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Electronic Energy Levels in a Cubic Crystal

In this chapter we apply space groups to determine the electronic dispersion
relations in crystalline materials, and use as an illustration the symmetrized
plane wave solutions of a cubic crystal.

12.1 Introduction

Suppose that we wish to calculate the electronic energy levels of a solid from
a specified potential. There are many techniques available for this purpose.
Some techniques are based on what is called first principles ab initio cal-
culations and directly find solutions to Schrödinger’s equation. Others are
based on the symmetry-imposed form of the dispersion relations, which are
used to fit experimental data. In all cases these techniques utilize the spa-
cial symmetry of the crystal, and emphasize the electronic energy bands
at high symmetry points and along high symmetry axes in the Brillouin
zone.

To illustrate how group theory is utilized in these calculations, we will con-
sider explicitly the energy bands of the nearly free electron model because of
its pedagogic value. If there were no periodic potential, the energy eigenvalues
would be the free electron energies

E(k′) =
�

2k′2

2m
, V (r) = 0 , (12.1)

and the free electron eigenfunctions would be

ψk′ (r) =
1√
Ω

eik′·r , (12.2)

where k′ is a wave vector in the extended Brillouin zone and Ω is the volume
of the crystal. In the empty lattice model, the presence of a weak periodic
potential imposes the symmetry of the crystal on the “empty lattice” elec-
tronic energy bands, but the potential V (r) itself is considered in the limit
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V (r) → 0. From a group theoretical point of view, the free electron energy
bands correspond to the symmetry of the full rotation group and the weak peri-
odic potential serves to lower the symmetry to that of the crystalline solid, as
for example to O1

h (space group #221) symmetry for a simple cubic crystal.
Thus, the introduction of a periodic potential results in symmetry-lowering,
similar to the crystal field problem (Sect. 5.3) which we have by now encoun-
tered in several contexts. We consider the empty lattice energy bands in the
reduced zone by writing the wave vector k′ in the extended zone scheme as

k′ = k + Kni , (12.3)

where k is a reduced wave vector in the first Brillouin zone and Kni is a re-
ciprocal lattice vector to obtain

E(k + Kni) =
�

2

2m
(k + Kni) · (k + Kni) , (12.4)

where

Kni =
2π
a

(n1, n2, n3) , and ni = integer , i = 1, 2, 3 . (12.5)

We use the subscript Kni on the energy eigenvalues Eni to denote the perti-
nent Kni vector when using the wave vector k within the first Brillouin zone.
If we write k in dimensionless units

ξ =
ka

2π
, (12.6)

we obtain

EKni
(k) =

�
2

2m

(
2π
a

)2 [
(ξ1 + n1)

2 + (ξ2 + n2)
2 + (ξ3 + n3)

2
]
. (12.7)

The empty lattice energy bands for the FCC cubic structure are shown in
Fig. 12.1 at the high symmetry points and along the high symmetry direc-
tions indicated by the Brillouin zone for the FCC lattice (see Fig. C.5a in Ap-
pendix C). The energy bands are labeled by the symmetries of the irreducible
representations appropriate to the group of the wave vector corresponding to
the pertinent space group. Group theory provides us with the symmetry desig-
nations and with the level degeneracies. In Sect. 12.2, we treat the symmetry
designations and mode degeneracies for the simple cubic lattice at k = 0,
and in Sects. 12.3 and 12.4 at other symmetry points in the Brillouin zone. In
Sect. 12.5, the effect of screw axes and glide planes on the electronic energy
band structure is considered.

In the reduced zone scheme, the wave functions for the plane wave solutions
to the empty lattice model become the Bloch functions

ψk′(r) =
1√
Ω

eik′·r =
1√
Ω

eik·reiKni
·r , (12.8)
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Fig. 12.1. Free-electron bands of the empty lattice in a face centered cubic struc-
ture. The labels of the high symmetry points in the FCC structure are given in
Fig. C.5(a) of Appendix C. The band degeneracies can be obtained from the dimen-
sions of the irreducible representations indicated on this diagram, and the energy is
given in units of (�2/2m)(2π/a)2

where the periodic part of the Bloch function is written as

uk(r) = eiKni
·r . (12.9)

According to Bloch’s theorem, the effect of the lattice vector translation op-
erator {ε|Rn} is to introduce a phase factor

{ε|Rn}ψk(r) = eik·Rnψk(r) , (12.10)

eik·Rn involving the lattice vector Rn.
In calculating the electronic energy bands in the empty lattice approxi-

mation, we recognize that the main effect of the periodic potential V (r) in
the limit V (r) → 0 limit is to lift the degeneracy of EKni

(k). At certain high
symmetry points or axes and at the Brillouin zone boundary, the degeneracy
in many cases is not fully lifted in the V (r) → 0 limit and a finite periodic
potential is needed to lift the degeneracy of the empty lattice dispersion re-
lations. Group theory tells us the form of the interactions, the symmetry of
the levels and their degeneracies. For each of the high symmetry points in the
Brillouin zone, different symmetry operations will be applicable, depending on
the appropriate group of the wave vector for the k point under consideration,
as illustrated below.
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12.2 Plane Wave Solutions at k = 0

The highest symmetry point in the Brillouin zone is of course the Γ point (k =
0) and we will therefore first illustrate the application of group theoretical
considerations to the energy bands at the Γ point first for a cubic crystal.
Setting k = 0 in (12.7), the energy eigenvalue EKni

(k) becomes

EKni
(0) =

�
2

2m

(
2π
a

)2 [
n2

1 + n2
2 + n2

3

]
=

�
2

2m

(
2π
a

)2

N2 , (12.11)

where
N2 = n2

1 + n2
2 + n2

3 . (12.12)

Corresponding to each reciprocal lattice vector Kni , a value for EKni
(0)

is obtained. For most Kni vectors, these energies are degenerate. We will
now enumerate for illustrative purposes the degeneracy of the first few levels,
starting with Kni = 0 and n1 = n2 = n3 = 0. We then find which irreducible
representations for Oh are contained in each degenerate state. If then a peri-
odic potential is applied, the degeneracy of some of these levels will be lifted.
Group theory provides a powerful tool for specifying how these degeneracies
are lifted. In Table 12.1 we give the energy, the degeneracy and the set of Kni

vectors that yield each of the five lowest energy eigenvalues EKni
(0) in cubic

symmetry. The example that we explicitly work out here is for the simple
cubic lattice [space group #221 (O1

h) or Pm3m], and many of the pertinent
character tables are found in Appendix C.

