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Applications to Lattice Vibrations

Our first application of the space groups to excitations in periodic solids is
in the area of lattice modes. Group theoretical techniques are important for
lattice dynamics in formulating the normal mode secular determinant in block
diagonal form, and symmetry is also important in determining the selection
rules for optical processes involving lattice modes such as infrared and Ra-
man activity. Transitions to lower symmetry through either phase transitions
or strain-induced effects may lead to mode splittings. These mode splittings
can be predicted using group theoretical techniques and the changes in the
infrared and Raman spectra can be predicted. Another aim of this chapter is
to consolidate some of the space group concepts of Chap. 9 on r space and
Chap. 10 on k space with additional developments on both the fundamentals
and applications of space groups.

11.1 Introduction

The atoms in a solid are in constant motion and give rise to lattice vibrations
which are very similar to the molecular vibrations which we have discussed
in Chap. 8. We discuss in this section and in Sect. 11.2 the similarities and
differences between lattice modes and molecular vibrations.

Suppose that we have a solid with N atoms which crystallize into a sim-
ple Bravais lattice with 1 atom/unit cell. For this system there are 3N de-
grees of freedom corresponding to three degrees of freedom/atom for the
molecular system or three degrees of freedom/primitive unit cell for sim-
ple crystalline solids. There are N allowed wave vector states in the Bril-
louin zone which implies that there are three branches for the phonon dis-
persion curves of a simple monatomic solid, each branch containing solu-
tions for N k-vectors. For the case of molecules, we subtract three de-
grees of freedom corresponding to the uniform translation of the molecule.
In the crystalline solid, these uniform translational modes correspond to
the acoustic modes at k = 0, which are subject to the constraint that
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Fig. 11.1. Phonon dispersion curves for a one-dimensional line of atoms with (a)
a single mass and (b) two different masses m and M

ω2
acoustic ≡ 0 as k → 0. The three modes corresponding to the rota-

tions of the solid about the center of mass are not specifically considered
here.

We have found in Chap. 10 that the translational symmetry of a crystal
is conveniently handled by labeling the N irreducible representations of the
translation group by the N k vectors which are accommodated in the 1st
Brillouin zone. So if we have a primitive unit cell with 1 atom/unit cell,
there are three vibrational modes for each k value and together these three
modes constitute the acoustic branches. In particular, there are three acoustic
vibrational modes for the k = 0 wave vector, which exhibits the full point
group symmetry of the crystal; these three acoustic modes correspond to the
pure translational modes which have zero frequency and zero restoring force.

We review here the phonon dispersion relations in a one-dimensional crys-
tal with 1 atom/unit cell (see Fig. 11.1(a)) and with 2 atoms/unit cell (see
Fig. 11.1(b)) having masses m and M where m < M , and a is the distance be-
tween adjacent atoms. For the acoustic branch at k = 0, all atoms vibrate in
phase with identical displacements u along the direction of the atomic chain,
thus corresponding to a pure translation of the chain. The wave vector k dis-
tinguishes each normal mode of the system by introducing a phase factor eika

between the displacements on adjacent sites. For the case of one atom/unit
cell, the lattice mode at the zone boundary corresponds to atoms moving 90◦

out of phase with respect to their neighbors. For the case of 2 atoms/unit
cell, the size of the unit cell is twice as large, so that the size of the corre-
sponding Brillouin zone (B.Z.) is reduced by a factor of 2. The dispersion
relations and lattice modes in this case relate to those for one atom/unit cell
by a zone folding of the dispersion relation shown in Fig. 11.1(a), thus leading
to Fig. 11.1(b). Thus the optical mode at k = 0 has neighboring atoms moving
out of phase with respect to each other. The normal mode at the new B.Z.
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Fig. 11.2. Phonon dispersion curves for Ge along certain high symmetry axes in the
Brillouin zone. The data at the Γ point are from Raman scattering measurements
and the data elsewhere in the zone are from neutron scattering experiments [28]

boundary k = π/2a thus corresponds to a mode where one atom is at rest,
while its neighbor is in motion.

In three-dimensions, the phonon dispersion relations for Ge with the di-
amond structure (with 2 atoms/unit cell) are plotted along high symmetry
directions in Fig. 11.2 and the dispersion relations are labeled by the appropri-
ate irreducible representations by giving the symmetry of the corresponding
normal mode (see Chap. 10 for the notation used in Fig. 11.2). The phonon
dispersion relations for germanium are determined from inelastic neutron scat-
tering measurements and are plotted as points in Fig. 11.2. At a general point k
in the B.Z. for the diamond structure, there are three acoustic branches and
three optical branches. However, at certain high symmetry points and along
certain high symmetry directions, mode degeneracies occur as, for example,
along ΓL and ΓX . Group theory allows us to identify the high symmetry
points in the B.Z. where degeneracies occur, which branches stick together,
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which branches show simple mode crossings, and which modes show anticross-
ings, [12–14,28, 30] (see Fig. 10.5), to be discussed further in this chapter.

The symmetry aspects of the lattice mode problem at k = 0 for simple
structures with 1 atom/unit cell are simply the uniform translation of the
solid. However, group theory is needed to deal with lattice modes away from
k = 0. Furthermore, the lattice modes that are of interest in the current
literature often involve complicated crystal structures with many atoms/unit
cell or systems with reduced dimensionality; for such problems, group theory
is a powerful tool for lattice mode classification and for the determination of
selection rules for infrared and Raman spectroscopy and for phonon-assisted
optical transitions more generally.

The general outline for procedures that utilize group theory to solve for
the lattice modes in solids is as follows:

1. Find the symmetry operations for the group of the wave vector k = 0, the
appropriate character table and irreducible representations.

2. Find the irreducible representations using Γlat. mod. = Γ equiv. ⊗ Γvector.
The meaning of this relation is discussed below (item (c) in Sect. 11.2).
We will use Γlat.mod. to denote Γlattice modes.

3. Find the irreducible representations of Γlat.mod.. The characters for the
lattice mode representation express the symmetry types and degeneracies
of the lattice modes.

4. Find the normal mode patterns.
5. Which modes are IR-active? Which modes are Raman-active? Are there

any polarization effects?
6. Repeat items 1–4 for other points in the Brillouin zone and find the lattice

for k �= 0.
7. Using the compatibility relations, connect up the lattice modes at neigh-

boring k points to form a phonon branch.

11.2 Lattice Modes and Molecular Vibrations

There are several aspects of the lattice mode problem in the crystalline phase
that differ from simple molecular vibrations (see Sect. 8.2):

(a) The eigenvectors and normal modes. In the lattice mode problem, we con-
sider normal modes for the atoms in a unit cell rather than for a molecule,
and in either case the lattice mode is one form of a basis vector or eigen-
vector (see Chap. 4). Since the symmetry is different for the various types
of k-vectors in the Brillouin zone, we must solve the lattice mode problem
for each distinct type of k-vector. On the other hand, for many experi-
mental studies of the lattice modes, we use light as our probe. Usually the
main interest is in lattice modes at or near k = 0 (the Γ point) because the
wavelength of light is long (λ ≈ 500nm) compared to lattice constants a,
and the magnitude of the corresponding k wavevector (k = 2π/λ) is very
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small compared with Brillouin zone dimensions (2π/a, a ∼ 0.1–1.0nm).
Most of our simple examples, therefore emphasize the lattice modes for
k = 0.

(b) Equivalence. To find the equivalence transformation Γ equiv. for molecules,
we consider the action of a symmetry operator P̂R on an atomic site and
examine the transformation matrix to see whether or not the site is trans-
formed into itself under the point symmetry operation P̂Rα. In the case of
a crystal, however, we consider all points separated by a lattice vector Rn

as identical when considering Γ point (k = 0) phonons. Thus r → r + Rn

is an identity transformation for all Rn. and therefore we denote the equiv-
alence transformation in crystalline solids by Γ equiv. and the correspond-
ing characters of this representation by χequiv.. Compound operations in
nonsymmorphic groups always give χequiv. = 0 since the translation τα

is not a lattice vector. When considering lattice modes away from the Γ
point, we must consider the group of the wavevector Gk and phase factors
related to translations. Modes away from k = 0 are discussed in Sect. 11.4.

