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Space Groups in Reciprocal Space

and Representations

When moving from molecules to crystals, the physical properties will be de-
scribed by dispersion relations in reciprocal space, rather than by energy lev-
els. One of the most important applications of group theory to solid state
physics relates to the symmetries and degeneracies of the dispersion relations,
especially at high symmetry points in the Brillouin zone. As discussed for the
Bravais lattices in Sect. 9.2, the number of possible types of Brillouin zones is
limited. The reciprocal space for Bravais lattices is discussed in Sect. 10.1 and
this topic is also discussed in solid state physics courses [6, 45].

The classification of the symmetry properties in reciprocal space involves
the group of the wave vector, which is the subject of this chapter. The group
of the wave vector is important because it is the way in which both the
point group symmetry and the translational symmetry of the crystal lattice
are incorporated into the formalism that describes the dispersion relations of
elementary excitations in a solid. Suppose that we have a symmetry operator
P̂{Rα|τ} based on the space group element {Rα|τ} that leaves the periodic
potential V (r) invariant,

P̂{Rα|τ}V (r) = V (r) . (10.1)

The invariance relation of (10.1) has important implications on the form of the
wave function ψ(r). In particular if we consider only the translation operator
P̂{ε|τ} based on the translation group elements {ε|τ}, we have the result

P̂{ε|τ}ψ(r) = ψ(r + τ ) . (10.2)

Within this framework, we can prove Bloch’s theorem in Sect. 10.2.2, and then
we go on in Sect. 10.3 to determine the symmetry of the wave vector. We then
discuss representations for symmorphic and nonsymmorphic space groups and
illustrate the group of the wave vector. In Sect. 10.6 we consider the group of
the wave vector in some detail for the simple cubic lattice and then we make
a few comments to extend these results for the simple cubic lattice to the
face centered and body centered cubic structures. The compatibility relations



210 10 Space Groups in Reciprocal Space and Representations

leading to the formation of branches in the dispersion relations are discussed
(Sect. 10.7), illustrated by the same three cubic space groups as in Sect. 10.6.
Finally, the group of the wave vector is considered for the nonsymmorphic
diamond lattice in Sect. 10.8.

10.1 Reciprocal Space

Definition 23. The set of all wave vectors Km that yield plane waves with
the periodicity of a given Bravais lattice defines its reciprocal lattice, and the
Km are called reciprocal lattice vectors.

The relation
eiKm·(r+Rn) = eiKm·r (10.3)

holds for any r, and for all Rn and Km defining the Bravais lattice in real
space and reciprocal space, respectively, where the reciprocal lattice is charac-
terized by the set of wavevectors Km satisfying

eiKm·Rn = 1 . (10.4)

Considering Rn =
∑
niai and Km =

∑
mjbj (i, j = 1, 2, 3), where ai and bj

are, respectively, the primitive translation vector and the primitive reciprocal
lattice vector for the unit cells of a space lattice, then

bj · ai = 2πδij (10.5)

defines the orthonormality relation satisfying (10.4).
The more general ortho-normality relation for a general lattice vector Rn

and a general reciprocal lattice vector Km will be given by

Rn ·Km = 2πNnm = 2πN1 , (10.6)

where Nnm = N1 is an integer depending on n,m.

Table 10.1. Summary of the real and reciprocal lattice vectors for the five two-
dimensional Bravais lattices (see Sect. 9.3)

translation vectors reciprocal lattice vectors

type a1 a2 b1 b2

oblique, p (a1, 0) a2(cos θ, sin θ) (2π/a1)(1,− cot θ) (2π/a2)(0, csc θ)

rectangular, p (a1, 0) (0, a2) (2π/a1)(1, 0) (2π/a2)(0, 1)

rectangular, c (a1/2, a2/2) (−a1/2, a2/2) 2π(1/a1, 1/a2) 2π(−1/a1, 1/a2)

square, p (a, 0) (0, a) (2π/a)(1, 0) (2π/a)(0, 1)

hexagonal, p (0,−a) a(
√

3/2, 1/2) (2π/a)(1/
√

3,−1) (2π/a)(2/
√

3, 0)
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To illustrate the primitive translation vectors of the unit cells in real and
reciprocal space for the Bravais lattices, we list in Table 10.1 the primitive
translation vectors and the corresponding reciprocal lattice vectors for the
five two-dimensional Bravais lattices based on (10.5). The vectors a1 and a2

for these 2D lattices are expressed in terms of unit vectors along appropriate
directions of the five Bravais lattices, and a and b are lattice constants. For
three-dimensional space groups, there are three unit vectors ai, and three unit
vectors bj in k-space, using the space group notation. The Brillouin zones for
several three-dimensional space groups can be found in Appendix C and in
the literature [50].

10.2 Translation Subgroup

For the translation subgroup T which is a subgroup of the space group G, con-
sider the translation operator P̂{ε|τ} based on the translation group elements
{ε|τ}, yielding the result

P̂{ε|τ}ψ(r) = ψ(r + τ ) , (10.7)

but since the translation operations all commute with one another, the trans-
lations form an Abelian group.

Definition 24. Since the translation operation τ can be written in terms of
translations over the unit vectors ai

τ =
3∑

i=1

niai ,

we can think of the translation operators in each of the ai directions as com-
muting operators:

{ε|τ} = {ε|τ1}{ε|τ2}{ε|τ3} , (10.8)

where τ i = niai. The real space lattice vectors produced by the translation
operator are denoted in Sect. 10.1 by Rn.

10.2.1 Representations for the Translation Group

The commutativity of the {ε|τ i} operations in (10.8) gives three commuting
subgroups. It is convenient to use periodic boundary conditions and to relate
the periodic boundary conditions to cyclic subgroups (see Sect. 1.3), so that
{ε|τ 1}N1 = {ε|τ 2}N2 = {ε|τ 3}N3 = {ε|0}, and Ni is the number of unit
cells along τ i. In a cyclic subgroup, all symmetry elements commute with one
another, and therefore the subgroup is Abelian and has only one-dimensional
irreducible matrix representations. Furthermore, the number of irreducible
representations of the cyclic subgroup is equal to the number of elements h
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in the group, and each element is in a class by itself. Since {ε|τ i}Ni = {ε|0},
the irreducible representation for the cyclic group can be written as a set of
matrices which are phase factors or characters of the form exp(ikiniai), and
are the Ni roots of unity. Here ki = 2πmi/Li (where mi is an integer and Li is
the length of the crystal in direction ai) defines the irreducible representation,
and there are N1N2N3 ∼ 1023 of such irreducible representations. In this
context, the wave vector k serves as a quantum number for the translation
operator.

10.2.2 Bloch’s Theorem and the Basis Functions
of the Translational Group

Theorem. If an eigenfunction ψk transforms under the translation group ac-
cording to the irreducible representation labeled by k, then ψk(r) obeys the
relation

P̂{ε|τ}ψk(r) = ψk(r + τ ) = eik·τψk(r) (10.9)

and ψk(r) can be written in the form

ψk(r) = eik·ruk(r) , (10.10)

where uk(r + τ ) = uk(r) has the full translational symmetry of the crystal.

Proof. Since the translation group is Abelian, all the elements of the group
commute and all the irreducible representations are one-dimensional. The re-
quirement of the periodic boundary condition can be written as

{ε|τ 1 +NL1} = {ε|τ 1} , (10.11)

where N is an integer and L1 is the length of the crystal along basis vector a1.
This results in the one-dimensional matrix representation for the translation
operator τ i = niai

Dk1(n1a1) = eik1n1a1 = eik1τ 1 (10.12)

since
P̂Rψk(r) = Dk(R)ψk(r) , (10.13)

where R denotes a symmetry element k1 = 2πm1/L1 corresponds to the m1th
irreducible representation and m1 = 1, 2, . . . , (L1/a1). For each m1, there is
a unique k1, so that each irreducible representation is labeled by either m1 or
k1, as indicated above.