At Kni = 0 we have ψk(r) = (1/
√
Ω)eik·r. For a general Kni vector,

(n1, n2, n3) there will in general be a multiplicity of states with the same en-
ergy. We now show how to choose a properly symmetrized combination of
plane waves which transform as irreducible representations of the group of
the wave vector at k = 0, and therefore bring the empty lattice Hamiltonian
into block diagonal form. In the presence of a weak cubic periodic poten-
tial V (r), the degeneracy of states which transform as different irreducible
representations will be partially lifted.

By calculating the characters for the equivalence transformation, we obtain
χequiv. which is used to project out the irreducible representations contained
in Γ equiv.. We can then specify which plane waves are transformed into one
another by the elements of the group of the wave vector at the Γ point (k =
0). From Γ equiv., we can find the irreducible representations of Oh which
correspond to each empty lattice energy state and we can furthermore find
the appropriate linear combination of plane wave states which correspond to
a particular irreducible representation of Oh.

To calculate Γ equiv., we use the diagram in Fig. 12.2 which shows the cubic
symmetry operations of point group Oh. The character table for Oh symmetry
is given in Table 10.2 (see also Table A.30), where the column on the left gives
the familiar solid state notation for the irreducible representations of Oh. In
calculating χequiv. we consider that if a given plane wave goes into itself under
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Table 12.1. Listing of the energy, degeneracy and the list of Kni vectors for the
five lowest energy levels for the simple cubic lattice at k = 0

(i) E{000}(0) = 0 degeneracy=1 Kn{000} = 0 (0,0,0) N2 = 0

(ii) E{100}(0) = �
2

2m

(
2π
a

)2
degeneracy=6 Kn{100} = 2π

a

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1, 0, 0)

(1̄, 0, 0)

(0, 1, 0)

(0, 1̄, 0)

(0, 0, 1)

(0, 0, 1̄)

N2 = 1

Plane Wave States: e±
2πix

a , e±
2πiy

a , e±
2πiz

a

(iii) E{110}(0) = 2 �
2

2m

(
2π
a

)2
degeneracy=12 Kn{110} = 2

√
2π

a

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 1, 0)

(1̄, 1, 0)

(1, 0, 1)

(1̄, 0, 1)

(0, 1, 1)

(0, 1̄, 1)

(1, 1̄, 0)

(1̄, 1̄, 0)

(1, 0, 1̄)

(1̄, 0, 1̄)

(0, 1, 1̄)

(0, 1̄, 1̄)

N2 = 2

(iv) E{111}(0) = 3 �
2

2m

(
2π
a

)2
degeneracy=8 Kn{111} = 2

√
3π

a

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 1, 1)

(1, 1̄, 1)

(1, 1, 1̄)

(1̄, 1, 1)

(1̄, 1̄, 1)

(1, 1̄, 1̄)

(1̄, 1, 1̄)

(1̄, 1̄, 1̄)

N2 = 3

(v) E{200}(0) = 4 �
2

2m

(
2π
a

)2
degeneracy=6 Kn{200} = 4π

a

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(2, 0, 0)

(2̄, 0, 0)

(0, 2, 0)

(0, 2̄, 0)

(0, 0, 2)

(0, 0, 2̄)

N2 = 4
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Fig. 12.2. Diagram of cubic symmetry operations

Table 12.2. Characters for the equivalence representation Γ equiv. for the five lowest
energy levels of plane wave states labeled by {Kni} using the notation of Table 12.1

Kni E 3C2
4 6C2 8C3 6C4 i 3iC2

4 6iC2 8iC3 6iC4

{0,0,0} 1 1 1 1 1 1 1 1 1 1 Γ1

{1,0,0} 6 2 0 0 2 0 4 2 0 0 Γ1 + Γ12 + Γ15

{1,1,0} 12 0 2 0 0 0 4 2 0 0 Γ1 + Γ12 + Γ15 + Γ25′ + Γ25

{1,1,1} 8 0 0 2 0 0 0 4 0 0 Γ1 + Γ2 + Γ15 + Γ25′

{2,0,0} 6 2 0 0 2 0 4 2 0 0 Γ1 + Γ12 + Γ15

The irreducible representations for each energy level contained in Γ equiv. are listed
in the right-hand column

the symmetry operations of Oh, a contribution of one is made to the character;
otherwise a zero contribution is made. Using these definitions, we obtain the
characters χequiv. and the characters for the various plane waves are given in
Table 12.2, where the various plane wave states are denoted by one of the re-
ciprocal lattice vectors which describe each of these states using the notation
of Table 12.1. The reducible representations Γ equiv. for the various plane wave
states in the simple cubic lattice are decomposed into irreducible representa-
tions of Oh and the results are given on the right-hand side of Table 12.2.

Once we know the irreducible representations of Oh that are contained in
each of the degenerate levels of the simple cubic empty lattice, we can find
appropriate linear combinations of these plane wave states which will then
transform as the desired irreducible representations of Oh. When a cubic pe-
riodic potential is now applied, the degeneracy of these empty lattice states
will be lifted in accordance with the decomposition of the reducible represen-
tations of Γ equiv. into the irreducible representations of Oh. Thus the proper
linear combinations of the plane wave states will bring the secular equation of
the nearly free electron model energy bands into block diagonal form. As an ex-
ample of how this works, let us list the six appropriate linear combinations for
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the {1, 0, 0} set of reciprocal lattice vectors exp(±2πix/a), exp(±2πiy/a), and
exp(±2πiz/a) which will bring the secular equation into block diagonal form:

1√
6
[(1, 0, 0) + (1̄, 0, 0) + (0, 1, 0) + (0, 1̄, 0) + (0, 0, 1) + (0, 0, 1̄)] → Γ1

1√
6
[(1, 0, 0) + (1̄, 0, 0) + ω(0, 1, 0) + ω(0, 1̄, 0)

+ω2(0, 0, 1) + ω2(0, 0, 1̄)]

1√
6
[(1, 0, 0) + (1̄, 0, 0) + ω2(0, 1, 0) + ω2(0, 1̄, 0)

+ω(0, 0, 1) + ω(0, 0, 1̄)]

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
→ Γ12

1
i
√

2
[(1, 0, 0)− (1̄, 0, 0)]

1
i
√

2
[(0, 1, 0)− (0, 1̄, 0)]

1
i
√

2
[(0, 0, 1)− (0, 0, 1̄)]

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
→ Γ15 ,

(12.13)

in which we have used (1,0,0) to denote exp(2πix/a) and correspondingly for
the other plane waves. Here ω = 2πi/3 and we note that Γ1 and Γ12 are even
under inversion, but Γ15 is odd under inversion. Substituting

1
2
[(1, 0, 0) + (1̄, 0, 0)] = cos(2πx/a)

1
2i

[(1, 0, 0)− (1̄, 0, 0)] = sin(2πx/a) , (12.14)

we obtain the following linear combinations of symmetrized plane waves from
(12.13):

2√
6

[
cos

(
2πx
a

)
+ cos

(
2πy
a

)
+ cos

(
2πz
a

)]
→ Γ1

2√
6

[
cos

(
2πx
a

)
+ ω cos

(
2πy
a

)
+ ω2 cos

(
2πz
a

)]

2√
6

[
cos

(
2πx
a

)
+ ω2 cos

(
2πy
a

)
+ ω cos

(
2πz
a

)]
⎫⎪⎪⎬
⎪⎪⎭
→ Γ12

√
2 sin

(
2πx
a

)

√
2 sin

(
2πy
a

)

√
2 sin

(
2πz
a

)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
→ Γ15 . (12.15)
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The linear combinations of plane wave states given in (12.15) transform as irre-
ducible representations of Oh, and bring the secular equation for E(k = 0) into
block diagonal form. For example, using the six combinations of plane wave
states given in (12.15), we bring the (6×6) secular equation for Kni = {1, 0, 0}
into a (1×1), a (2×2) and a (3×3) block, with no coupling between the blocks.
Since there are three distinct energy levels, each corresponding to a different
symmetry type, the introduction of a weak periodic potential will, in general,
split the sixfold level into three levels with degeneracies 1 (Γ1), 2 (Γ12) and
3 (Γ15). This procedure is used to simplify the evaluation of E(k) and ψk(r)
in first-order degenerate perturbation theory. Referring to Table 12.1, (12.15)
gives the symmetrized wave functions for the six K{1,0,0} vectors. The cor-
responding analysis can be done for the twelve K{110} vectors for the third
lowest energy level, etc. The results for E(k) for the empty lattice for the
simple cubic group #221 are shown in Fig. 12.3 for the Γ − X and Γ − R
axes.

The results obtained for the simple cubic lattice can be extended to other
cubic lattices (see Appendix C). The space group numbers for common cubic
crystals are as follows: simple cubic (#221), FCC (#225), diamond (#227),
BCC (#229) (using standard references such as [54] and [58]). For the FCC
lattice the (n1, n2, n3) integers are all even or all odd so that the allowed Kni

vectors are {000}, {1, 1, 1}, {200}, etc. (see for example: [6] or [45]). For the
BCC lattice, the integers (n1 + n2 + n3) must all sum to an even number,
so that we can have reciprocal lattice Kni vectors {000}, {1, 1, 0}, {200},
etc. Thus Table 12.1 can be used together with an analysis, such as given in
this section, to obtain the proper linear combination of plane waves for the
pertinent Kni vectors for the various cubic groups. These issues are clarified
in Problem 12.2. In this problem a weak periodic potential is considered. Then
the character tables for the group of the wave vector in Appendix C will be
of use.

To complete the discussion of the use of group theory for the solution of
the electronic states of the empty lattice (or more generally the nearly free
electron) model, we will next consider the construction of the symmetrized
plane wave states E(k) as we move away from k = 0.

12.3 Symmetrized Plane Wave Solutions
along the Δ-Axis

As an example of a nonzero k vector, let us consider E(k) as we move from
Γ (k = 0) toward point X [k = π/a(1, 0, 0)] along the (1,0,0) axis (labeled Δ
in Figs. 10.3 and 12.4). The appropriate point group of the wave vector k is
C4v, with the character table given in Table 10.3 (see also Table A.16).

In Table 12.3 are listed the characters for the three irreducible represen-
tations of Kni = {1, 0, 0}(2π/a) corresponding for the simple cubic empty
lattice dispersion relations at k = 0 and Oh symmetry. We consider these
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Fig. 12.3. Diagram of the empty lattice energy levels along (a) Γ -X and (b) Γ -R
for the simple cubic lattice #221. See the text for the symmetries of the energy
bands that are degenerate at the high symmetry points of the simple cubic empty
lattice model

as reducible representations of point group C4v. The decomposition of these
three reducible representations in C4v point group symmetry is indicated on
the right of Table 12.3. This decomposition yields the compatibility relations
(see Sect. 10.7):

Γ1 → Δ1

Γ12 → Δ1 +Δ2

Γ15 → Δ1 +Δ5 . (12.16)
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Fig. 12.4. Brillouin zone for a simple cubic lattice showing high symmetry points

Table 12.3. Characters for the three symmetrized plane waves (12.16) correspond-
ing to the six plane waves Kni = (2π/a)(1, 0, 0) in Table 12.1a,b

C4v (4mm) E C2 2C4 2σv 2σd

Γ1 1 1 1 1 1 Δ1

Γ12 2 2 0 2 0 Δ1+Δ2

Γ15 3 −1 1 1 1 Δ1+Δ5

a The characters for each symmetrized plane wave at k = 0 with Oh symmetry is
considered as a reducible representation in the C4v(4mm) group which is appropri-
ate for the wave vector k along a cubic axis. The decomposition of the reducible
representations into their irreducible components along the Δ axis are indicated us-
ing the notation of the character table for C4v
b The operation σv denotes iC010