(c) Degrees of freedom and phonon branches. For the case of molecular vibra-
tions, we have

Γmol. vib. = Γ equiv. ⊗ Γvec − Γtrans − Γrot , (11.1)

whereas for lattice modes (lat. mod.), we simply write

Γlat. mod. = Γ equiv. ⊗ Γvec . (11.2)

That is, we do not subtract Γtrans. and Γrot. in (11.2) for the lattice modes
for the following reasons. Each atom/unit cell has three degrees of freedom,
yielding a normal mode for each wave vector k in the Brillouin zone. The
collection of normal modes for a given degree of freedom for all k vectors
forms a phonon branch. Thus for a structure with one atom/unit cell there
are three phonon branches, the acoustic branches. If there is more than 1
atom/unit cell, then

no. of branches = (no. of atoms/unit cell)× 3 (11.3)

of which three are acoustic branches and the remainder are optical
branches. The translational degrees of freedom correspond to the triv-
ial k = 0 solution for the three acoustic branches which occur at ω = 0
and are smoothly connected with nontrivial solutions as we move away
from the Γ point. Since the atoms in the solid are fixed in space, there
are no rotational degrees of freedom to be subtracted.

We will now illustrate the application of group theory to the solution of the
lattice mode problem for several illustrative structures. First we consider sim-
ple symmorphic structures in Sect. 11.3. Then we consider some simple non-
symmorphic structures (see Sect. 11.3.3). Our initial examples will be for the
k = 0 modes. This will be followed by a discussion of modes elsewhere in the
Brillouin zone.
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11.3 Zone Center Phonon Modes

In this section we consider the symmetries of zone center phonon modes for
some illustrative cases. The examples selected in this section are chosen to
demonstrate some important aspect of the lattice mode problem and to gain
some experience in using simple space groups.

11.3.1 The NaCl Structure

The NaCl structure is shown in Fig. 9.6(b). This very simple example is se-
lected to illustrate how the symmetries of the lattice modes are found. We
take our “basic unit cell” to be the primitive rhombohedral unit cell of either
one of the inter-penetrating FCC structures (space group #225 (Fm3m) O5

h),
so that each primitive unit cell will contain an Na atom and a Cl atom. The
larger cubic unit cell (Fig. 9.6(b)) contains four primitive unit cells with four
Na and four Cl atoms (ions). The space group O5

h for the NaCl structure is
a symmorphic structure, and the group of the wave vector at k = 0 for the
NaCl structure is Oh. Since the details of the translations do not enter into
the considerations of phonons at k = 0 for symmorphic space groups, we need
to consider only point group operations for Oh as given in Table 10.2. Under
all symmetry operations of Oh each Na and Cl atom site is transformed either
into itself or into an equivalent atom site separated by a lattice vector Rm.
Thus,

Γ equiv. = 2Γ1 . (11.4)

For Oh symmetry, Γvec. = Γ15, so that at k = 0

Γlat. mod. = 2Γ1 ⊗ Γ15 = 2Γ15 , (11.5)

where the basis functions for Γ15 are (x, y, z). Thus both the acoustic branch
and the optic branch at k = 0 have Γ15 (or Γ−15) symmetry. The normal
modes for the acoustic branches of the NaCl structure have both the Na and
Cl atoms moving in phase in the x, y, and z directions, while for normal

Fig. 11.3. In-phase (acoustic) and out-of-phase (optic) normal modes at k = 0 for
NaCl
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modes in the optic branches, the two atoms move out of phase in the x, y,
and z directions (see Fig. 11.3). Since the electromagnetic interaction trans-
forms as the vector (Γ15), the optic branch is infrared-active. The acoustic
branch is not optically excited because ω = 0 at k = 0. Since the optic
branch for the NaCl structure has odd parity, it is not Raman-active. As
we move away from the Γ point (k = 0), the appropriate symmetries can
be found by compatibility relations. For example along the (100) directions
Γ15 → Δ1 + Δ5 in which Δ1 is the symmetry of the longitudinal mode and
Δ5 is that for the doubly degenerate transverse modes. We will now give
several other examples of zone center modes in other structures and then re-
turn in Sect. 11.4 to the discussion of nonzone-center modes for simple struc-
tures.

11.3.2 The Perovskite Structure

Let us now consider lattice modes in BaTiO3 (see Fig. 9.7(c)), an example of
a cubic crystal structure with slightly more complexity, but still correspond-
ing to a symmorphic space group. The focus of this section is to illustrate
the identification of the normal modes. For the perovskite structure shown in
Fig. 9.7(c), there are 5 atoms/unit cell and therefore there are 15 degrees of
freedom, giving rise to three acoustic branches and twelve optical branches.
The point group of symmetry at k = 0 is Oh. Consider the unit cell shown
in Fig. 11.4. The Ba2+ ions at the cube corners are shared by eight neigh-
boring unit cells, so that one Ba2+ ion is considered to be associated with
the unit cell shown. Likewise the O2− ions in the face centers are shared by
two unit cells, so that 3O2− ions are treated in the unit cell shown. The Ti4+

ion at the cube center is of course fully contained in the unit cell shown in
Fig. 11.4.

Using the diagram in Fig. 11.4, we thus obtain Character Table 11.1
for Γ equiv.. From the character table for Oh (see Table A.31) we see that

Γ equiv. = 3Γ+
1 + Γ+

12 . (11.6)

We note that the Ba2+ and Ti4+ ions each transform as Γ+
1 with the three

oxygens transforming as Γ1 + Γ12. In Oh symmetry

Γvec. = Γ−15 , (11.7)

so that

Γlat.mod. = (3Γ+
1 + Γ+

12)⊗ Γ−15 = 3Γ−15 + (Γ+
12 ⊗ Γ−15) (11.8)

= 4Γ−15 + Γ−25 = 4Γ−15 + Γ−25 . (11.9)
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Table 11.1. Characters for Γequiv for perovskite. The atoms that remain unchanged
under each symmetry operation are indicated

E 8C3 3C2
4 6C′2 6C4 i 8iC3 3iC2

4 6iC′2 6iC4

Γ equiv. 5 2 5 3 3 5 2 5 3 3

all Ba,Ti all Ba,Ti Ba,Ti all Ba,Ti all Ba,Ti Ba,Ti

one O one O one O one O

Fig. 11.4. Schematic diagram of the z-component lattice modes at k = 0 for the
BaTiO3 perovskite structure. (a) Γ15 acoustic mode; (b) Γ25 mode where only two
of the three distinct oxygens move; (c) Γ15 mode with the Ti4+ and Ba2+ vibrating
against the oxygens. (d) Γ15 mode with the Ti4+ vibrating against the Ba2+ and
(e) Γ15 breathing mode of the transverse oxygens vibrating against the longitudinal
oxygens, while the Ti4+ and Ba2+ are at rest

where we note that both Γ−15 and Γ−25 have odd parity. Thus at k = 0
there are five distinct normal mode frequencies, including the acoustic branch
with Γ−15 symmetry and ω = 0. Since the atom sites for the Ba2+ and
Ti4+ ions transform as Γ+

1 , we know that the Γ25 mode requires motion of
the oxygens. In the following we illustrate how the normal mode patterns
shown in Fig. 11.4 are obtained. Note the numbers assigned to the oxygens in
Fig. 11.4(b).

The search for the eigenvectors at the Γ point is similar to the procedure
used for finding the normal modes of molecular vibration (see Sect. 8.3). Since
k = 0, the phase factors for the translational symmetries are all eik·τ = 1.
One just needs to consider the unit cell as the “molecule”, find the normal
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modes, and the eigenvectors will be a repetition of the normal modes in all
the unit cells in the lattice.

From the character table for Oh we note that the characters for Cz
4 are

different for the Γ15 and Γ25 modes, and for this reason Cz
4 is a useful symme-

try operation for finding the normal mode displacements. First we consider
the effect of Cz

4 on each of the three inequivalent oxygen sites and on each of
the three components of the vector; this consideration is independent of the
symmetry of the vibrational mode:

Cz
4

⎛
⎝ 1

2
3

⎞
⎠ =

⎛
⎝2

1
3

⎞
⎠ , Cz

4

⎛
⎝x
y
z

⎞
⎠ =

⎛
⎝ y
−x
z

⎞
⎠ . (11.10)

Finding the normal mode for the acoustic translational branch is trivial (see
Fig. 11.4a). The operations of (11.10) are now applied to find the normal
modes in Fig. 11.4b and e. For the Γ25 displacements, Fig. 11.4b shows the
motions for the z component of the mode. The partners are found by cyclic
operations on (x, y, z) and atom sites (1, 2, 3), as given in (11.11). Then
operation by Cz

4 yields

Cz
4

⎛
⎝−x2 + x3

y1 − y3
−z1 + z2

⎞
⎠ =

⎛
⎝−y1 + y3
−x2 + x3

−z2 + z1

⎞
⎠ =

⎛
⎝0 −1 0

1 0 0
0 0 −1

⎞
⎠
⎛
⎝−x2 + x3

y1 − y3
−z1 + z2

⎞
⎠ (11.11)

giving a character of −1 for Cz
4 in the Γ25 representation. Performing repre-

sentative operations on this normal mode will show that it provides a proper
basis function for the Γ25 irreducible representation in the point group Oh.