We now extend these arguments to three dimensions. For a general trans-
lation

τ =
3∑

i=1

niai , (10.14)

the matrix representation or character for the (m1m2m3)th irreducible repre-
sentation is
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Dk1(n1a1)Dk2(n2a2)Dk3(n3a3) = eik1n1a1eik2n2a2eik3n3a3 = eik·τ , (10.15)

since
{ε|τ} = {ε|τ1}{ε|τ2}{ε|τ3} . (10.16)

Thus our basic formula P̂Rψj =
∑

α ψαD(R)αj yields

P̂{ε|τ}ψ(r) = ψ(r)eik·τ = eik·τψ(r) = ψ(r + τ ) , (10.17)

since the representations are all one-dimensional. This result is Bloch’s the-
orem where we often write τ = Rn in terms of the lattice vector Rn. This
derivation shows that the phase factor eik·τ is the eigenvalue of the translation
operator P̂{ε|τ}. �
Because of Bloch’s theorem, the wave function ψ(r) can be written in the
form

ψk(r) = eik·ruk(r) , (10.18)

where uk(r) exhibits the full translational symmetry of the crystal. This result
follows from:

ψk(r + Rn) = eik·(r+Rn)uk(r + Rn) = eik·Rn
[
eik·ruk(r)

]
, (10.19)

where the first equality in (10.19) is obtained simply by substitution in (10.18)
and the second equality follows from Bloch’s theorem. In these terms, Bloch’s
theorem is simply a statement of the translational symmetry of a crystal.

The Bloch functions are the basis functions for the translation group T .
The wave vector k has a special significance as the quantum number of transla-
tion and provides a label for the irreducible representations of the translation
group. If the crystal has a length Li on a side so that n0 different lattice
translations can be made for each direction ai, then the number of k vectors
must be limited to

kx, ky, kz = 0,± 2π
n0a

,± 4π
n0a

, . . . ,±π
a

(10.20)

in order to insure that the number of irreducible representations is equal to the
number of classes. Since the translation group is Abelian, every group element
is in a class by itself, so that the number of irreducible representations must
equal the number of possible translations. Since the number of translation
operators for bulk crystals is very large (∼ 1023), the quantum numbers for
translations are discrete, but very closely spaced, and form a quasi-continuum
of points in reciprocal space. For nanostructures, the number of translation
operations can be quite small (less than 100) and some unusual quantum size
effects can then be observed.

We note that all of these k-vectors are contained within the first Brillouin
zone. Thus, if we consider a vector in the extended Brillouin zone k + Km,
where Km is a reciprocal lattice vector, the appropriate phase factor in Bloch’s
theorem is

ei(k+Km)·Rn = eik·Rn , (10.21)

since Km ·Rn = 2πN where N is an integer.
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10.3 Symmetry of k Vectors
and the Group of the Wave Vector

When we choose a given eigenstate ψk(r) of the crystal potential, except for
eigenstates at the Γ point (k = 0), the basis function will exhibit a modulation
described by the wavevector k, and this modulation will decrease the crystal
symmetry. In this case, we work with the group of the wave vector, that is
a subgroup of the space group G. To introduce this concept, we consider
in Sect. 10.3.1 the action of a point group symmetry operator on a lattice
vector and on a reciprocal lattice vector. Next we discuss the group of the
wave vector and the star of a wave vector, including an example of these
concepts in terms of the two-dimensional square lattice (Sect. 10.3.2). Finally
in Sect. 10.3.3 we consider the effect of translations and point group operations
on Bloch functions, thereby clarifying the degeneracies introduced by the point
group symmetries of crystal lattices.

10.3.1 Point Group Operation in r-space and k-space

The effect of a symmetry operator P̂α on a lattice vector Rn and on a recipro-
cal lattice vector Km subject to the orthogonality relation (10.6) is considered
in this section.

Let P̂α denote a symmetry operator of the point group of the crystal, then
P̂αRn leaves the crystal invariant. If Rn is a translation operator, then P̂αRn

is also a translation operator (lattice vector), since the full symmetry of the
lattice is preserved. Likewise P̂αKm is a translation operator in reciprocal
space. Since P̂αRn is a lattice vector, we can write

(P̂αRn) ·Km = 2πN2 , (10.22)

where N2 is an integer, not necessarily the same integer as N1 in (10.6). Since
α−1 is also a symmetry operator of the group, we have

(P̂−1
α Rn) ·Km = 2πN3 , (10.23)

and againN3 is not necessarily the same integer asN1 orN2. Furthermore, any
scalar product (being a constant) must be invariant under any point symmetry
operator. Thus if we perform the same symmetry operation on each member
of the scalar product in (10.23), then the scalar product remains invariant

P̂α(P̂−1
α Rn) · (P̂αKm) = 2πN3 = Rn · (P̂αKm) . (10.24)

Equations (10.22)–(10.24) lead to several results: If P̂α is a symmetry oper-
ator of a point group of a crystal, and Rn and Km are, respectively, lattice
and reciprocal lattice vectors, then P̂−1

α Rn and P̂αKm also are, respectively,
a lattice vector and a reciprocal lattice vector. Thus the effect of an operator
P̂α on a direct lattice vector Rn is equivalent to the effect of operator P̂−1

α on
the corresponding reciprocal lattice vector Km.
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10.3.2 The Group of the Wave Vector Gk and the Star of k

Definition 25. The group of the wave vector is formed by the set of space
group operations which transform k into itself, or into an equivalent k =
k + Km vector, where Km is a vector of the reciprocal lattice.

The addition of Km does not change the energy of the system since eik·Rn =
ei(k+Km)·Rn , i.e., both k and (k+Km) belong to the same translational irre-
ducible representation (see Sect. 10.2.2). Clearly, all the symmetry operations
of the space group take the point k = 0 into itself so that the space group
itself forms the group of the wave vector at k = 0. Furthermore, the group of
the wave vector for nonzone center k-vectors (k �= 0) remains a subgroup of
the space group for k = 0.

Let us now consider the action of the point group operations on a general
vector k in reciprocal space, not necessarily a reciprocal lattice vector. The
set of wave vectors k′ which are obtained by carrying out all the point group
operations on k is called the star of k. If k is a general point in the Brillouin
zone, there will be only one symmetry element, namely the identity, which
takes k into itself and in this case the wave functions describing electron
states only see the translational symmetry {ε|τ} of the space group. On the
other hand, if the k-vector under consideration lies on a symmetry axis or
is at a high symmetry point in the Brillouin zone, then perhaps several of
the point group operations will transform k into itself or into an equivalent
k-vector k + Km.

An informative example for the formation of the group of the wave vector
for various k-vectors is provided by the two-dimensional square lattice. Here
the point group is D4 and the symmetry operations are E, C2 = 2C2

4 , 2C4,
2C′2, 2C′′2 (diagonals). The various k-vectors in the star of k are indicated in
the diagrams in Fig. 10.1 for the two-dimensional square lattice. The group
elements for the group of the wave vector in each case are indicated within the
parenthesis. The top three diagrams are for k-vectors to interior points within
the first Brillouin zone and the lower set of three diagrams are for k-vectors to
the Brillouin zone boundary. Thus the star of k shown in Fig. 10.1 is formed
by consideration of P̂αk for all operators P̂α for the point group. The group of
the wave vector is formed by those P̂α for which P̂αk = k + Km, where Km

is a reciprocal lattice vector (including Km = 0). The concepts presented in
Fig. 10.1, are reinforced in Problem10.2 for the hexagonal lattice with point
group D6.

10.3.3 Effect of Translations and Point Group Operations
on Bloch Functions

We will now consider the effect of the symmetry operations on k with re-
gard to the eigenfunctions of Schrödinger’s equation. We already know from
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Bloch’s theorem that the action of any pure translation operator P̂{ε|τ} on
wave function ψk(r) (where τ = Rn) yields a wave function eik·Rnψk(r)

P̂{ε|τ}ψk(r) = eik·τψk(r) . (10.25)

There will be as many wave functions of this functional form as there are trans-
lation vectors, each corresponding to the energy E(k). These Bloch functions
provide basis functions for irreducible representations for the group of the
wave vector. If k is a general point in the Brillouin zone, then the star of k
contains wave vectors which are all equivalent to k from a physical standpoint.
The space group for a general wave vector k will however contain only the
symmetry elements {ε|Rn}, since in this case all the k-vectors are distinct.
For a wave vector with higher symmetry, where the operations P̂βk = k+Km

transform k into an equivalent wave vector, the space group of the wave vector
contains the symmetry element {β|Rn} and the energy at equivalent k points
must be equal. If the point group of the wave vector contains irreducible rep-
resentations that have more than one dimension, then a degeneracy in the
energy bands will occur. Thus bands tend to “stick together” along high sym-
metry axes and at high symmetry points.

