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Basic Mathematical Background: Introduction

In this chapter we introduce the mathematical definitions and concepts that
are basic to group theory and to the classification of symmetry proper-
ties [2].

1.1 Definition of a Group

A collection of elements A,B,C, . . . form a group when the following four
conditions are satisfied:

1. The product of any two elements of the group is itself an element of
the group. For example, relations of the type AB = C are valid for all
members of the group.

2. The associative law is valid – i.e., (AB)C = A(BC).
3. There exists a unit element E (also called the identity element) such that

the product of E with any group element leaves that element unchanged
AE = EA = A.

4. For every element A there exists an inverse elementA−1 such thatA−1A =
AA−1 = E.

In general, the elements of a group will not commute, i.e., AB �= BA. But if
all elements of a group commute, the group is then called an Abelian group.

1.2 Simple Example of a Group

As a simple example of a group, consider the permutation group for three
numbers, P (3). Equation (1.1) lists the 3! = 6 possible permutations that
can be carried out; the top row denotes the initial arrangement of the three
numbers and the bottom row denotes the final arrangement. Each permutation
is an element of P (3).



4 1 Basic Mathematical Background: Introduction

Fig. 1.1. The symmetry operations on an equilateral triangle are the rotations by
±2π/3 about the origin and the rotations by π about the three twofold axes. Here
the axes or points of the equilateral triangle are denoted by numbers in circles

E =
(

1 2 3
1 2 3

)
A =

(
1 2 3
1 3 2

)
B =

(
1 2 3
3 2 1

)

C =
(

1 2 3
2 1 3

)
D =

(
1 2 3
3 1 2

)
F =

(
1 2 3
2 3 1

)
. (1.1)

We can also think of the elements in (1.1) in terms of the three points of an
equilateral triangle (see Fig. 1.1). Again, the top row denotes the initial state
and the bottom row denotes the final position of each number. For example,
in symmetry operation D, 1 moves to position 2, and 2 moves to position 3,
while 3 moves to position 1, which represents a clockwise rotation of 2π/3
(see caption to Fig. 1.1). As the effect of the six distinct symmetry operations
that can be performed on these three points (see caption to Fig. 1.1). We can
call each symmetry operation an element of the group. The P(3) group is,
therefore, identical with the group for the symmetry operations on a equilat-
eral triangle shown in Fig. 1.1. Similarly, F is a counter-clockwise rotation of
2π/3, so that the numbers inside the circles in Fig. 1.1 move exactly as defined
by Eq. 1.1.

It is convenient to classify the products of group elements. We write these
products using a multiplication table. In Table 1.1 a multiplication table is
written out for the symmetry operations on an equilateral triangle or equiva-
lently for the permutation group of three elements. It can easily be shown that
the symmetry operations given in (1.1) satisfy the four conditions in Sect. 1.1
and therefore form a group. We illustrate the use of the notation in Table 1.1
by verifying the associative law (AB)C = A(BC) for a few elements:

(AB)C = DC = B

A(BC) = AD = B . (1.2)

Each element of the permutation group P (3) has a one-to-one correspondence
to the symmetry operations of an equilateral triangle and we therefore say
that these two groups are isomorphic to each other. We furthermore can
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Table 1.1. Multiplicationa table for permutation group of three elements; P (3)

E A B C D F

E E A B C D F
A A E D F B C
B B F E D C A
C C D F E A B
D D C A B F E
F F B C A E D

a AD = B defines use of multiplication table

use identical group theoretical procedures in dealing with physical problems
associated with either of these groups, even though the two groups arise from
totally different physical situations. It is this generality that makes group
theory so useful as a general way to classify symmetry operations arising in
physical problems.

Often, when we deal with symmetry operations in a crystal, the geomet-
rical visualization of repeated operations becomes difficult. Group theory is
designed to help with this problem. Suppose that the symmetry operations in
practical problems are elements of a group; this is generally the case. Then if
we can associate each element with a matrix that obeys the same multiplica-
tion table as the elements themselves, that is, if the elements obey AB = D,
then the matrices representing the elements must obey

M(A) M(B) = M(D) . (1.3)

If this relation is satisfied, then we can carry out all geometrical opera-
tions analytically in terms of arithmetic operations on matrices, which are
usually easier to perform. The one-to-one identification of a generalized sym-
metry operation with a matrix is the basic idea of a representation and
why group theory plays such an important role in the solution of practical
problems.

