carrier pockets denoted by γ. The index j is the valley
index and fj(r) is the envelope effective mass wave function, while uj,kj

0
(r)

is the periodic part of the Bloch function in which kj
0 is the wave vector to

the band minimum of valley j. The six equivalent valleys along the (100) axes
for the conduction band of silicon are shown in Fig. 13.4(a). The indices j
which label the various ellipsoids or valleys in Fig. 13.4(a) correspond to the
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(a)

(b)

Fig. 13.4. (a) Constant energy ellipsoids of the conduction-band minima of sil-
icon along {100} directions in reciprocal space. (b) The regular tetrahedron in-
scribed inside a cube, useful for seeing the symmetry operations of the six valleys
in (a)

Table 13.3. Irreducible representations contained in Γvalley sites of Si

E 8C3 3C2 6σd 6S4

χvalley sites 6 0 2 2 0 = Γ1 + Γ12 + Γ15

indices j of (13.78). The local symmetry close to the impurity center is Td,
reflecting the tetrahedral bonding at the impurity site. The character table
for the Td point group is shown in Table A.32. The diagram which is useful
for finding which valleys are invariant under the symmetry operations of Td is
given in Fig. 13.4(b). To get the equivalence transformation for the valley sites,
we ask for the number of valleys which remain invariant under the various
symmetry operations of Td. This is equivalent to finding Γ equiv or Γvalley sites,
which forms a reducible representation of point group Td. From Fig. 13.4(b), we
immediately see that the characters for the reducible representation Γvalley sites

are (see Table 13.3), and that the irreducible representations contained in
Γvalley sites are the Γ1 + Γ12 + Γ15 irreducible representations of the point
group Td. To find the splitting of a level we must take the direct product
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of the symmetry of the level with Γvalley sites, provided that the level itself
transforms as an irreducible representation of group Td:

Γlevel ⊗ Γvalley sites . (13.79)

Since Γlevel for s-states transforms as Γ1, the level splitting for s-states is just
Γvalley sites = Γ1 + Γ12 + Γ15:

—Γ15

—Γ12

—Γ1 .

The appropriate linear combination of valley functions corresponding to each
of these irreducible representations is (using the notation from (13.78)):

A
(Γ1)
j = 1√

6
(1, 1, 1, 1, 1, 1) ,

A
(Γ12,1)
j = 1√

6
(1, 1, ω, ω, ω2, ω2)

A
(Γ12,2)
j = 1√

6
(1, 1, ω2, ω2, ω, ω)

⎫⎬
⎭ ,

A
(Γ15,1)
j = 1√

2
(1,−1, 0, 0, 0, 0)

A
(Γ15,2)
j = 1√

2
(0, 0, 1,−1, 0, 0)

A
(Γ15,3)
j = 1√

2
(0, 0, 0, 0, 1,−1)

⎫⎪⎪⎬
⎪⎪⎭
,

(13.80)

in which each of the six components of the coefficients Aγ
j refers to one of

the valleys. The totally symmetric linear combination Γ1 is a nondegenerate
level, while the Γ12 basis functions have two partners which are given by
f1 = x2 + ωy2 + ω2z2 and f2 = f∗1 and the Γ15 basis functions have three
partners (x, y, z).

The analysis for the p-levels is more complicated because the p-levels in
D∞h do not transform as irreducible representations of group Td. The p-
level in group D∞h transforms as a vector, with A2u and E1u symmetries for
the longitudinal and transverse components, respectively. Since Td does not
form a subgroup of D∞h we write the vector for group Td as a sum over its
longitudinal and transverse components

Γvec. = Γlongitudinal + Γtransverse , (13.81)

where Γvec. = Γ15. We treat the longitudinal component of the vector as
forming a σ-bond and the transverse component as forming a π-bond so that
Γlongitudinal = Γ1 and Γtransverse = Γ15 − Γ1, where we note that

Γ15⊗ (Γ1 +Γ12 +Γ15) = Γ15 + (Γ15 + Γ25) + (Γ1 +Γ12 +Γ15 +Γ25) . (13.82)
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Fig. 13.5. Excitation spectrum of phosphorus donors in silicon. The donor concen-
tration is ND ∼ 5 × 1015 cm−3. Various donor level transitions to valley–orbit split
levels are indicated. The labels for the final state of the optical transitions are in
accordance with the symmetries of point group Td

We thus obtain for the longitudinal (Γ 2p0) and transverse (Γ 2p±) levels:

Γ 2p0 = Γvalley sites ⊗ Γ1 = Γ1 + Γ12 + Γ15 for m� = 0 (13.83)