The effect of a point group operation on this eigenfunction is

P̂{Rα|0}ψk(r) = P̂{Rα|0}e
ik·ruk(r) , (10.26)

in which we have written the eigenfunction in the Bloch form. Since the effect
of a point group operation on a function is equivalent to preserving the form
of the function and rotating the coordinate system in the opposite sense, to
maintain invariance of scalar products we require

k · R−1
α r = Rαk · r . (10.27)

If we now define uRαk(r) ≡ uk(R−1
α r) for the periodic part of the Bloch

function and denote the transformed wave vector by k′ ≡ Rαk, then we have

P̂{Rα|0}ψk(r) = eiRαk·ruRαk(r) ≡ ψRαk(r) , (10.28)

which we will now show to be of the Bloch form by operating with the trans-
lation operator on ψRαk(r)

P̂{ε|τ}ψRαk(r) = P̂{ε|τ}[eiRαk·ruk(R−1
α r)]

= eiRαk·(r+τ )uk(R−1
α r +R−1

α τ ) . (10.29)

Because of the periodicity of uk(r) we have

uRαk(r + τ ) = uk(R−1
α r +R−1

α τ ) = uk(R−1
α r) ≡ uRαk(r) , (10.30)
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Fig. 10.1. Illustration of the star of k for various wave vectors in the Brillouin zone
of a simple 2D square lattice. The top three diagrams are for k-vectors to an interior
point in the Brillouin zone, while the bottom three diagrams are for wave vectors
extending to the Brillouin zone boundary. In each case the point group elements for
the group of the wave vector are given in parentheses

and noting the orthonormality relation (10.6) for the plane wave factor, we get

P̂{ε|τ}ψRαk(r) = eiRαk·τψRαk(r) , (10.31)

where uRαk(r) is periodic in the direct lattice. The eigenfunctions ψRαk(r)
thus forms basis functions for the Rαkth irreducible representation of the
translation group T . As we saw in Sect. 10.3.2, the set of distinct wave vectors
in k-space which can be generated by operating on one k vector by all the
symmetry elements of the point group g is called the “star of k” (see Fig. 10.1).

Considering the above arguments on symmorphic groups for simplicity,
where the point group g is isomorphic to G/T and {Rα|τ} = {ε|τ}P̂{Rα|0},
we have

P̂{Rα|τ}ψk(r) = P̂{ε|τ}P̂{Rα|0}ψk(r)

= P̂{ε|τ}ψRαk(r)

= eiRαk·τψRαk(r) . (10.32)
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Fig. 10.2. The shaded triangle ΓΛRSXΔΓ which constitutes 1/8 of the Brillouin
zone for the 2D square lattice and contains the basic wave vectors and high symmetry
points

Similarly we obtain

P̂{Rβ |τ ′}ψRαk(r) = eiRβRαk·τ ′
ψRβRαk(r) . (10.33)

Thus the set of eigenfunctions {ψRαk(r)} obtained by taking the star of k
spans the invariant subspace of the point group g since the product operation
RβRα is contained in g. If h is the order of the group g, there are h functions
in the set {ψRαk(r)}. All of these representations are completely specified by
k, but they are equally well specified by any of the k vectors in the star of k.
Although all the functions in the set {ψRαk(r)} correspond to the same energy,
we do not say that the functions ψk(r) and ψRαk(r) are degenerate. Instead
we write {ψk(r)} for all the functions in the set {ψRαk(r)} and consider the
extra point group symmetry to yield the relation E(k) = E(Rαk) for all
Rα. In this way, we guarantee that the energy E(k) will show the full point
group symmetry of the reciprocal lattice. Thus for the two-dimensional square
lattice, it is only necessary to calculate E(k) explicitly for k points in 1/8 of
the Brillouin zone contained within the sector ΓΛRSXΔΓ (see Fig. 10.2).
These statements are generally valid for nonsymmorphic groups as well.

We use the term “degeneracy” to describe states with exactly the same
energy and the same wave vector. Such degeneracies do in fact occur because
of symmetry restrictions at special high symmetry points in the Brillouin
zone and such degeneracies are called “essential” degeneracies. “Essential”
degeneracies occur only at high symmetry or special k points, while acciden-
tal (“nonessential”) degeneracies occur at arbitrary k points. “Special” high
symmetry points in the Brillouin zone are those for which

Rαk = k + Km , (10.34)

where Km is the reciprocal lattice vector including Km = 0. In the cases
where the symmetry operation yields Rαk = k+Km, then the eigenfunctions
have essential degeneracies because we now can have degenerate eigenfunc-
tions with the same energy eigenvalue at the same k vector. These essential
band degeneracies are lifted as we move away from the high symmetry points
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to a general point in the Brillouin zone. The rules governing the lifting of
these degeneracies are called compatibility relations, discussed in Sect. 10.7.

10.4 Space Group Representations

We start by saying that tables for the group of the wave vector for each unique
k vector for each of the 230 space groups have been established and are avail-
able in different references, as reviewed in Sect. 10.9. For each wavevector k,
the spacial group representations are constructed from the analysis of the
group of wavevector and of the star of k, and the use of the multiplier alge-
bra, that we briefly discuss below. The representations will be square matrices
with dimension (�q)× (�q), i.e., � × � blocks of q × q matrices, where � is the
number of k vectors in the star, and q is defined by the representations in the
group of the wavevector. Each line (or column) in the matrix will have only
one q × q nonzero entry and the remaining entries are filled with null q × q
matrices. The �× � block arrangement describes the symmetries relating the
different vectors in the star of k, and the nonzero q × q matrix describes the
symmetry with respect to the specific k and its group of the wavevector.

The rotational aspects of the group of the wave vector are described by the
q× q matrices related to the factor group Gk/Tk. The Tk group can be repre-
sented by a linear combination of the three lattice vectors, and the symmetry
elements usually shown in the character tables are related to a {Rα|τα}/Tk

coset. The subgroups of the group of the wave vector k occurring at points in
the Brillouin zone with fewer symmetry operations are called the small rep-
resentations, in contrast to the full point group symmetry for k = 0 which is
called the large representation. The Bloch functions with wavevectors k form
the basis, and each symmetry element is a coset formed by several elements,
but is represented by a typical element, a “representative coset.”

10.4.1 Symmorphic Group Representations

The representation theory for symmorphic groups is relatively simple. Since
there are no compound operations, the factor group Gk/Tk is symmorphic to
the point group gk.

Small Representation. The small representations for the group of the wave
vector of k are given by

DΓi

k ({Rα|Rn}) = eik·RnDΓi(Rα) , (10.35)

where {Rα|Rn} belongs to Gk, and eik·Rn comes from T , with Rn being a lat-
tice vector or a primitive translation, and Γi is an irreducible representation
coming from one of the 32 crystallographic point groups (see Chap. 3), whose
character tables are given in Appendix A. Here DΓi(Rα) refers only to the
point group.
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Characters for Small Representation. The characters for the irreducible rep-
resentations are given by

χΓi

k ({Rα|Rn}) = eik·RnχΓi(Rα) . (10.36)

where χΓi(Rα) only refers to the point group.

Large Representation. For the Γ point we have k = 0 and eik·Rn = 1. Also,
if we consider the factor group of Gk with respect to the translations, then
also Rn = 0 and again eik·Rn = 1. In both cases, both representations and
characters are identical to those from the point groups.

10.4.2 Nonsymmorphic Group Representations
and the Multiplier Algebra

As for the symmorphic groups, we denote the group of the wave vector k by
Gk. For symmetry operations {R|τ} that involve translations τ smaller than
the smallest Bravais lattice vector, the translations introduce a phase factor
exp[ik · τ ]. However, as discussed in Sect. 9.1.4, the entire set of space group
elements {Rα|τα} may fail to form a group, and the point group g of the crys-
tal is not a subgroup of G. In this case, to work with the rotational aspects
of the nonsymmorphic space group, procedures to remove the translational
effect are needed. Furthermore, the factor group Gk/Tk contain cosets formed
only by pure translations, giving rise to irrelevant representations. The rel-
evant representations, describing the rotational aspects of the group of the
wavevector, can be directly obtained by using the multiplier algebra.