A set of matrices that satisfy the multiplication table (Table 1.1) for the
group P (3) are:

E =
(

1 0
0 1

)
A =

(−1 0
0 1

)
B =

(
1
2 −

√
3

2

−
√

3
2 − 1

2

)

C =

(
1
2

√
3

2√
3

2 − 1
2

)
D =

(
− 1

2

√
3

2

−
√

3
2 − 1

2

)
F =

(
− 1

2 −
√

3
2√

3
2 − 1

2

)
. (1.4)

We note that the matrix corresponding to the identity operation E is always
a unit matrix. The matrices in (1.4) constitute a matrix representation of
the group that is isomorphic to P (3) and to the symmetry operations on
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an equilateral triangle. The A matrix represents a rotation by ±π about the
y axis, while the B and C matrices, respectively, represent rotations by ±π
about axes 2 and 3 in Fig. 1.1. D and F , respectively, represent rotation of
−2π/3 and +2π/3 around the center of the triangle.

1.3 Basic Definitions

Definition 1. The order of a group ≡ the number of elements in the group.
We will be mainly concerned with finite groups. As an example, P (3) is of
order 6.

Definition 2. A subgroup ≡ a collection of elements within a group that by
themselves form a group.

Examples of subgroups in P (3):

E (E,A) (E,D, F )
(E,B)
(E,C)

Theorem. If in a finite group, an element X is multiplied by itself enough
times (n), the identity Xn = E is eventually recovered.

Proof. If the group is finite, and any arbitrary element is multiplied by itself
repeatedly, the product will eventually give rise to a repetition. For example,
for P (3) which has six elements, seven multiplications must give a repetition.
Let Y represent such a repetition:

Y = Xp = Xq , where p > q . (1.5)

Then let p = q + n so that

Xp = Xq+n = XqXn = Xq = XqE , (1.6)

from which it follows that
Xn = E . (1.7)

�

Definition 3. The order of an element ≡ the smallest value of n in the rela-
tion Xn = E.

We illustrate the order of an element using P (3) where:

• E is of order 1,
• A,B,C are of order 2,
• D,F are of order 3.
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Definition 4. The period of an element X ≡ collection of elements E, X,
X2, . . . , Xn−1, where n is the order of the element. The period forms an
Abelian subgroup.

Some examples of periods based on the group P (3) are

E,A
E,B
E,C
E,D, F = E,D,D2 .

(1.8)

1.4 Rearrangement Theorem

The rearrangement theorem is fundamental and basic to many theorems to
be proven subsequently.

Rearrangement Theorem. If E,A1, A2, . . . , Ah are the elements of
a group, and if Ak is an arbitrary group element, then the assembly of
elements

AkE,AkA1, . . . , AkAh (1.9)

contains each element of the group once and only once.

Proof. 1. We show first that every element is contained.
Let X be an arbitrary element. If the elements form a group there will
be an element Ar = A−1

k X . Then AkAr = AkA
−1
k X = X . Thus we can

always find X after multiplication of the appropriate group elements.
2. We now show that X occurs only once. Suppose that X appears twice

in the assembly AkE,AkA1, . . . , AkAh, say X = AkAr = AkAs. Then by
multiplying on the left by A−1

k we get Ar = As, which implies that two
elements in the original group are identical, contrary to the original listing
of the group elements.
Because of the rearrangement theorem, every row and column of a multi-

plication table contains each element once and only once. �

1.5 Cosets

In this section we will introduce the concept of cosets. The importance of
cosets will be clear when introducing the factor group (Sect. 1.7). The cosets
are the elements of a factor group, and the factor group is important for
working with space groups (see Chap. 9).

Definition 5. If B is a subgroup of the group G, and X is an element of G,
then the assembly EX,B1X,B2X, . . . , BgX is the right coset of B, where B
consists of E,B1, B2, . . . , Bg.

A coset need not be a subgroup. A coset will itself be a subgroup B if X is
an element of B (by the rearrangement theorem).



8 1 Basic Mathematical Background: Introduction

Theorem. Two right cosets of given subgroup either contain exactly the same
elements, or else have no elements in common.

Proof. Clearly two right cosets either contain no elements in common or at
least one element in common. We show that if there is one element in common,
all elements are in common.