Now consider the Γ15 normal mode given in Fig. 11.4e. The displacements
shown in the diagram are for the z component of the mode. To achieve no
motion of the center of mass, the actual displacements must be −z1−z2 +2z3
for the three oxygens at positions 1, 2 and 3. Using cyclic permutations we
obtain the three components of the mode given in (11.12). Then action of Cz

4

yields

Cz
4

⎛
⎝ 2x1 − x2 − x3

−y1 + 2y2 − y3
−z1 − z2 + 2z3

⎞
⎠ =

⎛
⎝ 2y2 − y1 − y3
x2 − 2x1 + x3

−z2 − z1 + 2z3

⎞
⎠

=

⎛
⎝ 0 1 0
−1 0 0

0 0 1

⎞
⎠
⎛
⎝ 2x1 − x2 − x3

−y1 + 2y2 − y3
−z1 − z2 + 2z3

⎞
⎠ , (11.12)

so that the character for this Γ15 mode is +1, in agreement with the character
for the Cz

4 operation in the Γ15,z irreducible representation (see the character
table for Oh). Operation with typical elements in each class shows this mode
provides a proper basis function for Γ15.

Clearly all the modes shown in Fig. 11.4 have partners x,y and z, so that
collectively they are all the normal modes for BaTiO3. Since all modes for
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BaTiO3 at k = 0 have odd parity, none are Raman-active, noting that for
the Oh point group, Raman-active modes have Ag, Eg and T2g (or Γ1, Γ12 and
Γ25′) symmetries. However, the 3Γ15 or 3Γ−15 modes are infrared-active, and
can be excited when the E vector for the light is polarized in the direction of
the oscillating dipole moment, as indicated in Fig. 11.4.

11.3.3 Phonons in the Nonsymmorphic Diamond Structure

We now illustrate the mode symmetries at the Γ point for a nonsymmorphic
space group with 2 atoms/unit cell (specifically we illustrate the lattice modes
of Ge or Si, which both crystallize in the diamond structure). Most of the sym-
metry properties, including the calculation of χequiv. and the decomposition
of Γ equiv. into irreducible representations of Oh (Γ equiv. = Γ1 +Γ2′), were dis-
cussed in Sect. 10.8. We now make use of this result for Γ equiv. in discussing
the Γ point phonons.

To get the characters for the lattice vibrations, we then take Γvec. = Γ15

which is odd under the inversion operation:

Γlat. mod. = Γ equiv. ⊗ Γvec. = (Γ1 + Γ2′)⊗ Γ15 = Γ15 + Γ25′ , (11.13)

where Γ25′ and Γ2′ are respectively, even and odd under the inversion opera-
tion.

For each k value, there are six vibrational degrees of freedom with 2
atoms/unit cell. These break up into two triply degenerate modes at k = 0,
one of which is even, the other odd under inversion. The odd mode Γ15 is the
acoustic mode, which at k = 0 is the pure translational mode. The other mode
is a Γ25′ mode, which is symmetric under inversion and represents a breath-
ing or optic mode. The optic mode is Raman-active but not infrared-active.
Furthermore, the Raman-active mode is observed only with off-diagonal po-
larization Ei⊥Es for the incident and scattered light.

Let us now illustrate a screw axis operation in the diamond structure (see
Fig. 9.6(g)) and see how this operation is used in finding the normal modes in
a nonsymmorphic crystal. Denoting the dark atoms in Fig. 10.6 by 1 and the

light atoms by 2, consider the effect of {Cz
4 |τ} on atom sites

(
1
2

)
and on the

vector

⎛
⎝x
y
z

⎞
⎠

{Cz
4 |τ}

(
1
2

)
=
(

2
1

)
, {Cz

4 |τ}
⎛
⎝x
y
z

⎞
⎠ =

⎛
⎝ y
−x
z

⎞
⎠ . (11.14)

Using these results we can then obtain the characters for the displacements
(R1 + R2) which has Γ15 symmetry and is identified with the basic vibration
of an FCC sublattice:
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Fig. 11.5. Lattice modes along the Δ-axis for the diamond structure, showing the
compatibility relations as we move away from the center of the cubic Brillouin zone

{Cz
4 |τ}

⎛
⎝x1 + x2

y1 + y2
z1 + z2

⎞
⎠ =

⎛
⎜⎝

y2 + y1

−x2 − x1

z2 + z1

⎞
⎟⎠ =

⎛
⎜⎝

0 1 0
−1 0 0

0 0 1

⎞
⎟⎠
⎛
⎜⎝
x1 + x2

y1 + y2

z1 + z2

⎞
⎟⎠ (11.15)

yielding a character of +1 for {Cz
4 |τ}, in agreement with the character for

{Cz
4 |τ} in the Γ15 irreducible representation for the acoustic mode transla-

tional branches of point group Oh. If all the symmetry operations are then
carried out, it is verified that R1 + R2 provides basis functions for the Γ15

irreducible representation of Oh.
When the two FCC sublattices vibrate out of phase, their parity is reversed

and a mode with even parity (the Γ25′ mode) is obtained

{Cz
4 |τ}

⎛
⎜⎝
x1 − x2

y1 − y2

z1 − z2

⎞
⎟⎠ =

⎛
⎜⎝

y2 − y1

−x2 + x1

z2 − z1

⎞
⎟⎠ =

⎛
⎜⎝

0 −1 0
1 0 0
0 0 −1

⎞
⎟⎠
⎛
⎜⎝
x1 − x2

y1 − y2

z1 − z2

⎞
⎟⎠ (11.16)

yielding a character of −1. This checks with the character for {Cz
4 |τ} in the

irreducible representation Γ25′ for the point group Oh.
As we move away from k = 0 along the Δ axis or the Λ axis, the triply

degenerate modes break up into longitudinal and transverse branches. The
symmetries for these branches can be found from the compatibility relations
(see Sect. 10.7). For example, as we move away from k = 0 along the Δ axis
toward the X point (see Fig. 11.5), we have the compatibility relations

Γ15 → Δ1 +Δ5

Γ25′ → Δ2′ +Δ5 . (11.17)

Group theory gives no information on the relative frequencies of the Γ15 and
Γ25′ modes.



252 11 Applications to Lattice Vibrations

We finally note that in general the Raman tensor has modes which
transform as a second rank symmetric tensor (see Table 10.2). The Raman-
active modes would include modes for the Oh group of the wave vector with
symmetries Γ1 + Γ12 + Γ25′ . Since the optic mode for the diamond struc-
ture at k = 0 has Γ25′ symmetry, this mode is Raman-active. Table 10.2
also tells us that the Γ25′ symmetry mode has basis functions of the form
xy, yz, zx, indicating that the Raman tensor for the diamond structure is of
the functional form Ei

xE
s
y ; αxy(Γ25′) plus cyclic permutations of x, y, z. Thus,

observation of this Raman-active mode requires the use of cross-polarized
light or (‖,⊥) settings of the incident and scattered polarizations, respec-
tively.

11.3.4 Phonons in the Zinc Blende Structure

Closely related to the diamond structure is the zinc blende structure (space
group F43m #216, T 3

d ) where the two FCC sublattices in Fig. 10.6 are chem-
ically distinct. This space group is symmorphic. This is the crystal struc-
ture for III–V semiconductor compounds, such as GaAs. For this case, the
Ga atoms (ions) would be on one FCC sublattice and the As ions on the
other FCC sublattice. If it happens that a Ga atom is on the wrong lat-
tice, this is called an antisite location, and is considered a defect in the lat-
tice.

Since the sublattices are chemically distinct, the group of the k-vector at
k = 0 for the zinc blende structure has only the 24 operations of the point
group Td. It is a symmorphic structure and the factor group Gk/Tk is there-
fore isomorphic to its point group Td (Sect. 9.1.4). In calculating Γlat.mod.,
we note that the vector in group Td transforms as the irreducible representa-
tion Γ15. Thus from the irreducible representations contained in Γ equiv., we
obtain

Γ equiv. = 2A1 = 2Γ1 ,

so that when we take the direct product of Γ equiv. with Γvec. we obtain

Γlat.mod. = 2A1 ⊗ T2 = 2T2 = 2Γ15 . (11.18)

For the zinc blende structure, the optic mode is both infrared-active and
Raman-active since the irreducible representation Γ15 for point group Td

corresponds to both Γ15 and Γ25′ of the point group Oh. This correspon-
dence is apparent from comparing the character tables for Td and Oh (see
Table 10.2).