Multiplier Groups. If the representations are written in terms of a Bloch wave
basis, the translational group is diagonalized and the multiplier groups are
defined by

{Rα|τα}{Rβ|τ β} = e−ik·[τα+Rατβ−ταβ ]{RαRβ |ταβ} , (10.37)

where the [τα +Rατ β − ταβ ] represents a lattice vector translation resulting
from the product of the elements in the group of the wave vector. Any element
{Rγ |τ γ +Rn} thus generated can be represented by a single element

M(γ) = e−ik·[τγ+Rn]{Rγ |τ γ +Rn} (10.38)

in the multiplier group, obeying the algebra

M(α)M(α′) = eiKα·τα′M(αα′) , (10.39)

the exponential factor being 1 except for points at the Brillouin zone boundary,
where Rαk = k + Kα, and Kα is a reciprocal lattice translation. The factor
group Gk/Tk will, therefore, be isomorphic to a point group from which the
rotational aspects of the group of the wave vector can be treated.
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Small and Large Representations. In general the representations are obtained
from the irreducible representations of the multiplier group. From (10.38)
and (10.39) it can be shown that the small representations are obtained from
ordinary point group representations when the point group operation leaves k
invariant, since in that case Kα = 0 in (10.39). The same applies to the large
representation, where Kα = 0 always. Note that the multiplier algebra also
applies to symmorphic groups. In this case τα = τα′ = τ β = 0 in (10.38) and
(10.39), and the representations are also obtained from ordinary point group
representations, as discussed above.

Characters for Small and Large Representations. At the zone center, the char-
acters for the group of the wave vector are the same as the isomorphic point
group, because the phase factor exp[ik · τ ] reduces to unity when k = 0. For
each symmetry axis leading away from k = 0, the character tables for those
k points can be obtained by selecting the

appropriate point group character table and by multiplying the character
for the symmetry operations that contain a translation τ by a phase factor
exp[ik · τ ].

More detailed discussions of the space group representations and multiplier
groups are available elsewhere [50, 53].

10.5 Characters for the Equivalence Representation

We now discuss the computation of the characters χequiv. for the equivalence
representation in space groups, and its decomposition into the irreducible
representations of the group. For a specific wavevector k, the general formu-
lation for χequiv.

k related to a specific class of symmetry space group operators
{Rα|Rn + τα} is given by

χequiv.({Rα|Rn + τα}) = eik·(Rn+τα)
∑

j

δ{Rα|Rn+τα}rj ,rj
eiKm·rj , (10.40)

where the first exponential factor is related to the phase factor for translation
Rn + τα. The delta function basically gives 1 for atoms remaining in their
position under the space group symmetry operation {Rα|Rn + τα} or is 0
otherwise. For space groups, however, equivalent atoms on different unit cells
must be considered as equivalent. Here rj is the position in the jth atom
with respect to the origin of the point group, and δ{Rα|Rn+τ α}rj ,rj

= 1 if
{Rα|Rn + τα}rj and rj refer to equivalent atomic positions, occurring when
(Rαrj = rj + Rn). It is clear that the delta function is always zero when
τα �= 0.

The decomposition of the equivalence transformation into the irreducible
representations of the space group is made by using the procedure discussed in
Sect. 3.4. The first exponential factor in (10.40) turns out not to be important
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for this decomposition process, since χequiv. will then be multiplied by [χ(Γi)]∗

(see (3.20)), which carries the complex conjugate of the exponential factor.
Equation (10.40) gives the general rule for the equivalence transformation

in crystalline structures. The last exponential term in (10.40) appears for
specific k points at the zone boundary, for which R−1

α k = k + Km where
Km is a reciprocal lattice vector. At most of the k points, including the Γ
point, R−1

α k = k and Km = 0 so that eiKm·rj = 1, and we just work with
the general concept of χa.s. = 0 or 1.

10.6 Common Cubic Lattices: Symmorphic Space
Groups

In this section we limit our discussion to symmorphic space groups, where
the group of the wave vector for arbitrary k is a subgroup of the group of the
wave vector k = 0, which displays the full point group symmetry of the crystal
(see Sect. 10.4.1). This situation applies to all crystal lattices, whether they
are cubic, hexagonal, etc. We discuss here the group of the wave vector for
the three-dimensional simple cubic lattice Pm3m (O1

h) #221 (see Fig. 10.3) in

Fig. 10.3. The Brillouin zone for the simple cubic lattice (space group #221) show-
ing the high symmetry points and axes

Fig. 10.4. Brillouin zones for the (a) face-centered (space group #225) and (b)
body-centered (space group #229) cubic lattices showing the points and lines of
high symmetry in (a). The point Z on the line between X and W is also called V
in the literature and point Q is between L and W
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some detail, and we refer also to the group of the wave vector for the B.C.C.
(space group Im3m (O9

h) #229) and for the F.C.C. (space group Fm3m (O5
h)

#225) structures (see Fig. 10.4).
Figure 10.3 shows the Brillouin zone for the simple cubic lattice. The high

symmetry points and axes in these figures are labeled using the standard
notation found in the crystallography literature, the group theory literature,
and in the solid state physics literature.

10.6.1 The Γ Point

The symmetry operations of the group of the wave vector at the Γ point
(k = 0) are the symmetry operations of the Oh group indicated in Fig. 3.4
compounded with full inversion symmetry, Oh = O ⊗ i. The character table
for Oh along with the basis functions for all the irreducible representations
is given in Table 10.2. The form of the basis functions is helpful in identify-
ing s (Γ1), p (Γ15) and d (Γ12, Γ

′
25) electronic states of the Oh cubic crystal

where the symmetries of the corresponding irreducible representations are
shown.

The notation used in Table 10.2 is that traditionally used in the solid state
physics literature [1] and dates back to the 1930s. Here Γ1 and Γ2 denote

Table 10.2. Character table for the cubic group Oh corresponding to the group of
the wave vector at k = 0 for the three cubic space groups #221 (SC), #225 (FCC),
and #229 (BCC)†

repr. basis functions E 3C2
4 6C4 6C′2 8C3 i 3iC2

4 6iC4 6iC′2 8iC3

Γ1(Γ+
1 ) 1 1 1 1 1 1 1 1 1 1 1

Γ2 (Γ+
2 )

⎧⎨
⎩
x4(y2 − z2)+

y4(z2 − x2)+

z4(x2 − y2)

1 1 −1 −1 1 1 1 −1 −1 1

Γ12 (Γ+
12)

{
x2 − y2

2z2 − x2 − y2 2 2 0 0 −1 2 2 0 0 −1

Γ15(Γ−15) x, y, z 3 −1 1 −1 0 −3 1 −1 1 0

Γ25(Γ−25) z(x2 − y2) . . . 3 −1 −1 1 0 −3 1 1 −1 0

Γ ′1 (Γ−1 )

⎧⎨
⎩
xyz[x4(y2 − z2)+

y4(z2 − x2)+

z4(x2 − y2)]

1 1 1 1 1 −1 −1 −1 −1 −1

Γ ′2(Γ−2 ) xyz 1 1 −1 −1 1 −1 −1 1 1 −1

Γ ′12 (Γ−12) xyz(x
2 − y2) . . . 2 2 0 0 −1 −2 −2 0 0 1

Γ ′15 (Γ+
15) xy(x

2 − y2) . . . 3 −1 1 −1 0 3 −1 1 −1 0

Γ ′25 (Γ+
25) xy, yz, zx 3 −1 −1 1 0 3 −1 −1 1 0

† The basis functions for Γ−25 are z(x2 − y2), x(y2 − z2), y(z2 − x2), for Γ−12 are
xyz(x2 − y2), xyz(3z2 − r2) and for Γ+

15 are xy(x2 − y2), yz(y2 − z2), zx(z2 − x2)



224 10 Space Groups in Reciprocal Space and Representations

Table 10.3. Character table C4v for the group of the wave vector at a Δ pointa

representation basis functions E C2
4 2C4 2iC2

4 2iC′2

Δ1 1, x, 2x2 − y2 − z2 1 1 1 1 1

Δ2 y2 − z2 1 1 −1 1 −1

Δ′
2 yz 1 1 −1 −1 1

Δ′
1 yz(y2 − z2) 1 1 1 −1 −1

Δ5 y, z;xy, xz 2 −2 0 0 0

a Δ = 2π
a

(x, 0, 0) (SC, FCC, BCC); T = 2π
a

(1, 1, z) (SC)

1D irreducible representations, Γ12 denotes the 2D irreducible representation,
while Γ15 and Γ25 denote the two 3D irreducible representations and the
notations used are historical.1 In this notation, Γ15 and Γ25 are odd while
Γ ′15 and Γ ′25 are even under inversion (as can be seen from the basis functions
in Table 10.2). To get around this apparent nonuniformity of notation with
regard to even and odd functions, we often use Γ±i (e.g., Γ±15) to emphasize
the parity (even or odd property) of a wavefunction for the cubic groups. We
notice that to obtain basis functions for all the irreducible representations of
the group Oh in Table 10.2 we need to include up to sixth-order polynomials.