2 and iC001
2 , while σd denotes iC011

2 and iC011̄
2

In the character table (Table 12.3), the main symmetry axis is the x-axis,
so that the basis functions that should be used (see Table A.16) require the
transformation: x→ y, y → z, z → x. The symmetry axis σv = iC010

2 denotes
the mirror planes y = 0 and z = 0, while σd = iC011

2 denotes the diagonal
(011) planes, with all symmetry operations referring to reciprocal space, since
we are considering the group of the wave vector at a point along the Δ axis.
The results of (12.16) are of course in agreement with the compatibility rela-
tions given in Sect. 10.7 for the simple cubic structure. Compatibility relations
of this type can be used to obtain the degeneracies and symmetries for all the
levels at the Δ point, starting from the plane wave solution at k = 0. A sim-
ilar approach can be used to obtain the symmetries and degeneracies as we
move away from k = 0 in other directions. For an arbitrary crystal structure
we have to use standard references or websites [54] to construct the compat-
ibility relations using the tables for the group of the wave vector given in this
reference. Some illustrative examples are given in Appendix C.

12.4 Plane Wave Solutions at the X Point

As we move in the Brillouin zone from a point of high symmetry to a point
of lower symmetry, the solution using the compatibility relations discussed
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z

y

C2′
C2″

Fig. 12.5. Diagram of a square showing the twofold axes normal to the principal
C4 symmetry axis which are pertinent to point group D4h

in Sect. 12.3 is unique. On the other hand, when going from a point of lower
symmetry like a Δ point to one of higher symmetry, the solution from the
compatibility relations is not unique, and we must then go back to consider-
ation of the equivalence transformation. An example of this situation occurs
when we go from the Δ point (see Table C.8) to the X-point (D4h symmetry
and Table C.15), which has higher symmetry than the Δ point (C4v symme-
try). The appropriate character table for the group of the wave vector at the
X point (see Table C.15 in Appendix C) is D4h = D4⊗i shown in Table A.18.
At the X-point, the nearly free electron solutions for the simple cubic lattice
given by (12.7) become:

E
(
k =

π

a
x̂
)

=
�

2

2m

(
2π
a

)2
[(

1
2

+ n1

)2

+ n2
2 + n2

3

]
. (12.17)

The lowest energy level at the X-point is

E1

(
k =

π

a
x̂
)

=
�

2

2m

(
2π
a

)2 (1
4

)
. (12.18)

The pertinent plane waves which contribute to the energy level E1 in (12.18)
correspond to Kni vectors

Kni = (0, 0, 0)

Kni =
2π
a

(1̄, 0, 0) .

We will now find χequiv. for these plane waves, using the symmetry oper-
ations in Fig. 12.5 and in the character table for D4h in which we use the
transformation x → y, y → z, z → x to obtain the proper X-point (Ta-
ble 12.4). We note that the plane wave labeled Kni = (0, 0, 0) in Table 12.1
yields a plane wave e(πi/a)x at the X-point while the plane wave labeled
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Table 12.4. Character table for the point groupD4, showing the solid state notation
in the right-hand column

D4 (422) E C2 = C2
4 2C4 2C′2 2C′′2

x2 + y2, z2 A1 1 1 1 1 1 X1

Rz, z A2 1 1 1 −1 −1 X4

x2 − y2 B1 1 1 −1 1 −1 X2

xy B2 1 1 −1 −1 1 X3

(xz, yz)
(x, y)

(Rx, Ry)

}
E 2 −2 0 0 0 X5

With inversion D4h = D4 ⊗ i

Table 12.5. Characters for the two plane waves with energy E1 for the simple cubic
empty lattice electron dispersion relations at the X point (D4h symmetry)

E C2 2C4 2C′2 2C′′2 i iC2 2iC4 2iC′2 2iC′′2

exp(±πix/a) 2 2 2 0 0 0 0 0 2 2 A1g + A2u

Kni = (2π/a)(1̄, 0, 0) in Table 12.1 yields a plane wave e(
π
a ix− 2π

a ix) = e−
π
a ix

and both have energies E1 = �
2/2m

(
2π
a

)2 (1/4). The plane waves de-
noted by Kni = (0, 0, 0) and Kni = 2π/a(1̄, 0, 0) form partners of a re-
ducible representation, and the characters for these two plane waves in the
equivalence transformation Γ equiv. are here shown to yield (Table 12.5):

Γ equiv. = X+
1 +X−

4 . (12.19)

We thus obtain irreducible representations with X+
1 and X−

4 symmetries for
the lowest X-point level so that a periodic potential will split the degeneracy
of these levels at the X-point. In this case the level separation becomes
2|VKni

| (see for example [6, 45]) where Kni = (2π/a)(1̄, 0, 0). The appro-
priate linear combination of plane waves corresponding to the X+

1 and X−
4

irreducible representations are

X+
1 symmetry: (0, 0, 0) + (1̄, 0, 0) → 2 cos

π

a
x

X−
4 symmetry: (0, 0, 0)− (1̄, 0, 0) → 2 sin

π

a
x . (12.20)

and each of the X+
1 and X−

4 levels is nondegenerate. Referring to (12.17), the
next lowest energy level at the X point is

E2

(
k =

π

a
x̂
)

=
�

2

2m

(
2π
a

)2(5
4

)
. (12.21)
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Table 12.6. Characters for the plane waves comprising state with energy E2 at the
X point (D4h symmetry) for the simple cubic empty lattice electronic energy bands

E C2 2C4 2C′2 2C′2 i iC2 2iC4 2iC′2 2iC′′2

(12.22) 8 0 0 0 0 0 0 0 4 0

exp(±2πiy/a) 4 0 0 2 0 0 4 0 2 0

exp(±2πiz/a)

The eight pertinent plane waves for this energy level correspond to the Kni

vectors

Kni =
2π
a

(0, 1, 0),
2π
a

(0, 1̄, 0),
2π
a

(0, 0, 1),
2π
a

(0, 0, 1̄)