The well known LO–TO splitting of the optic phonon in ionic crystals
is associated with an anticrossing of the optic phonon level and the photon
propagation dispersion relation which occurs very close to the B.Z. center (see
discussion in Sect. 10.7). Appropriate linear combinations of wave functions
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will lead to two distinct levels that do not cross, each represented by the
movement of one sublattice. Since GaAs is a polar crystal, in this case, the
LO and TO modes will be split. The more polar the crystal, the larger the
LO–TO splitting.

11.4 Lattice Modes Away from k = 0

Modes at k �= 0 can be observed by optical spectroscopy when superlattice
effects are present, giving rise to zone folding, or when defects are present,
breaking down translational symmetry. Nonzone center modes can also be ob-
served in second-order Raman spectra (comprising phonons with wave vectors
+k and −k). Lattice modes at k �= 0 are routinely observed by neutron, X-ray
and electron inelastic scattering techniques.

To construct phonon branches for the entire range of k vectors within
the first Brillouin zone, we must consider the general procedure for finding
the lattice modes at other high symmetry points in the B.Z., and we make
use of compatibility relations to relate these solutions to related solutions at
neighboring k-points.

The procedure for finding lattice modes at k �= 0 is outlined below:

(a) Find the appropriate group of the wave vector at point k.
(b) Find Γ equiv. and Γvec. for this group of the wave vector. When considering

lattice modes away from the Γ point, care must be taken with special k
points at the Brillouin zone boundary where R−1

α k = k + Km (Km is
a reciprocal lattice vector). One should not simply use χequiv. = 1 or
0, as for the case of molecules, because the lattice vector translation for
k �= 0 will add a phase factor (see Sect. 10.5). In this case we use for the
characters for the equivalence transformation

χequiv. =
∑

j

δRαrj ,rj e
iKm·rj , (11.19)

where rj is the position of the jth atom with respect to the origin of the
point group, and δRαrj ,rj = 1 if Rαrj and rj refer to equivalent atomic
positions (Rαrj = rj +Rn).

(c) Within a unit cell
Γlat.mod. = Γ equiv. ⊗ Γvec. (11.20)

find the symmetry types and mode degeneracies of Γlat.mod..
(d) Introduce a phase factor relating unit cells with translation by τ :

P{ε|τ}Ψk(r) = eik·τΨk(r) Bloch theorem . (11.21)

(e) Find lattice modes (including phase factor).

We illustrate these issues in terms of the NaCl structure which was previously
considered with regard to its normal modes at k = 0 (see Sect. 11.3.1).
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11.4.1 Phonons in NaCl at the X Point k = (π/a)(100)

The group of the wave vector at the point X is given in the Table C.15 in
Appendix C. We first identify the symmetry operations of point group D4h

and we then obtain Γ equiv. for these symmetry operations.
We first review the situation for the Γ point (Oh), see Table 11.2. Thus,

we have Γ equiv. for the Na and Cl ions, and for Γvec. at k = 0

Γ equiv.
Na = Γ1

Γ equiv.
Cl = Γ1

Γvec. = Γ15 ,

so that for k = 0 we have

Γlat.mod. = 2Γ1 ⊗ Γ15 = 2Γ15 .

Similarly for the X point, we first find Γ equiv. for each type of atom (see
Table 11.3). Thus, we obtain Γ equiv., Γvec., and Γlat.mod. at the X point:

Γ equiv.
Na = X1

Γ equiv.
Cl = X1

Γvec. = X ′
4 +X ′

5 ,

where X ′
4 corresponds to x, and X ′

5 corresponds to (y, z). We thus obtain

Γlat.mod. = 2X1 ⊗ (X ′
4 +X ′

5) = 2X ′
4 + 2X ′

5 .

Compatibility relations give Γ15 → Δ1+Δ5 → X ′
4+X ′

5 for the phonon branch
connecting Γ to X .

The action of the translation operator on a basis function (normal mode)
yields

P̂{ε|τ}u(r) = eik·τu(r) , (11.22)

Table 11.2. Characters for Γ equiv. for NaCl at the Γ point

Γ point E 8C3 3C2
4 6C′2 6C4 i 8iC3 3iC2

4 6iC′2 6iC4

Γ equiv.
Na 1 1 1 1 1 1 1 1 1 1

Γ equiv.
Cl 1 1 1 1 1 1 1 1 1 1

Table 11.3. Characters for Γ equiv. for NaCl at the X point

X point E 2C2
4⊥ C2

4‖ 2C4‖ 2C2 i 2iC2
4⊥ iC2

4‖ 2iC4‖ 2iC2

Γ equiv.
Na 1 1 1 1 1 1 1 1 1 1

Γ equiv.
Cl 1 1 1 1 1 1 1 1 1 1
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where k = (π/a)x̂ at the X point under consideration. For Rn = ax̂ we
obtain eik·τ = eiπ = −1 so that there is a π phase difference between unit
cells along x̂. However, for Rn = aŷ or aẑ, we have eik·τ = ei(0) = 1, and
there is effectively no phase factor along ŷ and ẑ.

The phase factor of (11.22) refers to the relative phase in the vibration
between atoms in adjacent unit cells. The relative motion between atoms
within a unit cell was considered in Sect. 11.2. Thus the NaCl structure (space
group #225) has a set of three acoustic branches and three optical branches
each having X ′

4 and X ′
5 symmetries at the X point, where

X ′
4 → x ,

X ′
5 → y, z .

The normal modes for the three acoustic branches are shown in Fig. 11.6 in
terms of the symmetry classificationsX ′

4 andX ′
5 (twofold) for the longitudinal

and transverse branches, respectively. The corresponding normal modes for
the three optical branches are shown in Fig. 11.7.

For rows of atoms in unit cells along the y and z directions, even consider-
ing that the crystal is strictly not infinite, there will be essentially zero phase
difference (eiδa, with δ = π/N , where N ≈ 107) between molecules vibrating

Fig. 11.6. Acoustic vibrational modes of NaCl showing longitudinal and transverse
normal mode displacements at the X point (kx = π/a) in the Brillouin zone for the
X ′

4 and X ′
5 normal modes

Fig. 11.7. Optic vibrational modes of NaCl showing longitudinal and transverse
normal mode displacements at the X point (kx = π/a) in the Brillouin zone for the
X ′

4 and X ′
5 normal modes
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in the acoustic mode as we move in the y and z directions. This is also true
for the optical branches shown in Fig. 11.7.

11.4.2 Phonons in BaTiO3 at the X Point

The modes in the case of BaTiO3 (see Fig. 9.7(c)) involve more than one atom
of the same species within the unit cell so that a few new aspects enter the
lattice mode problem in this case. The character table for the group of the
wave vector at the X point for BaTiO3 is the same as for NaCl (Table C.15).
At the X point, we compute Γ equiv. (see Table 11.4) using the symmetry
operators for the group of the wave vector at the X point making use of the
notation in Fig. 11.8.

Γ equiv.
Ba = X1

Γ equiv.
Ti = X1

Γ equiv.
O3

= 2X1 +X2

Γvec. = X ′
4 +X ′

5 , (11.23)

where X ′
4 corresponds to x, and X ′

5 to (y, z). The symmetries of the normal
modes are found by taking the direct product of Γ equiv. ⊗ Γvec.

ΓBa
lat.mod. = X1 ⊗ (X ′

4 +X ′
5) = X ′

4 +X ′
5

ΓTi
lat.mod. = X1 ⊗ (X ′

4 +X ′
5) = X ′

4 +X ′
5 .

The Ba and Ti atoms form normal modes similar to NaCl with the Ba moving
along x (X ′

4 symmetry) or along y or z (X ′
5 symmetry) with the Ti and O3 at

rest, and likewise for the Ti atoms moving along the x direction. The phase
relations for atomic vibrations in adjacent unit cells in the x direction have
a phase factor eπi = −1, while rows of similar atoms in the y and z direction
have no phase shift. For the oxygens,

ΓO3
lat.mod. = (2X1 +X2)⊗ (X ′

4 +X ′
5) = 2X ′

4 +X ′
3 + 3X ′

5 . (11.24)

The mode patterns and basis functions at the X point for BaTiO3 are given
in Fig. 11.8 and Table 11.5.