10.6.2 Points with k �= 0

In Table C.6 in Appendix C we see that the special point R in Fig. 10.3 for
the simple cubic lattice that also has full Oh symmetry. Special care must be
given to operations taking k into k + Km, since they also add exponential
factors to the computation of χequiv, for example, as discussed in Sect. 10.5.

We next consider the group of the wave vector at lower symmetry points.
First we consider the group of the wave vector for a point along the Δ axis (see
Fig. 10.3) which has fewer symmetry operations than the group of the wave
vector at k = 0. The group of the wave vector at Δ is an example of a small
representation. The symmetry operations for a point along the Δ axis for the
simple cubic lattice are those of a square, rather than those of a cube and are
the symmetry operations of point group C4v. Group C4v is a subgroup of the
full cubic group Oh. The multiplication table for the elements of the point
group C4v which is appropriate for a reciprocal lattice point Δ along the x̂
axis is given in Table C.9. Multiplication tables like this can be compiled for
all the groups of the wave vectors for all high symmetry points in the Brillouin
zone for all the space groups.

The character table (including basis functions) for the group of the wave
vector for Δ, where Δ = (Δ, 0, 0) is along x̂, is given in Table 10.3 and Ta-
ble C.8. Since the Δ point occurs in space groups #221 (SC), #225 (FCC)

1The numbers contained in the subscripts denote how the Γ point levels split in
the Δ axis direction, as discussed in Sect. 10.7.
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Table 10.4. Character table for the group of the wave vector Λ

character table for the Λ axis

Λ = C3v E 2C3 3iC2

Λ1 1 1 1

Λ2 1 1 −1

Λ3 2 −1 0

and #229 (BCC), the character table and basis functions in Table 10.3 are
applicable for all these space groups. In Table 10.3 for the Δ point, the C4

rotation operation is along x̂, the 2iC2
4 are along ŷ, ẑ, and the 2iC′2 are along

{011}. The basis functions in the character table can be found from inspec-
tion by taking linear combinations of (x�, ym, zn) following the discussion in
Chap. 4. The process of going from higher to the lower symmetry defines the
compatibility relations (Sect. 10.7) between irreducible representations of Oh

and those of C4v showing the path from the higher group Oh to the lower
symmetry C4v. The basis functions for the lower symmetry groups (such as
the group of Δ) are related to those of Oh by considering the basis functions
of the point group Oh as reducible representations of the subgroup Δ, and
decomposing these reducible representations into irreducible representations
of the group Δ. For example Γ ′25 (or using Γ+

25 to show its parity) of point
group Oh is a reducible representation of C4v, and reduction of Γ ′25 (or Γ+

25)
into irreducible representations of C4v yields the compatibility relation (see
Sect. 10.7)

[Γ ′25]Oh
≡ [

Γ+
25

]
Oh
→ [Δ2′ +Δ5]C4v

,

showing the origin of the Γ ′25 notation. We note that yz is the longitudinal
partner for Δ = (Δ, 0, 0) and corresponds to the irreducible representation
Δ′

2, while xy, xz are the transverse partners corresponding to Δ5. What is
different here from the discussion in Sect. 5.3 is that the dispersion relations
also go from lower to higher symmetry. For example, the Δ point goes into
the X point for space groups #221 and #225 and into the H point for
#229 (BCC) all having more symmetry operations than at the Δ point. We
also note that the group of the wave vector for point T for the simple cubic
lattice (see Fig. 10.3) also has C4v symmetry (see Tables C.6 and C.8). In
considering the group of the wave vector for point T , remember that any
reciprocal lattice point separated by a reciprocal lattice vector from T is an
equally good T point. The character Table 10.3 also serves for the T -point, but
the symmetry operations and basis functions would need proper modification.
Character tables for all the high symmetry points for k vectors in the simple
cubic lattice are discussed in this section. For example, the symmetry group
for a wave vector along the (111) axis or Λ axis is C3v (see Fig. 10.3), which
is given in Table 10.4. For a Λ point along the (111) direction, the 2C3 are
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along {111}, and the 3iC2 are along (11̄0), (101̄), and (01̄1) directions. For
the Λ point we can do threefold rotations in both ± senses about ΓR for
group #221, about ΓL for #225 and about ΓP for #229 (see Fig. 10.4).
Whereas the Λ point follows the same point group C3v, the end points R,
L, and P for the three space groups have different point group symmetries.
We can also do 180◦ rotations about twofold axes ΓM followed by inversion
(see Fig. 10.3). By ΓM ′ we mean the wave vector to the center of an adjacent
cube edge, and we here note that a rotation by π about ΓM ′ in group #221
followed by inversion does not leave Λ invariant. Only three of the “ΓM ′”
axes are symmetry operations of the group; the other three such axes (like
ΓM in the diagram) are not symmetry operations. Therefore instead of the
symmetry operations 6iC2 which hold for the Γ and R points, the class 3iC2

for the group of the Λ point only has three symmetry elements. Table C.10
in Appendix C gives the basis functions for each irreducible representation
of the group of the wave vector at a Λ point and shows that point F for
the BCC structure also has C3v symmetry, but the symmetry operations and
basis functions need to be appropriately modified.

The final high symmetry point along one of the three main symmetry axes
is the Σ point along the {110} axes. The group of the wave vector for the Σ
point is C2v and the character table is shown in Table C.11 in Appendix C.
This character table applies to the Σ point for the simple cubic, FCC and BCC
lattices (see Fig. 10.4). All the irreducible representations are one-dimensional.
Table C.6 identifies high symmetry points in other space groups which have
high symmetry points with C2v symmetry. Table C.11 in Appendix C also
shows that the group of the wave vector for high symmetry points Z and
S for the simple cubic lattice, points U , Z, and K for the FCC lattice, and
points G and D for the BCC lattice all belong to group C2v.

Table 10.5. Character tables for the group of the wave vector (group D4h) for
points M and X for space group #221

M E 2C2
4 C2

4⊥ 2C4⊥ 2C2 i 2iC2
4 iC2

4⊥ 2iC4⊥ 2iC2

X E 2C2
4⊥ C2

4‖ 2C4‖ 2C2 i 2iC2
4⊥ iC2

4‖ 2iC4‖ 2iC2

M1,X1 1 1 1 1 1 1 1 1 1 1

M2,X2 1 1 1 −1 −1 1 1 1 −1 −1

M3,X3 1 −1 1 −1 1 1 −1 1 −1 1

M4,X4 1 −1 1 1 −1 1 −1 1 1 −1

M ′
1,X

′
1 1 1 1 1 1 −1 −1 −1 −1 −1

M ′
2,X

′
2 1 1 1 −1 −1 −1 −1 −1 1 1

M ′
3,X

′
3 1 −1 1 −1 1 −1 1 −1 1 −1

M ′
4,X

′
4 1 −1 1 1 −1 −1 1 −1 −1 1

M5,X5 2 0 −2 0 0 2 0 −2 0 0

M ′
5,X

′
5 2 0 −2 0 0 −2 0 2 0 0
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It can also happen that two high symmetry points such asM andX for the
simple cubic lattice belong to the same point group D4h, but the symmetry
operations for the two groups of the wave vector can refer to different axes
of rotation, as shown in Table 10.5. The notation C2

4‖ in Table 10.5 refers
to a twofold axis ΓX , while 2C2

4⊥ refers to the two twofold axes ⊥ to ΓX .
These are in different classes because in one case X is left invariant, while in
the other case X goes into an equivalent X point separated by a reciprocal
lattice vector. To put it in more physical terms, if the X point would not
exactly be on the zone boundary but were instead at a Δ point arbitrarily
close, the C2

4‖ operation would still hold, while the 2C2
4⊥ operations would not.