Kni =
2π
a

(1̄, 1, 0),
2π
a

(1̄, 1̄, 0),
2π
a

(1̄, 0, 1),
2π
a

(1̄, 0, 1̄)

in Table 12.1. More explicitly, the eight plane waves corresponding to these
Kni vectors are

exp
{
πix

a
+

2πiy
a

}
, exp

{
πix

a
− 2πiy

a

}
,

exp
{
πix

a
+

2πiz
a

}
, exp

{
πix

a
− 2πiz

a

}
,

exp
{−πix

a
+

2πiy
a

}
, exp

{
−πix

a
− 2πiy

a

}
,

exp
{
−πix

a
+

2πiz
a

}
, exp

{
−πix

a
− 2πiz

a

}
. (12.22)

To find the characters for the equivalence transformation for the eight plane
waves of (12.22) we use the character table for D4h and Fig. 12.5. The results
for several pertinent plane wave combinations are given in Table 12.6. The
reducible representation for the eight plane waves given by (12.22) yields the
following X-point irreducible representations

X+
1 +X+

2 +X−
5 +X−

4 +X−
3 +X+

5 . (12.23)

The same result can be obtained by considering the e±πix/a functions as
common factors of the e±2πiy/a and e±2πiz/a functions. The χequiv. for the
four e±2πiy/a and e±2πiz/a plane waves is also tabulated in Table 12.6. The
e±πix/a functions transform as X+

1 +X−
4 (see (12.19)), and the four functions

e±2πiy/a and e±2πiz/a transform as X+
1 +X+

2 +X−
5 . If we now take the direct

product indicated in (12.24), we obtain

(X+
1 +X−

4 )⊗ (X+
1 +X+

2 +X−
5 ) = X+

1 +X+
2 +X−

5 +X−
4 +X−

3 +X+
5 (12.24)
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in agreement with the result of (12.23). The proper linear combination of the
eight plane waves which transform as irreducible representations of the D4h

point symmetry group for the second lowest X point level is found from the
Kni vectors given in (16.16):

X+
1 : (0, 1, 0) + (0, 1̄, 0) + (0, 0, 1) + (0, 0, 1̄)

+(1̄, 1, 0) + (1̄, 1̄, 0) + (1̄, 0, 1) + (1̄, 0, 1)

X−
4 : (0, 1, 0) + (0, 1̄, 0) + (0, 0, 1) + (0, 0, 1̄)

−(1̄, 1, 0)− (1̄, 1̄, 0)− (1̄, 0, 1)− (1̄, 0, 1)

X+
2 : (0, 1, 0)− (0, 0, 1) + (0, 1̄, 0)− (0, 0, 1̄)

+(1̄, 1, 0)− (1̄, 0, 1) + (1̄, 1̄, 0)− (1̄, 0, 1̄)

X−
3 : (0, 1, 0)− (0, 0, 1) + (0, 1̄, 0)− (0, 0, 1̄)

−(1̄, 1, 0) + (1̄, 0, 1)− (1̄, 1̄, 0) + (1̄, 0, 1̄)

X−
5 :

(0, 1, 0)− (0, 1̄, 0) + (1̄, 1, 0)− (1̄, 1̄, 0)

(0, 0, 1)− (0, 0, 1̄) + (1̄, 0, 1)− (1̄, 0, 1̄)

}
two partners

X+
5 :

(0, 1, 0)− (0, 1̄, 0)− (1̄, 1, 0) + (1̄, 1̄, 0)

(0, 0, 1)− (0, 0, 1̄)− (1̄, 0, 1) + (1̄, 0, 1̄)

}
two partners , (12.25)

in which the plane waves are denoted by their corresponding Kni vectors.
We note that the wave vector Kni = (2π/a)(0, 1, 0) gives rise to a plane wave
exp[(πix/a)+ (2πiy/a)]. Likewise the wave vector Kni = (2π/a)(1̄, 1, 0) gives
rise to a plane wave exp[(πix/a) − (2πix/a) + (πiy/a)]. Using this notation
we find that the appropriate combinations of plane waves corresponding to
(12.25) are

X+
1 : cos

πx

a

(
cos

2πy
a

+ cos
2πz
a

)

X−
4 : sin

πx

a

(
cos

2πy
a

+ cos
2πz
a

)

X+
2 : cos

πx

a

(
cos

2πy
a

− cos
2πz
a

)

X−
3 : sin

πx

a

(
cos

2πy
a

− cos
2πz
a

)

X−
5 :

cos
πx

a
sin

2πy
a

cos
πx

a
sin

2πz
a

⎫⎪⎬
⎪⎭ two partners

X+
5 :

sin
πx

a
sin

2πy
a

sin
πx

a
sin

2πz
a

⎫⎪⎬
⎪⎭ two partners . (12.26)
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Fig. 12.6. (a) E(k) for a BCC lattice in the empty lattice approximation, V ≡ 0. (b)
E(k) for sodium, showing the effect of a weak periodic potential in lifting accidental
band degeneracies at k = 0 and at the zone boundaries (high symmetry points) in
the Brillouin zone. Note that the splittings are quite different for the various bands
and at different high symmetry points. The character tables in Appendix C for the
group of the wave vector for the BCC lattice are useful for solving the problem of
the electronic structure for a nearly free electron model for a BCC alkali metal
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A summary of the energy levels and symmetries along Γ −X for the simple
cubic lattice is given in Fig. 12.3(a). A similar procedure is used to find the
degeneracies and the symmetrized linear combination of plane waves for any
of the energy levels at each of the high symmetry points in the Brillouin
zone. We show for example results in Fig. 12.3(b) also for the empty lattice
bands along Γ − R. The corresponding results can be obtained by this same
procedure for the FCC and BCC lattices as well (see Figs. 12.1 and 12.6).
Some elaboration of these concepts is found in Problems 12.2 and 12.6.

In the following section we will consider the effect of nonsymmorphic op-
erations on plane waves.