Table 11.4. Characters for the equivalence transformation for the Ba, Ti and three
oxygen ions in BaTiO3 with Oh symmetry

X point E 2C2
4⊥ C2

4‖ 2C4‖ 2C2 i 2iC2
4⊥ iC2

4‖ 2iC4‖ 2iC2

Γ equiv.
Ba 1 1 1 1 1 1 1 1 1 1

Γ equiv.
Ti 1 1 1 1 1 1 1 1 1 1

Γ equiv.
O3

3 3 3 1 1 3 3 3 1 1
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The mode symmetry and the normal mode displacements are verified by
the following considerations. Perusal of the X-point character table shows
that the symmetry types are uniquely specified by the operations C4‖, C2

and i. The effect of these operations on the coordinates (x, y, z) and on the
site locations are

C4‖

⎛
⎝1

2
3

⎞
⎠ =

⎛
⎝1

3
2

⎞
⎠ , C4‖

⎛
⎝x
y
z

⎞
⎠ =

⎛
⎝ x
−z
y

⎞
⎠ ,

C2

⎛
⎝1

2
3

⎞
⎠ =

⎛
⎝1

3
2

⎞
⎠ , C2

⎛
⎝x
y
z

⎞
⎠ =

⎛
⎝−x

z
y

⎞
⎠ ,

i

⎛
⎝1

2
3

⎞
⎠ =

⎛
⎝1

2
3

⎞
⎠ , i

⎛
⎝x
y
z

⎞
⎠ =

⎛
⎝−x
−y
−z

⎞
⎠ .

By carrying out the symmetry operations on the basis functions, we verify
that the matrix representations for each of the symmetry operations have the
correct characters for the X ′

4 irreducible representation:

C4‖(x1 + x2 + x3) = (x1 + x3 + x2) , so that χ(C4‖) = +1 ,

C2(x1 + x2 + x3) = −(x1 + x3 + x2) , so that χ(C2) = −1 ,

i(x1 + x2 + x3) = −(x1 + x2 + x3) , so that χ(i) = −1 .

Applying the same approach to the normal mode displacements with X ′
5 sym-

metry we have

C4‖

(
y1 + y2 + y3

z1 + z2 + z3

)
=

(
−z1 − z3 − z2

y1 + y3 + y2

)
=

(
0 −1
1 0

)(
y1 + y2 + y3

z1 + z2 + z3

)

i

(
y1 + y2 + y3

z1 + z2 + z3

)
=

(
−1 0

0 −1

)(
y1 + y2 + y3

z1 + z2 + z3

)
,

so that χ(C4‖) = 0, and χ(i) = −2, which are the correct characters for the
X ′

5 irreducible representation. Finally for the X ′
3 modes

C4‖(−x2 + x3) = (−x3 + x2) = −(−x2 + x3) → χ(C4‖) = −1

C2(−x2 + x3) = x3 − x2 = (−x2 + x3) → χ(C2) = +1

i(−x2 + x3) = −(−x2 + x3) → χ(i) = −1 .

These same calculations can be applied to the basis functions in Fig. 11.8 and
their irreducible representations and the results are listed in Table 11.5.

The phase factors for oxygens separated by a lattice vector ax̂ are eπi = −1
while the oxygens separated by a lattice vector aŷ or aẑ have no phase differ-
ence (i.e., phase factor ≡ 1).
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Fig. 11.8. Mode pattern models for the X point modes in BaTiO3. The basis
functions for each normal mode are indicated

Table 11.5. Basis functions for the various irreducible representations entering the
lattice modes in BaTiO3

basis functions irreducible representation

x3 − x2 X ′
3

y1 − y3

−z1 + z2

}
X ′

5

2x1 − x2 − x3 X ′
4

−y1 + 2y2 − y3

−z1 − z2 + 2z3

}
X ′

5

x1 + x2 + x3 X ′
4

y1 + y2 + y3

z1 + z2 + z3

}
X ′

5

11.4.3 Phonons at the K Point in Two-Dimensional Graphite

Two-dimensional graphite, called a graphene sheet, belongs to the symmor-
phic hexagonal space group #191 of the International Tables of Crystallogra-
phy [58] and has the symmetry designations D1

6h in accord with the Schoen-
flies notation, and P6/mmm in the Hermann–Mauguin notation. Three-
dimensional graphite is described by the nonsymmorphic space group #194
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and symmetry designation D4
6h as is discussed further in Problem 11.1. Al-

though a single graphene sheet is two-dimensional, we need to consider a three-
dimensional space group to account for the out-of-plane phonons. The rota-
tional aspects for real space and for the group of the wave vector at k = 0
in reciprocal space are described by the point group D6h (see Fig. 11.9) and
Table A.21. The direct lattice vectors are given by

a1 =
a

2

(√
3x̂+ ŷ

)

a2 =
a

2

(
−√3x̂+ ŷ

)
, (11.25)

where a = 2.456 Å is the lattice parameter denoting the nearest neighbor
distance between crystallographically equivalent atoms. The dotted line in
Fig. 11.9a defines the rhombus for the real space unit cell containing two
inequivalent carbon atoms, labeled 1 and 2. The associated Wyckoff positions
for atoms 1 and 2 are

1 = (2/3, 1/3)

2 = (1/3, 2/3) . (11.26)

Figure 11.9b shows the hexagonal Brillouin zone of 2D graphite. The reciprocal
lattice vectors are given by

b1 =
2π
a

(√
3

3
k̂x + k̂y

)

b2 =
2π
a

(
−
√

3
3
k̂x + k̂y

)
. (11.27)

The letters Γ , M and K are the high symmetry points while Σ, T , and λ
denote arbitrary points along high symmetry lines, and u represents a general
point inside the two-dimensional Brillouin zone. The K point is a special
symmetry point where the electronic valence and conduction bands cross in
a single point through which the Fermi level passes. Before developing the
group theory for the K point phonons, however, it is interesting to point
out that, for the hexagonal Bravais lattice, the real and reciprocal lattice are
rotated by 90◦ with respect to each other (see Fig. 11.9), and this is reflected
in the definition of the symmetry axes (Fig. 11.10).

The appropriate group of the wave vector at the K point is the D3h (see
Table A.14). The Γvec. transforms as A

′′
2 for light polarized along the z-axis,

and as E′ for light polarized in the (x, y) plane. The χequiv. and Γ equiv. are
given in Table 11.6. The characters for χequiv. in Table 11.6 are given by the
number of atoms in the unit cell that remain unchanged under a symmetry
operation for each class, except for χequiv.(C3), since the C3 operation takes
the k = K vector into an equivalent point, i.e., C−1

3 K = K + Km, where
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Fig. 11.9. Real (a) and reciprocal (b) lattices for a two-dimensional graphene
sheet. The lattice vectors for real and reciprocal space are indicated and the two
nonequivalent atoms with the real space unit cell are indicated in (a)

Fig. 11.10. (a) Directions of some symmetry operations of 2D graphite in the direct
space. (b) Directions of some symmetry operations of 2D graphite in the reciprocal
space

Table 11.6. Γ equiv. for the K point in graphite (D3h)

D3h E 2C3 3C2 σh 2S3 3σv

χequiv.
K 2 −1 0 2 −1 0 Γ equiv.

K = E′
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Fig. 11.11. A single graphene sheet. The solid and open dots indicate the A and B
sublattices, respectively. The arrows show directions of the atomic displacements for
the six stationary phonon modes of the graphene sheet at the K point. The labels
of the phonon modes are identified in the text. The dotted and crossed points in
(c) and (f) represent the vectors pointing in and out of the image plane. The large
and small points indicate the magnitudes of the vectors equal to

√
2 and 1/

√
2,

respectively

Km is a reciprocal lattice vector. The equivalence transformation is therefore
given by (11.19), where j = 1, 2, and r1 = (a/2)[(

√
3/3)x̂ + ŷ] and r2 =

(a/2)[(−√3/3)x̂ + ŷ]. Considering the K point at K = (b1 + b2)/3), and
considering C−1

3 K = K − b1 and from (11.19) we have for the equivalence
representation (see Sect. 11.4)

χequiv.(C3) = eib1·r1 +eib2·r2 = e−i4π/3 +e−i2π/3 = 2 cos 2π/3 = −1 , (11.28)

as shown in Table 11.6 and a similar result follows for S−1
3 K. Finally,

Γlat.mod. = Γ equiv. ⊗ Γvec. = E′ ⊗ (A
′′
2 + E′) = A

′
1 +A

′
2 + E′ + E′′ . (11.29)

There are four eigenvalues at the K point; two are nondegenerate and two are
doubly degenerate.
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The eigenvectors can be found from the projector algebra (see Sect. 4.3)
by introducing a phase factor relating unit cells with translations by Rn =
n1a1 + n2a2, according to (11.21).