Let BX and BY be two right cosets. If BkX = B�Y = one element that
the two cosets have in common, then

B−1
� Bk = Y X−1 (1.10)

and Y X−1 is in B, since the product on the left-hand side of (1.10) is in B.
And also contained in B is EY X−1, B1Y X

−1, B2Y X
−1, . . . , BgY X

−1. Fur-
thermore, according to the rearrangement theorem, these elements are, in
fact, identical with B except for possible order of appearance. Therefore the
elements of BY are identical to the elements of BY X−1X , which are also
identical to the elements of BX so that all elements are in common. �

We now give some examples of cosets using the group P (3). Let B = E,A be
a subgroup. Then the right cosets of B are

(E,A)E → E,A (E,A)C → C,F

(E,A)A → A,E (E,A)D → D,B

(E,A)B → B,D (E,A)F → F,C , (1.11)

so that there are three distinct right cosets of (E,A), namely

(E,A) which is a subgroup
(B,D) which is not a subgroup
(C,F ) which is not a subgroup.

Similarly there are three left cosets of (E,A) obtained by X(E,A):

(E,A)
(C,D)
(B,F ) .

(1.12)

To multiply two cosets, we multiply constituent elements of each coset in
proper order. Such multiplication either yields a coset or joins two cosets. For
example:

(E,A)(B,D) = (EB,ED,AB,AD) = (B,D,D,B) = (B,D) . (1.13)

Theorem. The order of a subgroup is a divisor of the order of the group.

Proof. If an assembly of all the distinct cosets of a subgroup is formed (n of
them), then n multiplied by the number of elements in a coset, C, is exactly
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the number of elements in the group. Each element must be included since
cosets have no elements in common.

For example, for the group P (3), the subgroup (E,A) is of order 2, the
subgroup (E,D, F ) is of order 3 and both 2 and 3 are divisors of 6, which is
the order of P (3). �

1.6 Conjugation and Class

Definition 6. An element B conjugate to A is by definition B ≡ XAX−1,
where X is an arbitrary element of the group.

For example,

A = X−1BX = Y BY −1 , where BX = XA and AY = Y B .

The elements of an Abelian group are all selfconjugate.

Theorem. If B is conjugate to A and C is conjugate to B, then C is conjugate
to A.

Proof. By definition of conjugation, we can write

B = XAX−1

C = Y BY −1 .

Thus, upon substitution we obtain

C = Y XAX−1Y −1 = Y XA(Y X)−1 .

�

Definition 7. A class is the totality of elements which can be obtained from
a given group element by conjugation.

For example in P (3), there are three classes:

1. E;
2. A,B,C;
3. D,F .

Consistent with this class designation is

ABA−1 = AF = C (1.14)
DBD−1 = DA = C . (1.15)

Note that each class corresponds to a physically distinct kind of symmetry
operation such as rotation of π about equivalent twofold axes, or rotation



10 1 Basic Mathematical Background: Introduction

of 2π/3 about equivalent threefold axes. The identity symmetry element is
always in a class by itself. An Abelian group has as many classes as elements.
The identity element is the only class forming a group, since none of the other
classes contain the identity.

Theorem. All elements of the same class have the same order.

Proof. The order of an element n is defined by An = E. An arbitrary conju-
gate of A is B = XAX−1. Then Bn = (XAX−1)(XAX−1) . . . n times gives
XAnX−1 = XEX−1 = E.

Definition 8. A subgroup B is self-conjugate (or invariant, or normal) if
XBX−1 is identical with B for all possible choices of X in the group.

For example (E,D, F ) forms a self-conjugate subgroup of P (3), but (E,A)
does not. The subgroups of an Abelian group are self-conjugate subgroups. We
will denote self-conjugate subgroups by N . To form a self-conjugate subgroup,
it is necessary to include entire classes in this subgroup.

Definition 9. A group with no self-conjugate subgroups ≡ a simple group.

Theorem. The right and left cosets of a self-conjugate subgroup N are the
same.

Proof. If Ni is an arbitrary element of the subgroup N , then the left coset is
found by elements XNi = XNiX

−1X = NjX , where the right coset is formed
by the elements NjX , where Nj = XNkX

−1.
For example in the group P (3), one of the right cosets is (E,D, F )A =

(A,C,B) and one of the left cosets is A(E,D, F ) = (A,B,C) and both cosets
are identical except for the listing of the elements. �

Theorem. The multiplication of the elements of two right cosets of a self-
conjugate subgroup gives another right coset.