12.5 Effect of Glide Planes and Screw Axes

Up to this point we have considered only symmorphic space groups where
the symmetry operations of the group of the wave vectors are simply point
group operations. The main effect of the glide planes and screw axes in non-
symmorphic space groups on the group of the wave vector is to cause energy
bands to stick together along some of the high symmetry points and axes
in the Brillouin zone. We first illustrate this phenomenon using the 2D space
group p2mg (#7) which has a twofold axis, mirror planes normal to the x-axis
at x = 1/4a and x = 3/4a, and a glide plane g parallel to the x-axis with
a translation distance a/2. In addition, group p2mg has inversion symmetry.
Suppose that X(x, y) is a solution to Schrödinger’s equation at the X point
kX = π/a(1, 0) (see Fig. 12.7).

In the two-dimensional case for the space group p2mg, the mirror glide
operation g implies

gX(x, y) = X

(
x+

1
2
a,−y

)
, (12.27)

Fig. 12.7. Brillouin zone for a rectangular 2D lattice [such as p2mg (#7)]
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while inversion i implies

iX(x, y) = X(−x,−y) . (12.28)

The mirror plane m at x = a/4 implies

mX(x, y) = X

(
−x+

1
2
a, y

)
, (12.29)

so that
gX(x, y) = m iX(x, y) , (12.30)

where m denotes reflection in a mirror plane and i denotes inversion. Since
i2X(x, y) = X(x, y) and m2X(x, y) = X(x, y), we would expect from (12.30)
that

g2X(x, y) = X(x, y) . (12.31)

But direct application of the glide operation twice yields for kx = π/a,

g2X(x, y) = X(x+ a, y) = eikxaX(x, y) = eπiX(x, y) = −X(x, y) , (12.32)

which contradicts (12.31). This contradiction is resolved by having the solu-
tions that ±X(x, y) stick together at the X point.

In fact, if we employ time reversal symmetry (to be discussed in Chap. 16),
we can show that bands ±ΦZ(x, y) stick together along the entire Brillouin
zone edge for all Z points, i.e., (π/a, ky) (see Fig. 12.7). Thus in addition to the
degeneracies imposed by the group of the wave vector, other symmetry rela-
tions can in some cases cause energy bands to stick together at high symmetry
points and axes.

The same situation also arises for 3D space groups. Some common ex-
amples where energy bands stick together are on the hexagonal face of the
hexagonal close-packed structure (space group #194, see Brillouin zone in
Fig. 12.8(a)), and the square face in the diamond structure (#227) for which
the Brillouin zone is given in Fig. 12.8(b). For the case of the hexagonal close
packed structure, there is only a single translation τ = (c/2)(0, 0, 1) con-
nected with nonsymmorphic operations in space group #194. The character
table for the group of the wave vector at the A point (see Table C.26) shows
that the bands stick together, i.e., there are no nondegenerate levels at the
A point. To illustrate this point, we give in Tables C.24 and C.26 the char-
acter tables for the Γ point and the A point, respectively, for space group
#194.

For the case of the diamond structure (space group #227), Miller and
Love [54] show that there are three different translation vectors (a/4)(1, 1, 0),
(a/4)(0, 1, 1), and (a/4)(1, 0, 1) can be used to describe the nonsymmorphic
aspects of the diamond structure [54]. The reason why these translations differ
from those used in this section (see Fig. 10.6) is the selection of a different
origin for the unit cell. In Miller and Love [54] the origin is selected to lie
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Fig. 12.8. Brillouin zone for (a) the hexagonal close packed structure, D4
6h, #194

and (b) the FCC structure (e.g., diamond #227) in which the high symmetry axes
are emphasized (see also Fig. C.5).

halfway between the two inequivalent lattice points, which is at a/8(1, 1, 1)
or at a/8(1̄, 1̄, 1̄), so that the inversion operation takes the white sublattice
into a black sublattice, and vice versa. In contrast, we have taken the origin
in Sect. 10.8 to coincide with the origin of the white sublattice so that in
this case the space group operation for inversion contains a translation by
τ = (a/4)(1, 1, 1) and is denoted by {i|τ}.

In Table C.17, we show the character tables for the group of the wave
vector appropriate for the diamond structure at the Γ point. The behavior of
E(k) at k = 0 for the diamond structure is similar to that for a symmorphic
cubic like the FCC structure. Furthermore, at the L-point in the Brillouin
zone, the structure factor does not vanish:

∑
j

eiKnL
·rj = 1 + ei2π/a(1,1,1)·a/4(1,1,1) = 1− i �= 0 , (12.33)

and the behavior of E(k) is expected to be similar to the behavior of a sym-
morphic cubic space group like that for the FCC structure, space group #225.
Thus for the nonsymmorphic diamond structure, some high symmetry points
behave normally (such as the L point), while for other points (such as the X
point as we discuss below), the energy bands stick together.

Next we show that the nonsymmorphic nature of the diamond structure
strongly affects the empty lattice energy band structure and is totally an ef-
fect of symmetry considerations. Application of the empty lattice plane wave
energies for the first few lowest energy states at k = 0 (Γ point), the L-point,
and the X-point are shown in Table 12.7, and the corresponding empty lattice
E(k) diagram is shown in Fig. 12.9. The twofold, fourfold and eightfold de-
generate levels at the X-point are noted with the empty lattice nondegenerate
bands coming into the X-point with equal and opposite slopes.