Γ 2p± = Γvalley sites ⊗ (Γ15 − Γ1) = 2Γ15 + 2Γ25 for m� = ±1
(13.84)

for group Td. If we perform high resolution spectroscopy experiments for the
donor impurity levels, we would expect to observe transitions between the
various 1s multiplets to the various 2p-multiplets, as allowed by symmetry
selection rules [46]. Experimental evidence for the splitting of the degener-
acy of the 1s donor levels in silicon is provided by infrared absorption stud-
ies [4, 67]. An experimental trace for the excitation spectrum of phosphorus
impurities in silicon is shown in Fig. 13.5 for several sample temperatures.
The interpretation of this spectrum follows from the energy level diagram in
Fig 13.6 [46].

It is of interest that the valley orbit splitting effect is only important
for the 1s levels. For the higher levels, the tetrahedral site location of the
impurity atom becomes less important since the Bohr orbit for the impurity
level increases as n2 which qualitatively follows from

a∗Bohr =
ε�2

m∗e2
n2 (13.85)

where n is the principal quantum number for the donor impurity level.
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Fig. 13.6. Energy-level scheme for transitions from the valley–orbit split 1s multi-
plet of states to the 2p0, 2p± levels. The irreducible representations for the various
valley–orbit split levels in Td symmetry are indicated. The conduction band edge
(C.B.) is also indicated schematically as are the splittings between the three con-
stituents of the valley-orbit split 1s level, showing a separation of D between the A1

and T2 levels and a separation of O between the T2 and E levels

In addition to spectroscopic studies of impurity states, these donor
states for multivalley semiconductors have been studied by the ENDOR
technique [35]. Here the nuclear resonance of the 29Si atoms is observed.
The random distribution of the 29Si sites with respect to the donor im-
purity sites is used to study the spatial dependence of the donor wave-
function, and to determine the location in k-space of the conduction band
extrema.

Selected Problems

13.1. (a) Using k · p perturbation theory, find the dispersion relation E(k)
for the nondegenerate Γ−2 (or Γ2′) band around the conduction band ex-
tremum near k = 0 for a simple cubic solid.

(b) The conduction band for germanium which crystallizes in the diamond
structure has Γ−2 (or Γ2′) symmetry. Explain how your result in (a) can be
used to describe E(k) about k = 0 for the conduction band of germanium.
What modifications occur to (13.12) and (13.14)?



336 13 Energy Band Models Based on Symmetry

13.2. In this problem, use k · p perturbation theory to find the form of the
secular equation for the valence band of Si with Γ+

25 symmetry, neglecting the
spin–orbit interaction

(a) Which intermediate states couple to the Γ+
25 valence band states in second-

order k · p perturbation theory?
(b) Which matrix elements (listed in Table 13.2) enter the secular equation

in (a)?
(c) Write the secular equation for the Γ+

25 valence bands that is analogous to
(13.62) for the Γ−15 band?

(d) Using the general result in (a), find the special form of the secular equation
for the Γ+

25 valence band that is obtained along a Λ (111) axis?

13.3. (a) Using k · p perturbation theory, find the form of the E(k) relation
near the L-point in the Brillouin zone for a face centered cubic lattice
arising from the lowest energy levels. In the free electron model these
levels are doubly degenerate and have L1 and L′2 symmetry. Which of the
nonvanishing k ·p matrix elements at the L-point are equal to each other
by symmetry?

(b) Using k ·p perturbation theory, find the form of E(k) for a nondegenerate
band with W1 symmetry about the W point in the FCC lattice (see
Table C.12).

13.4. The form of the E(k) relation for the second level of the empty lattice
for a BCC system was discussed in Problem 12.6 for both the empty lattice
and in the presence of a small periodic potential

(a) Now consider the lowest energy levels at the H point where the Δ
axis along (100) meets the Brillouin zone boundary (see Fig. 12.6
and Tables C.15 and C.8). Find the form of the dispersion rela-
tions near the H point using k · p perturbation theory and com-
pare your results with the dispersion relations for Na shown in
Fig. 12.6(b).

(b) Using symmetry arguments, why is the splitting between H1 and H15 so
much larger than between H12 and H15?

13.5. Find the symmetries and appropriate linear combination of valley func-
tions for the 1s and 2p donor levels for germanium (conduction band minima
at the L-point in the Brillouin zone), including the effect of valley–orbit
interaction. Indicate the transitions expected in the far infrared spectra for
these low temperature donor level states.