When we list multiple high symmetry points with a given character table in
Appendix C, we do not generally distinguish between the symmetry operations
for the individual classes (compare for example Table 10.5 and Table C.15).
Character tables for all the high symmetry points in the Brillouin zone for the
simple cubic lattice (#221) (see Fig. 10.3) and for the FCC and BCC lattices
(see Fig. 10.4) are given in Appendix C, since we use these groups frequently
for illustrative purposes in this book.

10.7 Compatibility Relations

As stated above, compatibility relations relate the basis functions (wave func-
tions) in going from one wave vector to another belonging to a different sym-
metry group. Such a situation, for example, occurs when going from k = 0 (Γ
point with full Oh symmetry) to an interior k point such as a Δ point with
C4v symmetry and then in going from the Δ point to the X point with D4h

symmetry.
To study these compatibility relations, let us follow some particular energy

band around the Brillouin zone and see how its symmetry type and hence how
its degeneracy changes. The problem of connectivity (connecting energy bands
as we move from one k point to a neighboring k point with a different group
of the wave vector) is exactly the same type of problem as that occurring in
crystal field splittings (Sect. 5.3) as we go from a high symmetry crystal field
to a perturbed crystal field of lower symmetry.

As an illustration of compatibility relations, consider a simple cubic lattice
as we move along a (111) direction from Γ → Λ → R from the center of the
Brillouin zone to the zone corner (see Fig. 10.3). At the Γ point (k = 0) we
have the full point group symmetry Oh. As we now go from a higher point
group symmetry Oh at Γ to a k vector along Λ, we go to a point group
of lower symmetry C3v. Since there are no three-dimensional representations
in C3v, we know that the degeneracy of the threefold degenerate levels in
Oh symmetry, i.e., Γ−15, Γ

−
25, Γ

+
15, Γ

+
25 levels, will be at least partially lifted. We

proceed as before to write down the character table for the Λ point, and below
it we will write down the representations of the Γ point group, which we now
treat as reducible representations of the Λ point group. We then reduce out



228 10 Space Groups in Reciprocal Space and Representations

Table 10.6. Compatibility relations along Λ in the simple cubic BZ

irreducible

Λ E 2C3 3iC2 representations

Λ1 1 1 1

Λ2 1 1 −1

Λ3 2 −1 0

Γ1 (Γ+
1 ) 1 1 1 Λ1

Γ2 (Γ+
2 ) 1 1 −1 Λ2

Γ12 (Γ+
12) 2 −1 0 Λ3

Γ ′15 (Γ+
15) 3 0 −1 Λ2 + Λ3

Γ ′25 (Γ+
25) 3 0 1 Λ1 + Λ3

Γ ′1 (Γ−1 ) 1 1 −1 Λ2

Γ ′2 (Γ−2 ) 1 1 1 Λ1

Γ ′12 (Γ−12) 2 −1 0 Λ3

Γ15 (Γ−15) 3 0 1 Λ1 + Λ3

Γ25 (Γ−25) 3 0 −1 Λ2 + Λ3

the irreducible representations of the Λ point symmetry group. This process is
indicated in Table 10.6, below where we list the ten irreducible representations
of Oh and indicate the irreducible representations of C3v therein contained.
This procedure gives a set of compatibility conditions. In a similar way, the
compatibility relations for a simple cubic lattice along the Δ and Σ axes
follow the progression from Γ to Δ to X and also from Γ to Σ to M as can
be seen from Fig. 10.3. In going fromΔ→ X we go from C4v symmetry to D4h

symmetry, since at the Brillouin zone boundary, translation by a reciprocal
lattice vector introduces additional symmetries associated with a mirror plane.
Similarly, in going from Σ →M we get four equivalent M points so that the
symmetry group goes from C2v to D4h. Compatibility relations for the simple
cubic lattice are summarized in Table 10.7 for illustrative purposes.

Tables of compatibility relations for all space groups are compiled in the
literature, e.g. Miller and Love’s book [54] (see Sect. 10.9).

As an example of using these compatibility relations, let us consider what
happens as we move away from the Γ point k = 0 on a threefold level, such as
Γ ′25 (or Γ+

25) in Table 10.7. There are many possibilities, as indicated below:

Γ ′25 → Δ2′ +Δ5 → X3 +X5 , (10.41)

Γ ′25 → Λ1 + Λ3 → R15 , (10.42)

Γ ′25 → Σ1 +Σ2 +Σ3 →M1 +M5 . (10.43)

Suppose that we want to find a set of compatible symmetries in going around
a circuit using the Brillouin zone shown in Fig. 10.3.

Γ → Σ →M → Z → X → Δ→ Γ . (10.44)
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Table 10.7. Compatibility relations for the high symmetry points in the simple
cubic lattice

compatibility relations between Γ and Δ,Λ,Σ

Γ+
1 Γ+

2 Γ+
12 Γ−15 Γ+

25 Γ−1 Γ−2 Γ−12 Γ+
15 Γ−25

(100) Δ1 Δ2 Δ1Δ2 Δ1Δ5 Δ2′Δ5 Δ1′ Δ2′ Δ1′Δ2′ Δ1′Δ5 Δ2Δ5

(111) Λ1 Λ2 Λ3 Λ1Λ3 Λ1Λ3 Λ2 Λ1 Λ3 Λ2Λ3 Λ2Λ3

(110) Σ1 Σ4 Σ1Σ4 Σ1Σ3Σ4 Σ1Σ2Σ3 Σ2 Σ3 Σ2Σ3 Σ2Σ3Σ4 Σ1Σ2Σ4

compatibility relations between Xand Δ,Z, S

X1 X2 X3 X4 X5 X1′ X2′ X3′ X4′ X5′

Δ1 Δ2 Δ2′ Δ1′ Δ5 Δ1′ Δ2′ Δ2 Δ1 Δ5

Z1 Z1 Z4 Z4 Z3Z2 Z2 Z2 Z3 Z3 Z1Z4

S1 S4 S1 S4 S2S3 S2 S3 S2 S3 S1S4

compatibility relations between M and Σ,Z, T

M1 M2 M3 M4 M1′ M2′ M3′ M4′ M5 M5′

Σ1 Σ4 Σ1 Σ4 Σ2 Σ3 Σ2 Σ3 Σ2Σ3 Σ1Σ4

Z1 Z1 Z3 Z3 Z2 Z2 Z4 Z4 Z2Z4 Z1Z3

T1 T2 T2′ T1′ T1′ T2′ T2 T1 T5 T5

Then we must verify that when we arrive back at Γ we have the same symme-
try type as we started with. A set of such compatible symmetries designates
a whole band.

To go around one of these circuits, basis functions prove very useful and
the tight binding wave functions are often used to keep track of the symme-
try. We know that s-functions transform like the identity representation so
that a possible circuit would be Γ1 → Λ1 → R1 → S1 → X1 → Δ1 → Γ1

(see Fig. 10.3). If we have p-functions, the basis functions are (x, y, z) and we
can join up representations corresponding to these basis functions. Likewise
for the five d-functions in cubic symmetry, we have three that transform as
(xy, xz, yz) with Γ+

25 symmetry and two that transform as (x2 + ωy2 + ω2z2)
and (x2 +ω2y2 +ωz2) corresponding to Γ+

12 symmetry, where ω = exp(2πi/3).
As an example of how compatibility relations are used in the labeling of

energy bands, we show the energy dispersion relation E(k) in Fig. 10.5 for the
high symmetry directions k100 and k111 for the simple cubic structure. For the
band with lower energy, we have the compatibility relations Γ1 → Δ1 → X1

and Γ1 → Λ1 → R1. For the upper band, we see a splitting of a p-band as we
move away from k = 0, and a consistent set of compatibility relations is

Γ+
25 → Δ2′ +Δ5 , Δ2′ → X2 and Δ5 → X5

Γ+
25 → Λ1 + Λ3 , Λ1 → R+

1 and Λ3 → R+
12 .

In applying the compatibility relations as we approach the R point from the
Λ direction, we note that the R point has the same group of the wave vector
as k = 0 and the same subscript notation can be used to label the R point,
namely R1, R2, R12, R15 and R25.
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Fig. 10.5. Schematic diagram of energy bands illustrating compatibility relations.
The diagrams below show both level crossings between bands of the same symmetries
and level anticrossings between bands of different symmetries where interactions
occur

When levels of different symmetry approach one another, they can simply
cross as indicated in Fig. 10.5 for the Δ1 and Δ′

2 levels, and this is simply
referred to as a level crossing, where the two bands retain their original sym-
metry after the crossing. However, when two levels of the same symmetry
approach one another, there is an interaction between them and this case is
also illustrated in Fig. 10.5 for two energy levels of Δ1 symmetry. The effect
in this case is called level anticrossing because the levels do not actual cross
in this case, though their wave functions become admixed in an appropriate
linear combination.