At the X point (Table 10.12) we see that there are no nondegenerate
levels so that levels stick together (see Sect. 10.8). In the E(k) diagram for the
diamond structure (see Fig. 12.10 for E(k) for Ge), we see that all the bands
stick together at the X point, all being either twofold or fourfold degenerate,
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Table 12.7. Classification of the empty lattice eigenvalues at the symmetry points
Γ , L and X of the diamond structure (#227)

number of empty lattice irreducible

plane waves eigenvalues in units representations

of (�2/2m)(4π2/a2)

point Γ 1 (0,0,0) Γ1

k = (0, 0, 0) 8 (1,1,1) Γ1 Γ ′25 Γ15 Γ ′2

6 (2,0,0) Γ ′25 Γ ′12 Γ ′2

12 (2,2,0) Γ1 Γ ′25 Γ15 Γ12 Γ25

point L 2
(

1
2
, 1

2
, 1

2

)
L1 L′2

k = 2π
a

(
1
2
, 1

2
, 1

2

)
6

(
3
2
, 1

2
, 1

2

)
L1 L′2 L3 L′3

6
(

1
2
, 3

2
, 3

2

)
L1 L′2 L3 L′3

6
(

5
2
, 1

2
, 1

2

)
L1 L′2 L3 L′3

2
(

3
2
, 3

2
, 3

2

)
L1 L′2

point X 2 (1, 0, 0) X1

k = 2π
a

(1, 0, 0) 4 (0, 1, 1) X1 X4

8 (1,2,0) X1 X2 X3 X4

8 (2,1,1) 2X1 X3 X4

as seen in the character table for the X point in Table 10.12 and in the empty
lattice model in Table 12.7. The plane wave basis functions for the irreducible
representations X1, X2, X3 and X4 for the diamond structure are listed in
Table 12.8 and are consistent with these symmetry requirements.

Because of the nonsymmorphic features of the diamond structure, the en-
ergy bands at theX point behave differently from the bands at high symmetry
points where “essential” degeneracies occur. For the case of essential degen-
eracies, the energy bands E(k) come into the Brillouin zone with zero slope.
For the X point in the diamond structure, the E(k) dispersion relations with
X1 and X2 symmetry in general have a nonzero slope, but rather the slopes
are equal and opposite for the two levels X1 and X2 that stick together. The
physical reason for this behavior is that the X-ray structure factor for the
Bragg reflection associated with the X point in the Brillouin zone for the
diamond structure vanishes and thus no energy discontinuity in E(k) is ex-
pected, nor is it observed upon small variation of kx relative to the X point.
Explicitly the structure factor [45] at the X point for the diamond structure is

∑
j

eiKnX
·rj = 1 + ei4π/a(1,0,0)·a/4(1,1,1) = 1− 1 ≡ 0 , (12.34)
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Fig. 12.9. Schematic diagram which indicates the symmetry types of the empty
lattice energy levels along Γ −L and Γ −X for the diamond structure, space group
#227 [10] The dashed horizontal line indicates the Fermi level on the empty lattice
model for four electrons per atom, indicating that the empty lattice model gives
a semimetal for the diamond structure for group IV materials. We therefore con-
clude that the empty lattice model is not a good approximation for semiconductors
crystallizing in the diamond structure

where KnX = (2π/a)(1, 0, 0) for the FCC structure from Table 12.1 and the
sum is over the two inequivalent atom sites in the unit cell [one is at the origin
and the other is at (a/4)(1, 1, 1)]. The vanishing of this structure factor for the
reciprocal lattice vector KnX = (4π/a)(1, 0, 0) associated with the X point
implies that there is no Fourier component of the periodic potential to split
the degeneracy caused by having two atoms of the same chemical species per
unit cell and thus the energy bands at the X-point stick together. In fact,
the structure factor in the diamond structure vanishes for all points on the
square face of the FCC Brillouin zone (see Fig. 12.8(b)), and we have energy
bands sticking together across the entire square face. A comparison between
the empty lattice energy band symmetries for the X-point of the FCC lattice
(Fig. 12.1) and for the diamond structure (Fig. 12.9) highlights the effect of
the nonsymmorphic symmetry on the electronic structure near the X-point
but not near the L-point.
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Fig. 12.10. Energy band structure for germanium as an example of a material which
is described by a nonsymmorphic space group #227 for the diamond structure. Note
that the energy bands stick together at the X point as predicted by group theory
(see text). In this diagram the spin-orbit interaction is neglected (see the treatment
of double groups in Chap. 14)

To get further insight into how the energy bands at the X-point stick
together, consider the operations of the inversion symmetry operator {i|τ d}
on the basis functions for the X-point listed in Table 12.8. To treat the effect
of {i|τd} on the various functions of (x, y, z) in Table 12.8, consider first the
action of {i|τd} on the coordinates:

{i|τ d}
⎛
⎝x
y
z

⎞
⎠ =

⎛
⎝−x+ (a/4)
−y + (a/4)
−z + (a/4)

⎞
⎠ . (12.35)

Then using the trigonometric identity:

cos(α + β) = cosα cosβ − sinα sinβ

sin(α + β) = sinα cosβ + cosα sinβ , (12.36)
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Table 12.8. Plane wave basis functions for the group of the wave vector for the
X-point [2π/a(1, 0, 0)] for the nonsymmorphic diamond structure

representation function

X1 x11 = cos 2π
a
x

x12 = sin 2π
a
x

X2 x21 = cos 2π
a
x
[
cos 4π

a
y − cos 4π

a
z
]

x22 = sin 2π
a
x
[
cos 4π

a
y − cos 4π

a
z
]

X3 x31 = sin 4π
a

(y + z)
[
cos 2π

a
x+ sin 2π

a
x
]

x32 = sin 4π
a

(y − z)
[
cos 2π

a
x− sin 2π

a
x
]

X4 x41 = sin 4π
a

(y − z)
[
cos 2π

a
x+ sin 2π

a
x
]

x42 = sin 4π
a

(y + z)
[
cos 2π

a
x− sin 2π

a
x
]

we obtain for the effect of {i|τd} on the various trigonometric functions in
Table 12.8:

{i|τd} cos
(

2π
a
x

)
= cos

(
2π
a

(−x) +
π

2

)
= sin

(
2π
a
x

)

{i|τ d} sin
(

2π
a
x

)
= sin

(
2π
a

(−x) +
π

2

)
= cos

(
2π
a
x

)

{i|τd} cos
(

4π
a
y

)
= cos

(
4π
a

(−y) + π

)
= − cos

(
4π
a
y

)

{i|τd} sin
(

4π
a
y

)
= sin

(
4π
a

(−y) + π

)
= sin

(
4π
a
y

)

{i|τd} sin
(

4π
a

(y + z)
)

= sin
(

4π
a

(−y − z) + 2π
)

= − sin
(

4π
a

(y + z)
)

{i|τd} sin
(

4π
a

(y − z)
)