Figure 11.11 shows the normal mode displacements in the graphene sheet
at the K point. When considering the D3h symmetry and introducing the K
point phase factor, the K point wavefunction periodicity is described by a
supercell of six carbon atoms, as shown in gray in Fig. 11.11 (the lattice dis-
tortions caused by the K point phonon mode is incommensurate with the two-
atom unit cell). The A′1 and A′2 phonon modes shown in Figs. 11.11 (b) and (e)
obey C6 symmetry, while the E′ and E′′ phonon modes in Figs. 11.11 (a), (d),
and (f) have the C2 rotation axes perpendicular to the hexagonal plane. In
contrast, the point group D3h contains the C3 rotation axis, but neither the
C6 nor C2 rotation axes. This contradiction is resolved by considering that
the complex travelling phonon modes at the K (K′) point only have the C3

rotation axes. Time-reversal symmetry mixes the complex travelling phonon
modes at the K and K′ points into real stationary phonon modes that obey
D6h symmetry. The stationary phonon modes shown in Figs. 11.11 thus pre-
serve the C6 and C2 rotation axes.

11.5 Phonons in Te
and α-Quartz Nonsymmorphic Structures

In this section we discuss phonon modes for tellurium (with 3 atoms/unit
cell). We then show how the lattice modes for this nonsymmorphic structure
can be used to obtain the lattice modes for α-quartz (with 9 atoms/unit cell)
which has the same space group as Te.

11.5.1 Phonons in Tellurium

The structure for Te (space groups P3121′, #152; P3221′, #154) is a spi-
ral nonsymmorphic space group as shown in Fig. 11.12. There are three Te
atoms/unit cell and these Te atoms are at levels 0, c/3 and 2c/3. The struc-
ture for right-handed Te shows a right-handed screw when viewed along +ẑ.
When the atoms are arranged with the opposite screw orientation, we have

Table 11.7. Character Table for the D3 Point Group

D3 (32) E 2C3 3C′2

x2 + y2, z2 A1 1 1 1

Rz, z A2 1 1 −1

(xz, yz)

(x2 − y2, xy)

}
(x, y)

(Rx, Ry)

}
E 2 −1 0
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Fig. 11.12. (a) Model for the Te crystal structure showing the overall structure,
(b) the structure of one chain from the side view, and (c) the top view of three
adjacent chains Fix labels a, b, c on figure
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Table 11.8. Characters for the Equivalence Transformation for the Group of the
Wave Vector at k = 0 for Tellurium

{E|0} 2{C3|τ} 3{C2′ |0}
χequiv. 3 0 1 Γ equiv. = A1 + E

left-handed Te. For this structure threefold rotations about the c axis must
be combined with a translation τ = (c/3)(001) to leave the crystal invariant.
The three twofold symmetry axes normal to the threefold axis do not require
translations. The appropriate point group at k = 0 is D3 and the charac-
ter table is given in Table 11.7. Note that mirror planes are not symmetry
operations.

Following the same procedure as was used for the nonsymmorphic diamond
structure (see Sect. 11.3.3), we find Γ equiv. by considering the number of sites
within the unit cell that remain invariant (or transform into the identical site
in a neighboring unit cell, see Table 11.8). To find the lattice vibrations, we
note that the vector transforms as A2 + E. This allows us to separate out
the lattice modes in the z-direction from those in the x − y plane. For the
z-direction

Γ equiv. ⊗ Γvec. z = (A1 + E)⊗A2 = A2 + E , (11.30)

where the A2 mode corresponds to pure translations in the z direction at
k = 0. The phonon dispersion curves for tellurium have been measured [61]
by inelastic neutron scattering and the results along the high symmetry axes
are shown in Fig. 11.13.

We show the normal modes with A2 and E symmetry in Fig. 11.14. For
the in-plane motion, the symmetries are obtained by computing:

Γ equiv. ⊗ Γvec. (x,y) = (A1 + E)⊗ E = E + (A1 +A2 + E) . (11.31)

The translational mode in the x, y directions transforms as E. The in-plane
modes at k = 0 are shown in Fig. 11.15. The A2 and E modes are IR active,
and the A1 and E modes are Raman-active.

Since the Te structure has a screw axis, right and left circularly polarized
light are of importance for optical experiments. For linear polarization, we
consider the E vector for the light in terms of x, y, z components. For circular
polarization we take the linear combinations (x + iy) and (x − iy). From the
character table, we note that (x+ iy)(x− iy) = x2 + y2 transforms as A1 and
the dipole moment u is related to the polarizability tensor

↔
α by

⎛
⎜⎝

(ux + iuy)/
√

2

(ux − iuy)/
√

2
uz

⎞
⎟⎠ =

⎛
⎜⎝
α11 α12 α13

α21 α22 α23

α31 α32 α33

⎞
⎟⎠
⎛
⎜⎝

(Ex + iEy)/
√

2

(Ex − iEy)/
√

2
Ez

⎞
⎟⎠ , (11.32)
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Fig. 11.13. Phonon modes for Te shown on the left along several high symmetry
directions as indicated on the right (A.S. Pine and G. Dresselhaus, PRB Vol 4, p
356 (1971))

Fig. 11.14. Normal modes for Te for z-axis vibrations. The A2 mode (a) is a pure
translational mode along the z-axis. The E mode has displacements along z which
have phase differences of ω = exp(2πi/3) with respect to one another. One partner
of the E mode is shown explicitly in (b). For the other partner, the displacements
correspond to the interchange of ω ↔ ω2, yielding the complex conjugate (c.c.) of
the mode that is shown



266 11 Applications to Lattice Vibrations

Fig. 11.15. In-plane normal modes for Te. The A1 normal mode (a) is a breathing
mode, while the A2 mode (b) is a rocking mode corresponding to rotations of the
three tellurium atoms for each half cycle of the vibration. The two E modes (c, d) can
be described as a breathing and a rocking mode with phase relations ω = exp(2πi/3)
between each of the atoms as indicated (with the complex conjugate partner in each
case obtained by the interchange of ω ↔ ω2)

so that the polarizability tensor for A1 modes will have the form

↔
αA′1 =

⎛
⎜⎝
a 0 0
0 a 0
0 0 0

⎞
⎟⎠

for in-plane motion with the Raman tensor having components (Ei
+E

s− +
Ei
−E

s
+)α(A1). The polarizability tensor for the z-axis motion is

↔
αA′′1 =

⎛
⎜⎝

0 0 0
0 0 0
0 0 b

⎞
⎟⎠

and has A1 symmetry with the Raman tensor having components Ei
zE

s
zα(A1).

Finally for general A1 motion, the polarizability tensor is written as
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↔
αA1 =

⎛
⎜⎝
a 0 0
0 a 0
0 0 b

⎞
⎟⎠ . (11.33)

To find the energy for aligning the dipole moment in an electric field, we need
to take the dot product of the dipole moment with the electric field

E∗ · u =
(
[Ex − iEy] /

√
2, (Ex + iEy) /

√
2, Ez

)
·

⎛
⎜⎝

(ux + iuy)/
√

2

(ux − iuy)/
√

2
uz

⎞
⎟⎠ ,

so that

E∗ · u = (E−, E+, Ez) ·
⎛
⎝u+

u−
uz

⎞
⎠

= E−u+ + E+u− + Ezuz = Exux + Eyuy + Ezuz = real quantity .

For the electromagnetic (infrared) interaction, the pertinent symmetries are
E+u−(E) + E−u+(E) for in-plane motion and Ezuz(A2) for z-axis motion.

In considering the Raman effect, we find the energy of the Raman in-
teraction in terms of E∗· ↔α ·E which, when properly symmetrized becomes
1/2

[
E∗· ↔α ·E + E· ↔α∗ ·E∗

]
. Thus for the Raman mode with A1 symmetry,

the induced dipole u+ has the same sense of polarization as the incident
electric field. However, the energy involves E∗

i and Es or alternatively E∗
s

and Ei to yield the combination (1/2)(Ei
+E

s
− + Ei

−E
s
+) which transforms as

(x+ iy)(x− iy) = x2 + y2, as desired for a basis function with A1 symmetry.
For Raman modes with E symmetry we can have a dipole moment

uz induced by E+, leading to the combination of electric fields E∗zE+.
To have a symmetric polarizability tensor, we must also include the term
(E∗zE+)∗ = E−Ez since the energy must be unchanged upon interchange of
electric fields E ↔ E∗. Thus the polarizability and Raman tensors must be
of the form

↔
αE,1 =

⎛
⎜⎝

0 0 0
0 0 r∗

r 0 0

⎞
⎟⎠ , and

{
Ei

+E
s
zα−(E) + Ei

−E
s
zα+(E)

or Ei
zE

s
+α−(E) + Ei

zE
s
−α+(E) .