10.8 The Diamond Structure:
Nonsymmorphic Space Group

In this section we extend our discussion to nonsymmorphic space groups,
where the symmetry operations can be a combination of point group and
translation operations. In this case, to work with the rotational aspects of the
nonsymmorphic space group, procedures to remove the translational effect are
needed, and they are discussed in Sect. 10.4.

To illustrate the symmetry of a nonsymmorphic space group we use the di-
amond lattice (space group #227, O7

h) which is shown in Fig. 10.6 as a specific
example. Not only C, but also Si and Ge crystallize in the diamond structure,
that is described by a nonsymmorphic space group with two atoms/primitive
unit cell. Figure 10.6 is equivalent to Fig. 9.6(f), except that Fig. 10.6 explic-
itly shows the two distinct atoms per unit cell, indicated as light atoms and
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Fig. 10.6. The zinc blende structure with Td symmetry illustrating the two dis-
similar lattice sites. With identical atoms at the two sites, the diamond structure
results. The space group for the diamond lattice is Fd3m or #227 (O7

h). The space
group for the zinc blende structure is #216 [F 4̄3m]

dark atoms. We will take the “primitive unit cell” for the diamond structure
to be the FCC primitive unit cell formed by the four dark atoms in Fig. 10.6
surrounding one light atom (see Fig. 9.6(b) for the NaCl structure which con-
sists of inter-penetrating FCC structures for Na and for Cl). The dark atoms
in Fig. 10.6 are on sites for one FCC lattice, and the light inequivalent atoms
of the same species are on another FCC lattice displaced from the first FCC
lattice by a(1/4, 1/4, 1/4), as shown in Fig. 10.6. A screw axis indicated in
Fig. 9.6(g) takes the dark atoms on the first sublattice in Fig. 10.6 into the
light atoms on the second sublattice and vice versa.

10.8.1 Factor Group and the Γ Point

The factor group G/T for diamond is isomorphic to the point group Oh. The
set of operations P̂R that are relevant for the diamond structure are, therefore,
the 48 operations of the Oh point group. Each of the 24 symmetry operators
P̂R of group Td will leave each distinct atom on the same sublattice. However,
the operations in Oh that are not in Td when combined with a translation
τ d = a/4(111) for the diamond structure take each atom on one sublattice
into the other sublattice. This space group is nonsymmorphic because half of
the symmetry operations of the group of the wave vector at k = 0 contain
translations τ d = a/4(111). The 48 symmetry operations and ten classes for
the diamond structure at k = 0 are given in Table 10.8, showing 24 operations
of the form {Rα|ε} and 24 operations of the form {Rα′ |τ d}. At the Γ point
k = 0, we have exp[ik · τ ] = 1 so that the phase factor does not matter, and
the group of the wave vector is given by the Oh group, compare Tables 10.2
and C.17.

In computing the characters χequiv for the equivalence transformation
Γ equiv, we take into account the two kinds of lattice sites, one on each of
the two FCC sublattices. Thus an atom is considered “to go into itself” if it
remains on its own sublattice and “not to go into itself” if it switches sub-
lattices under a symmetry operation P̂R. Using this criterion, the results for
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Table 10.8. Classes and characters for the equivalence transformation for the dia-
mond lattice

{E|0} 8{C3|0} 3{C2|0} 6{C′2|τ d} 6{C4|τ d}
Γ equiv 2 2 2 0 0

{i|τ d} 8{iC3|τ d} 3{iC2|τ d} 6{iC′2|0} 6{iC4|0}
Γ equiv 0 0 0 2 2

χequiv for the diamond structure are given in Table 10.8. Note that, although
we can count eight C atoms inside the full cubic unit cell, χequiv(E) = 2 for
the identity operation. One must keep in mind that the primitive unit cell
has only 2 atoms/cell while the full cubic unit cell is four times larger. We
emphasize that χequiv must be computed on the basis of the number of atoms
in the primitive unit cell.

Decomposition of Γ equiv in Table 10.8 into irreducible representations of
Oh (see Table 10.2) leads to Γ equiv = Γ1 + Γ ′2 or Γ+

1 + Γ−2 . Here Γ+
1 is

even under inversion and Γ−2 is odd under inversion, using the usual notation
for irreducible representations for solids. We also note that the operation
{i|τd} interchanges sublattices 1 ↔ 2. We make use of this result for Γ equiv

in subsequent chapters in discussing the electronic energy band structure and
phonon dispersion relations of solids crystallizing in the diamond structure.
The character table for the group of the wave vector for the Γ point for
the diamond structure is given in Table C.17, utilizing the classes given in
Table 10.8 and utilizing the character table for the Oh group in Table 10.2.

10.8.2 Points with k �= 0

We next consider the group of the wave vector for the high symmetry points
with k �= 0 in the Brillouin zone for the diamond structure, and we use the
FCC Brillouin zone in Fig. 10.4(a) to delineate those high symmetry points.

At the Δ point, which is an interior point in the Brillouin zone, the five
classes for group C4v for the Δ point for the symmorphic FCC group in
Table 10.3, go into {E|0}, {C2

4 |0}, 2{C4|τ d}, 2{iC2
4 |τ d}, {2iC′2|0} for the

diamond lattice. The characters for the classes with a translation τ d will
include phase factors TΔ = exp[ik · τ d] for all k points along the Δ axis
where k · τ d = (2π/a)(κ, 0, 0) · (a/4)(1, 1, 1) = πκ/2, and where κ → 0
as k → 0, and κ → 1 as k approaches the X point. Thus κ denotes the
fractional length of the k vector along the Δ axis. The corresponding char-
acter table then is derived from Table 10.3 by multiplying the characters
in classes 2{C4|τ d} and 2{iC2

4 |τ d} by the phase factor TΔ to yield Ta-
ble 10.9.

For interior k points along the Σ direction, the phase factor exp[ik · τ d]
enters in a similar way and here the classes and characters for the irreducible
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Table 10.9. Character table C4v for the group of the wave-vector at a Δ point for
the nonsymmorphic diamond structurea

representation {E|0} {C2
4 |0} 2{C4|τ d} 2{iC2

4 |τ d} 2{iC′2|0}
Δ1 1 1 1 · TΔ 1 · TΔ 1

Δ2 1 1 −1 · TΔ 1 · TΔ −1

Δ2′ 1 1 −1 · TΔ −1 · TΔ 1

Δ1′ 1 1 1 · TΔ −1 · TΔ −1

Δ5 2 −2 0 0 0

a Δ = 2π/a(κ, 0, 0) (diamond). Phase factor TΔ = exp[iπ
2
κ]

Table 10.10. Character table C2v for the group of the wave-vector at a Σ point
for the nonsymmorphic diamond latticea

representation {E|0} {C2′ |τ d} 2{iC2
4 |τ d} {iC′2|0}

Σ1 1 1 · TΣ 1 · TΣ 1

Σ2 1 1 · TΣ −1 · TΣ −1

Σ3 1 −1 · TΣ −1 · TΣ 1

Σ4 1 −1 · TΣ 1 · TΣ −1

a Σ = 2π/a(κ, κ, 0)(diamond). Phase factor TΣ = exp[iπκ]

Table 10.11. Character table C3v for the group of the wave-vector at a Λ point for
the nonsymmorphic diamond structurea

representation {E|0} 2{C3|0} 3{iC′2|0}
Λ1 1 1 1

Λ2 1 1 −1

Λ3 2 −1 0

a Λ = 2π/a (κ, κ, κ) (diamond)

representations for the group of the wave vector are given in Table 10.10,
where the phase factor TΣ is exp[iπκ]. As κ→ 0 the Σ point approaches the
Γ point (group Oh) and as κ→ 3/4 the K point (see Fig. 10.4(a)) is reached.
The corresponding compatibility relations are found by relating Table 10.10
to Table C.17 in the limit κ→ 0 and to a modified form of Table 10.10 in the
limit κ→ 3/4.