= sin
(

4π
a

(−y + z)
)

= − sin
(

4π
a

(y − z)
)
.(12.37)

Thus we obtain

{i|τ d}
(
x11

x12

)
=

(
cos

(
2π
a (−x) + π

2

)
sin

(
2π
a (−x) + π

2

)
)

=

(
sin

(
2π
a x

)
cos

(
2π
a x

)
)

=
(
x12

x11

)
,

(12.38)

and we see that the effect of {i|τd} is to interchange x11 ↔ x12. Similarly the
effect of {i|τ d} on x12 and x22 is
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{i|τ d}
(
x21

x22

)
=

(
− sin

(
2π
a (x)

) [
cos

(
4π
a y

)− cos
(

4π
a z

)]
− cos

(
2π
a (x)

) [
cos

(
4π
a y

)− cos
(

4π
a z

)]
)

=
(−x22

−x21

)
,

(12.39)

so that {i|τ d} in this case interchanges the functions and reverses their signs
x21 ↔ −x22. Similar results can be obtained by considering other operations
that are in the point groupOh (and not in the group Td), that is by considering
symmetry operations involving the translation operation τ d = (a/4)(1, 1, 1).
Correspondingly, the other symmetry operations involving translation τ d also
interchange the basis functions for the X1 and X2 irreducible representa-
tions.

The physical meaning of this phenomenon is that the energy bands EX1 (k)
and EX2(k) go right through theX point without interruption in the extended
zone scheme, except for an interchange in the symmetry designations of their
basis functions in crossing the X point, consistent with the E(k) diagram for
Ge where bands with X1 symmetry are seen.

In contrast, the effect of {i|τ d} on the x31 and x32 basis functions:

{i|τ d}
(
x31

x32

)
=

(
− sin

(
4π
a (y + z)

) [
sin

(
2π
a x

)
+ cos

(
2π
a x

)]
− sin

(
4π
a (y − z)

) [
sin

(
2π
a x

)− cos
(

2π
a x

)]
)

=
(−x31

x32

)

(12.40)

does not interchange x31 and x32. Thus the X3 level comes into the X point
with zero slope. The behavior for the X4 levels is similar

{i|τ d}
(
x41

x42

)
=

(
− sin

(
4π
a (y − z)

) [
sin

(
2π
a x

)
+ cos

(
2π
a x

)]
− sin

(
4π
a (y + z)

) [
sin

(
2π
a x

)− cos
(

2π
a x

)]
)

=
(−x41

x42

)

(12.41)

so that the X3 and X4 levels behave like ordinary doubly degenerate lev-
els. Equations (12.38)–(12.41) show that the character χ({i|τ d}) vanishes at
the X point for the X1, X2, X3 and X4 levels, consistent with the charac-
ter table for the diamond X-point given in Table 12.8 (see Problem 12.4).
These results also explain the behavior of the energy bands for Ge at the
X-point shown in Fig. 12.10. The nondegenerate Δ1 and Δ2′ energy bands
going into the X point stick together and interchange their symmetry desig-
nations on crossing the X point, while the doubly degenerate Δ5 levels go into
a doubly-degenerate X4 level with zero slope at the Brillouin zone boundary.
In Chap. 14 we will see that when the spin-orbit interaction is considered the
doubly-degenerate X5 levels are split by the spin–orbit interaction into Δ6

and Δ7 levels, and when the spin–orbit interaction is taken into account, all
the levels at the X-point have X5 symmetry and all show sticking-together
properties.
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Selected Problems

12.1. (a) For the simple cubic lattice find the proper linear combinations
of plane waves for the twelve (1,1,0) plane wave states at k = 0 which
transform as irreducible representations of the Oh point group.

(b) As we move away from k = 0, find the plane wave eigenfunctions which
transform according to Δ1 and Δ5 and are compatible with the eigenfunc-
tions for the Γ−15 level at k = 0.

(c) Repeat part (b) for the case of Γ+
12 → Δ1 +Δ2.

12.2. Using the empty lattice, find the energy eigenvalues, degeneracies and
symmetry types for the two electronic levels of lowest energy for the FCC
lattice at the L point.

(a) Find the appropriate linear combinations of plane waves which provide
basis functions for the two lowest FCC L-point electronic states.

(b) Which states of the lower and upper energy levels in (a) are coupled by
optical dipole transitions?

(c) Repeat parts (a) and (b) for the two lowest X point energy levels for the
FCC empty lattice (i.e., the X1, X4′ and X1, X3, X5′ levels).

(d) Compare your results to those for the simple cubic lattice.

12.3. (a) Considering the empty lattice model for the 2D hexagonal lattice
(space group #17 p6mm), find the symmetries of the two lowest energy
states at the Γ point (k = 0).

(b) Find the linear combination of plane waves that transform according to
the irreducible representations in part (a).

(c) Repeat (a) and (b) for the lowest energy state at the M point shown in
the Fig. 12.11.

Fig. 12.11. Brillouin zone for the 2D triangular lattice

12.4. (a) Construct the character table for the group of the wave vector for
the diamond structure at k = 0 using the classes given in Table 10.8 and
check your results with Table C.17.
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(b) Consider the effect of the symmetry operation {C4|τd} for the diamond
structure on the x11 and x12 basis functions in Table 12.8 to show that
these basis functions stick together at the X point.

(c) Repeat (a) with the symmetry operation {C4|τd} for the x31 and x32 basis
functions in Table 12.8 to show that these basis functions come into the
X point with zero slope.

12.5. Find the structure factor for the nonsymmorphic 3D graphite structure
(see Problem 10.6) at a Δ point and at the A point in the Brillouin zone
(see (12.34)) for the structure factor at the X point for diamond). Discuss the
implication of your results on the electronic structure of 3D graphite.

12.6. Find the form of the E(k) relation for the second level of the empty
lattice for a BCC system and show how the degeneracy at k = 0 is lifted by
application of a finite potential. What is the form of E(k) for each of these
cases, and compare your results to those for the E(k) diagram for sodium (see
Fig. 12.6(b)). To do this problem you will find Tables C.7 and C.8 of use.