(11.34)

The partner of this polarizability tensor with E symmetry will produce the
displacement uz from an electric field displacement E− yielding

↔
αE,2 =

⎛
⎜⎝

0 0 r

0 0 0
0 r∗ 0

⎞
⎟⎠ . (11.35)
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The other lattice mode for Te with E symmetry (denoted here by E′) pro-
duces a dipole moment u+ from an electric field E−. This however involves
E−(E+)∗ = E2− for the incident and scattered electric fields so that the
polarizability tensor in this case is

↔
αE′,1 =

⎛
⎜⎝

0 s 0
0 0 0
0 0 0

⎞
⎟⎠ ; basis function x2

− (11.36)

and the corresponding partner is

↔
αE′,2 =

⎛
⎜⎝

0 0 0
s∗ 0 0
0 0 0

⎞
⎟⎠ ; basis function x2

+ . (11.37)

The Raman tensor for the E′ mode has the form Ei
+E

s
+α+(E)+Ei

−E
s
−α−(E).

We can relate these partners of the E′ modes to the basis functions of the
character table for D3 by considering the basis functions for the partners

Partner #1:
1
2
(x− iy)2 = x2

−

Partner #2:
1
2
(x+ iy)2 = x2

+ . (11.38)

By taking the sums and differences of these partners we obtain

x2
+ + x2

− =
1
2
(x+ iy)2 +

1
2
(x− iy)2 = (x2 − y2)

x2
+ − x2

− =
1
2
(x+ iy)2 − 1

2
(x− iy)2 = 2xy , (11.39)

which form a set of partners listed in the character table for D3.

11.5.2 Phonons in the α-Quartz Structure

We will now examine the lattice modes of α-quartz (space group D4
3, #152,

P3121 for the right-hand crystal orD5
3, #153, P3212 for the left-hand crystal).

We will use this example as a means for showing how lattice modes for crystals
with several atoms per unit cell (such as α-quartz) can be built up from
simpler units, in this case the tellurium structure discussed in Sect. 11.5.1.
In Sect. 11.6 we discuss the effect of an applied axial compressive force upon
lattice vibrations in α-quartz.

The spiral structure of α-quartz about the z-axis is shown in Fig. 11.16(a)
where each solid ball represents a SiO2 unit, and the diagram on the left
is identical to that for tellurium (see Fig. 11.12(a)). The projection of the
nine atoms in SiO2 onto the basal plane is shown in Fig. 11.16(b). The Si
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atoms (1, 4 and 7) occupy positions at levels 0, c/3, 2c/3, respectively (as for
tellurium). The oxygen atoms (9, 5, 3, 8, 6 and 2) occupy positions at levels
c/9, 2c/9, 4c/9, 5c/9, 7c/9 and 8c/9, respectively (these sites are of course
not occupied in tellurium). Thus both Te and α-quartz are described by the
same space group, but have different site symmetries. Figure 11.16 shows the
right-handed tellurium structure.

There are three molecular SiO2 units per unit cell giving rise to nine atoms
per unit cell or 27 lattice branches of which 24 are optic modes. By examining
the atom locations in Fig. 11.16(b), we can determine the point group symme-
try of α-quartz. The z-axis is a threefold axis of rotation when combined with
the translation τ = (c/3)(001). In addition there is a twofold axis from the
center to each of the silicon atoms. The symmetry elements are the same as
for tellurium discussed in Sect. 11.5.1. In order to determine the normal modes
of vibration, we first find the characters for the transformation of the atomic
sites. It is convenient to make use of the results for tellurium, noting that the
silicon atoms in quartz occupy the same sites as in tellurium. In Table 11.9
we obtain the lattice modes in α-quartz at k = 0.

The lattice modes for the silicon are identical with those found previously
for Te, so that part of the problem is already finished. For the six oxygens we
have

Γlat.mod., z = (A1 +A2 + 2E)⊗A2 ; for z motion

Γlat.mod., x,y = (A1 +A2 + 2E)⊗ E ; for x, y motion .

(a) (b)

Fig. 11.16. Structure of (a) right-handed α-quartz and (b) the projection of the
atoms on the basal plane of α-quartz. Atoms #1, 4, 7 denote Si and the other
numbers denote oxygen atoms
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Table 11.9. Characters for the Equivalence Transformation for α-quartz

{E|0} 2{C3|τ } 3{C′2|0}
Γ equiv.

Si 3 0 1 = A1 + E

Γ equiv.
oxygen 6 0 0 = A1 + A2 + 2E

Fig. 11.17. Normal modes along the z-direction for the six oxygens in the α-quartz
crystal. The A2 mode is a uniform translation while the A1 mode is a rocking of
the oxygens around the Si. The E modes are related to the A2 and A1 modes by
combining the 1, ω, ω2 phases with the translational and rocking motions

Carrying out the direct products we obtain

Γlat.mod., z = A2 +A1 + 2E ; for z motion

Γlat.mod., x,y = 2A1 + 2A2 + 4E ; for x, y motion , (11.40)

where we note that for the D3 point group E ⊗ E = A1 +A2 + E.
The corresponding z-axis normal modes A2, A1, E and E′ for the six

oxygens are shown in Fig. 11.17. The normal mode A2 is clearly a uniform
translation of the six oxygens, while the A1 mode is a rocking of the two
oxygens on either side of a silicon atom (one going up, while the other goes
down). The twofold E mode is derived from A2 by introducing phases 1, ω, ω2

for each of the pairs of oxygens around a silicon atom; the complex conjugateE
mode is obtained from the one that is illustrated by the substitution ω ↔ ω2.
Finally the E′ mode is obtained from the A1 mode in a similar way as the
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Fig. 11.18. Normal modes along the z-direction for the three SiO2 groups in α-
quartz. Here the motions of the Si atoms are combined with those of the oxygens

Fig. 11.19. Normal modes in the x–y plane for the six oxygens in the α quartz
crystal. In addition, the A1 tangential breathing mode, the A2 radial breathing
breathing mode, and the A2 rocking mode have corresponding E modes, with phases
1, ω, ω2 for the three SiO2 units, each having two partners related by ω ↔ ω2. In the
crystal, all modes with the same symmetry are coupled, so that the actual normal
mode is an admixture of the modes pictured here
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E mode is obtained from the A2 mode. In identifying the symmetry type for
these normal modes, we note the effect of symmetry operation C′2.

We now combine the z motion for the silicons (symmetries A2+E) with the
z motion for the oxygens (symmetries A1 +A2 +2E) to obtain A1 +2A2 +3E
for SiO2. The resulting normal mode patterns are shown in Fig. 11.18. The
z-axis translational mode for the six oxygens combine either in-phase or out of
phase to form the two normal modes with A2 symmetry. For the mode with A1

symmetry, the silicon atoms remain stationary. Introducing the phases 1, ω,
ω2 for each SiO2 group gives the three E normal modes along the z-direction
in α-quartz.

For the xy motion, the six oxygens form lattice modes with symmetries
2A1 + 2A2 + 4E and the normal mode patterns are shown in Fig. 11.19.

The next step is to combine the motion of the silicon (A1 +A2 +2E) with
that of the two oxygens (2A1 + 2A2 + 4E) for the in-plane modes, and this
step is the focus of Problem11.2.

11.6 Effect of Axial Stress on Phonons

In general, an external perturbation, when applied to a crystal, reduces the
symmetry of the crystal. The fundamental principle used to deduce this lower
symmetry is called the Curie principle which states that only those symmetry
operations are allowed which are common to both the unperturbed system and
to the perturbation itself. This condition restricts the new symmetry group
to a subgroup common to the original group.

Fig. 11.20. The symmetry of the Polarizability Tensors for Raman Active Modes
of α-quartz, for stress applied along the threefold axis, and along a twofold axis
perpendicular to the threefold axis
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When a homogeneous axial compression is applied to a crystal, the re-
sulting strain is described by a symmetric tensor of the second rank. The
strain tensor can be represented by an ellipsoid which has at least D2h point
group symmetry; if two of its major axes are equal, the ellipsoid acquires rota-
tional symmetry about the third axis, and the point group symmetry is D∞h,
whereas, if all three axes are equal it becomes a sphere with three-dimensional
continuous rotation and reflection symmetry. In order to determine the sym-
metry operations of the strained crystal it is necessary to know the orientation
of the strain ellipsoid relative to the crystallographic axes. An alternative pro-
cedure is to treat the stress itself as the imposed condition and to find the
symmetry elements common to the unstrained crystal and to the symmetry
of the stress tensor.