Along the Λ direction the symmetry operations do not involve the trans-
lation τ d and therefore no phase factors appear in the character table for the
group of the wave vector along the Λ axis (Table 10.11), nor do phase fac-
tors enter the character table for the end points of the Λ axis either at the
Γ point (0,0,0) or at the L point (π/a)(1, 1, 1) which has symmetry D3d (see
Table C.18).
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Table 10.12. Character table for the group of the wave-vector at a X point for the
nonsymmorphic diamond structurea

representation {E|0} {C2′ |0} 2{C2|τ d} 2{iC2′ |0}
X1 2 2 0 2

X2 2 2 0 −2

X3 2 −2 −2 0

X4 2 −2 2 0

aX = (2π/a)(1, 0, 0)

The point X at k = (2π/a)(1, 0, 0) is a special point. The primitive trans-
lations can be written as

a1 = (a/2)(1, 1, 0) , a2 = (a/2)(0, 1, 1) , a3 = (a/2)(1, 0, 1) . (10.45)

The translation group Tk is formed by elements {ε|Rn}, where Rn = n1a1 +
n2a2 + n3a3, and where n1, n2, n2 are integers. Using the Bloch wave func-
tions as a basis, the phase factors are represented by eiKX ·Rn = (−1)(n2+n3)

considering the X point at the zone boundary along the Δ-axis.
The factor group GX/TX has 14 classes. However, Table 10.12 shows only

four classes and four relevant irreducible representations. Six of the 14 classes
corresponding to translations have only 0 entries for all the characters, and
the remaining four classes can be obtained from Table 10.12 by adding a τd
translation and multiplying the characters by −1. Because of the irrelevant
representations, the compatibility relations between high symmetry points in
nonsymmorphic groups are sometimes not evident. For example, Δ1 +Δ′

2 go
into X1 and Δ5 goes into X4. This is easily seen for the first {E|0}, second
{C2

4 |0} and fifth {2iC′2|0} classes in Table 10.9, while the two remaining classes
in the Δ group, namely {2C4|τd} and {2iC2

4 |τd}, go into two classes of the X
point that are not listed in Table 10.12 and have all entries for their characters
equals zero.

In summary, for some of the high symmetry points of the diamond struc-
ture, the group of the wave vector is found in a similar way as for a symmorphic
FCC structure, while for other high symmetry points (e.g., along the Δ and
Σ axes) the group of the wave vector behaves differently. The high symmetry
points where phase factors are introduced are Δ,Σ,W, S(Z) and those with-
out phase factors are Γ,Λ, L,Q. The point X is a special point at which the
structure factor vanishes and there is no Bragg reflection, nor are there phase
factors, but the behavior of the X point in the diamond structure is different
from that of the X point in the FCC structure which is a true Bragg reflec-
tion point. The group of the wave vector for all the high symmetry points
on the square face, for example W and S(Z), of the Brillouin zone for the
diamond structure are also twofold degenerate. This degeneracy reflects the
fact that the structure factor for the Bragg reflection for that whole face is



10.9 Finding Character Tables for all Groups of the Wave Vectors 235

identically zero and hence there is no physical reason for the electronic or
phonon dispersion curves to be split by that particular wave vector.

10.9 Finding Character Tables for all Groups
of the Wave Vectors

Fortunately, tables for the group of the wave vector for each unique k vector
for each of the 230 space groups have been established and are available
in various references [49, 54]. These listings contain character tables for all
groups of the wave vectors for every space group. These references do not
refer to specific materials – they only refer to the space group which describes
specific materials.

Appendix C gives the character tables for the group of the wave vector for
all the high symmetry points for the simple cubic lattice space group #221.
Familiarity with the use of character tables for the group of the wave vector
can be gained through the problems at the end of this chapter (Sect. 10.9).

Selected Problems

10.1. Sketch the primitive translation vectors for the unit cells in r-space and
k-space for the five 2D Bravais lattices given in Table 10.1. What is the angle
between b1 and b2?

10.2. (a) Construct the star and group of the wave vector for a simple 2D
hexagonal space group (#17), as discussed in Sect. 10.3.2. Show how the
group of the wave vector for k = b2/2 is a subgroup of the group of the
wavevector at k = 0.

(b) Now construct the star and group of the wave vector for the 2D hexagonal
space group #14 and contrast your results with those in (a).

10.3. The Brillouin zone and the high symmetry points of the tetragonal
structure shown in Fig. 10.7 on the right applies to the space group of the
structure shown on the left. See Problem 9.1 for the real space symmetry of
this 3D structure.

(a) Find the star of the wave vector for this space group.
(b) Find the group of the wave vector for the Γ point (k = 0).
(c) Now find the group of the wave vector along the Δ, Λ and Σ directions

and give the compatibility relations relating the irreducible representa-
tions at k = 0 to those along these high symmetry axes when we move
away from the Γ point.
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Fig. 10.7. (a) 3D crystal structure composed of a tetragonal Bravais lattice with
a molecule with D2d symmetry. (b) The tetragonal Brillouin zone with the high
symmetry points

10.4. (a) Show that for the diamond structure (Sect. 10.8) the product of two
symmetry operations involving translations τ yields a symmetry element
with no translations

{α|τ}{β|τ} = {γ|0} ,
where τ = (1, 1, 1)a/4. What is the physical significance of this result?

(b) What is the result of the product of the two symmetry elements
{α|τ}{β|0}? Is this product the same as {β|0}{α|τ}? If not what is
the difference?

(c) What are the symmetry operations and the group of the wave vector for
the diamond structure at the L point? at the K point? at the W point?

(d) Find the characters χequiv for one symmetry operation in each class of the
diamond structure, space group #227.

10.5. (a) List the real space symmetry operations of the nonsymmorphic two-
dimensional square space group p4gm (#12).

(b) Explain the symmetry diagrams and the point symmetry notations for
space group #12 (p4gm) in Table B.12 (Appendix B) which was taken
from the International Crystallography Tables.

(c) Find the group of the wave vector for the high symmetry points in the
space group p4gm and compare your results with those for the symmorphic
group p4mm [Table B.11 (Appendix B)].

(d) What is the difference between the 2D space group #11 (p4mm) and the
3D group P4mm? What would be the difference in the equivalence trans-
formation Γ equiv for the two cases (you can instead give the characters
χequiv for this transformation)?
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10.6. The electronic energy band structure of graphite near the Fermi level
has become especially interesting after the discovery of single wall carbon
nanotubes in 1993. (The crystal structure of 3D graphite is shown in Fig.C.1
in Appendix C and problem9.6 relates to the space group crystal structures.)

(a) Find Γ equiv at the Γ -point for the four atoms in the unit cell of graphite
(see Fig. C.1 in Appendix C). Give the Γ point irreducible representations
contained in Γ equiv.

(b) Explain the symmetry operations for the group of the wave vector at k = 0
for group #194 that combine point group operations with translations.
Compare your results to Table C.24 in Appendix C.

10.7. This problem makes use of carbon nanotubes (see Problem 9.7) to dis-
cuss space groups and line groups. Appendix E provides information of use to
solve this problem (see also reference [8]).

(a) Find the lattice vectors in reciprocal space and describe the one-
dimensional Brillouin zone of carbon nanotubes. Compare your results to
Appendix E.

(b) Find the factor groups Gk/T for the group of the wave vectors at the Γ
point (k = 0) for chiral and achiral carbon nanotubes, and the character
tables for the isomorphic point groups. Then apply your result explicitly
to a metallic (6,6) and a semiconducting (6,5) nanotube.

(c) Find the line groups for chiral and achiral carbon nanotubes and their
respective character tables. By factoring out the effect of translations from
line groups, find the resulting point groups (called isogonal point groups),
with the same order of the principal rotation axis, where rotations include
a screw-axis. Also give explicit results for the (6,6) and (6,5) nanotubes.

(d) Repeat (a), (b) and (c) for k �= 0.
(e) Discuss the different dimensionalities for the irreducible representations

in space groups compared with line groups, for both k = 0 and k �= 0.

10.8. Consider the carbon nanotubes presented in Sect. 9.4 and discussed in
Appendix E.

(a) Show that the Γ equiv for zigzag SWNTs at k = 0 is

Γ equiv
zigzag = A1g +B2g +A2u +B1u +

n−1∑
j=1

(Ejg + Eju) , (10.46)

(b) Find the compatibility relations along the one-dimensional Brillouin zone
for both chiral and achiral carbon nanotubes.