Using the symmetry properties of the stress tensor is particularly simple
when the external perturbation is an axial compression. In this case the stress
ellipsoid has D∞h point group symmetry and can be conveniently represented
by a right circular cylinder with its center coinciding with the center of the
crystal and its axis of revolution along the direction of the force. The symmetry
operations common to the unstrained crystal and to the cylinder representing
the stress can then be easily determined by inspection.

As an illustrative case, consider the point group D3, the point group of
α-quartz (Sect. 11.5.2). The symmetry operations of D3 are a threefold axis of
rotation along the z-axis and three twofold axes perpendicular to the z-axis,
one of which is taken to be the x-axis. If the force, F , is applied along the
z-direction, all of the operations of the group are common to the symmetry of
the stress and hence the symmetry remainsD3. If, however, the force is applied
along the x direction, the only remaining symmetry operation is C2. Similarly,
if the force is applied along the y-axis, the only remaining symmetry operation
is again the twofold axis of rotation along the x-axis and the symmetry is
reduced to the point group C2. If the force is in a direction other than along z
or parallel or perpendicular to a two-fold axis, the crystal symmetry is reduced
to C1.

Table 11.10. Character table for group C2 pertinent to uniaxial deformation ap-
plied to D3 symmetry group. The compatibility relations among their irreducible
representations are also given

C2 (2) E C2

x2, y2, z2, xy Rz, z A 1 1

xz, yz
x, y

Rx, Ry

}
B 1 −1

representations of D3 A1 1 1 A

A2 1 −1 B

E 2 0 A+B
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Once the reduced symmetry of the crystal in the presence of the external
perturbation is determined, the correlation between the irreducible representa-
tions of the two groups can be obtained. From such a correlation, the removal
of the degeneracy of a particular energy level can be immediately deduced as
illustrated below for the force applied along the twofold axis.

This group theoretical analysis thus predicts that the Raman lines of
E symmetry should split and the Raman inactive A2 mode in D3 symme-
try should become Raman-active in C2 symmetry. We note that the basis
functions that are used for C2 are x, y, z while for D3, the combinations
(x + iy, x − iy, z) are used. The form of the polarizability tensors for the
Raman-active modes in D3 and C2 point group symmetries are given in
Fig. 11.20, and are further considered in Problem 11.2.

Selected Problems

11.1. This problem involves the lattice modes of a three-dimensional graphite
crystal (see Fig. C.1).

(a) What are the symmetry operations for 3D crystalline graphite, and how
do they differ from those for 2D graphite (see Sect. 11.4.3)?

(b) Why is the space group #194 appropriate for 3D hexagonal graphite,
rather than #191, or #192, or #193?

(c) Find the number of lattice modes for 3D graphite at k = 0. What are
their symmetries and what are their mode degeneracies?

(d) What are the normal mode displacements for each of these lattice modes
at k = 0?

(e) Find the mode symmetries and compatibility relations for the modes in
the Γ − T − K direction (see Fig. 11.13). Be aware that the K point is
a special point where the relation Rαk = k+Km occurs (see Table C.27).

(f) Which modes in (e) are IR active, Raman active? What are the polariza-
tions of the Raman active modes?

(g) Find the eigenvectors at the K point for 3D graphite.
(h) Compare the results for two-dimensional and three-dimensional graphite

and discuss the difference in behavior in terms of the connection between
symmorphic and nonsymmorphic groups.

11.2. Use the results given in Sect. 11.5.2 for the lattice modes of crystalline
SiO2 to do this problem.

(a) Find the normal modes for the in-plane vibrations of crystalline SiO2

obtained by combining the lattice modes for the three Si atoms and for
the six oxygen atoms given in Sect. 11.5.2. How many have A1, A2 and E
symmetry? On the basis of your results explain the normal mode patterns
given in Fig. 11.21 for the modes with A1 and A2 symmetry, and discuss
the normal mode patterns for the E symmetry modes.



11.6 Effect of Axial Stress on Phonons 275

Fig. 11.21. The in-plane normal modes for α-quartz obtained by superposition of
the normal modes for the oxygens and the silicons. Corresponding to each of the one-
dimensional modes shown here are two-dimensional E modes with phases 1, ω, ω2

for the three SiO2 units, with the two partners related by ω ↔ ω2

(b) Suppose that a stress is applied along the c-axis, what is the effect on
the normal mode patterns? Now suppose that a stress is applied along
a twofold axis going through a Si atom, what is the effect on the normal
mode patterns?

11.3. Consider the crystal structure in the diagram for Nb3Sn, a prototype
superconductor with the A–15 (or β–W) structure used for high field super-
conducting magnet applications [54, 76].

(a) How many lattice modes are there at k = 0, what are their symmetries
and what are their degeneracies?

(b) What are the normal mode displacements for each of these lattice modes?
(c) Which modes are IR active, Raman active? What are the polarizations of

the Raman-active modes?

11.4. Tin oxide (SnO2 with space group #136) is an important electronic
material [54, 76].

(a) Find the Wyckoff positions from the site positions of the Sn and O atoms
in the unit cell. Find Γ equiv. for the SnO2 structure.

(b) Find the lattice modes at k = 0, their symmetries, degeneracies and the
normal mode patterns.

(c) Indicate the IR-activity and Raman activity of these modes.



276 11 Applications to Lattice Vibrations

11.5. Bromine forms a molecular crystal [54, 76].

(a) What is the appropriate space group? What are the Wyckoff positions for
each of the distinct bromine atoms within the unit cell.

(b) Find the lattice modes at k = 0, their symmetries, degeneracies and the
normal mode patterns.

(c) Indicate the IR-activity and Raman activity of these modes.

11.6. Carbon nanotubes are an interesting system where first-order Raman
activity can be based on selection rules for the electron–phonon interaction [8].
The electronic states usually belong to two-dimensional irreducible represen-
tations (Eμ) and five types of allowed first-order resonance Raman scattering
processes between E(v)

μ and E(c)
μ′ can be obtained

(I)E(v)
μ

Z−→ E(c)
μ

A−→ E(c)
μ

Z−→ E(v)
μ ,

(II)E(v)
μ

X−→ E
(c)
μ±1

A−→ E
(c)
μ±1

X−→ E(v)
μ ,

(III)E(v)
μ

Z−→ E(c)
μ

E1−→ E
(c)
μ±1

X−→ E(v)
μ ,

(IV)E(v)
μ

X−→ E
(c)
μ±1

E1−→ E(c)
μ

Z−→ E(v)
μ ,

(V)E(v)
μ

X−→ E
(c)
μ±1

E2−→ E
(c)
μ∓1

X−→ E(v)
μ , (11.41)

where A, E1, and E2 denote phonon modes of different Γ -point symmetries
of μ = 0, μ = ±1, and μ = ±2, respectively. The XZ plane is parallel
to the substrate on which the nanotubes lie, the Z axis is directed along the
nanotube axis, and the Y -axis is directed along the light propagation direction,
so that the Z and X in (11.41) stand for the light polarized parallel and
perpendicular to the nanotube axis, respectively. The five processes of (11.41)
result in different polarization configurations for different phonon modes: ZZ
and XX for A, ZX and XZ for E1, and XX for E2.

(a) Derive the selection rules in (11.41) explicitly.
(b) The Raman active modes are those transforming like quadratic functions

(XX,Y Y, ZZ,XY, Y Z,ZX). The selection rules associated with the first
and third arrows in (11.41) come basically from selection rules for the
electron–photon interaction. Show that the selection rules for different
polarizations obtained in (11.41) are in perfect agreement with the basis
functions analysis.

11.7. Show that the Raman and infrared active modes in chiral and achiral
carbon nanotubes are given by the following symmetries [8]:
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ΓRaman
zigzag = 2A1g + 3E1g + 3E2g → 8 modes ,

Γ infrared
zigzag = A2u + 2E1u → 3 modes ,

ΓRaman
armchair = 2A1g + 2E1g + 4E2g → 8 modes ,

Γ infrared
armchair = 3E1u → 3 modes ,

ΓRaman
chiral = 3A1 + 5E1 + 6E2 → 14 modes ,

Γ infrared
chiral = A2 + 5E1 → 6 modes . (11.42)