Proof. Let NX and NY be two right cosets. Then multiplication of two right
cosets gives

(NX)(NY ) ⇒ NiXN�Y = Ni(XN�)Y
= Ni(NmX)Y = (NiNm)(XY ) ⇒ N (XY ) (1.16)

and N (XY ) denotes a right coset. �

The elements in one right coset of P (3) are (E,D, F )A = (A,C,B) while
(E,D, F )D = (D,F,E) is another right coset. The product (A,C,B)(D,F,E)
is (A,B,C) which is a right coset. Also the product of the two right cosets
(A,B,C)(A,B,C) is (D,F,E) which is a right coset.
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1.7 Factor Groups

Definition 10. The factor group (or quotient group) is constructed with re-
spect to a self-conjugate subgroup as the collection of cosets of the self-
conjugate subgroup, each coset being considered an element of the factor group.
The factor group satisfies the four rules of Sect. 1.1 and is therefore a group:

1. Multiplication – (NX)(NY ) = NXY .
2. Associative law – holds because it holds for the elements.
3. Identity – EN , where E is the coset that contains the identity element.
N is sometimes called a normal divisor.

4. Inverse – (XN )(X−1N ) = (NX)(X−1N ) = N 2 = EN .

Definition 11. The index of a subgroup ≡ total number of cosets = (order of
group)/ (order of subgroup).

The order of the factor group is the index of the self-conjugate subgroup.
In Sect. 1.6 we saw that (E,D, F ) forms a self-conjugate subgroup, N .

The only other coset of this subgroup N is (A,B,C), so that the order of this
factor group = 2. Let (A,B,C) = A and (E,D, F ) = E be the two elements
of the factor group. Then the multiplication table for this factor group is

E A
E E A
A A E

E is the identity element of this factor group. E and A are their own inverses.
From this illustration you can see how the four group properties (see Sect. 1.1)
apply to the factor group by taking an element in each coset, carrying out the
multiplication of the elements and finding the coset of the resulting element.
Note that this multiplication table is also the multiplication table for the
group for the permutation of two objects P (2), i.e., this factor group maps
one-on-one to the group P (2). This analogy between the factor group and
P (2) gives insights into what the factor group is about.

1.8 Group Theory and Quantum Mechanics

We have now learned enough to start making connection of group theory to
physical problems. In such problems we typically have a system described
by a Hamiltonian which may be very complicated. Symmetry often allows us
to make certain simplifications, without knowing the detailed Hamiltonian.
To make a connection between group theory and quantum mechanics, we
consider the group of symmetry operators P̂R which leave the Hamiltonian
invariant. These operators P̂R are symmetry operations of the system and the
P̂R operators commute with the Hamiltonian. The operators P̂R are said to
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form the group of the Schrödinger equation. If H and P̂R commute, and if P̂R

is a Hermitian operator, then H and P̂R can be simultaneously diagonalized.
We now show that these operators form a group. The identity element

clearly exists (leaving the system unchanged). Each symmetry operator P̂R

has an inverse P̂−1
R to undo the operation P̂R and from physical considerations

the element P̂−1
R is also in the group. The product of two operators of the

group is still an operator of the group, since we can consider these separately
as acting on the Hamiltonian. The associative law clearly holds. Thus the
requirements for forming a group are satisfied.

Whether the operators P̂R be rotations, reflections, translations, or per-
mutations, these symmetry operations do not alter the Hamiltonian or its
eigenvalues. If Hψn = Enψn is a solution to Schrödinger’s equation and H
and P̂R commute, then

P̂RHψn = P̂REnψn = H(P̂Rψn) = En(P̂Rψn) . (1.17)

Thus P̂Rψn is as good an eigenfunction of H as ψn itself. Furthermore, both
ψn and P̂Rψn correspond to the same eigenvalue En. Thus, starting with
a particular eigenfunction, we can generate all other eigenfunctions of the same
degenerate set (same energy) by applying all the symmetry operations that
commute with the Hamiltonian (or leave it invariant). Similarly, if we consider
the product of two symmetry operators, we again generate an eigenfunction
of the Hamiltonian H

P̂RP̂SH = HP̂RP̂S

P̂RP̂SHψn = P̂RP̂SEnψn = En(P̂RP̂Sψn) = H(P̂RP̂Sψn) , (1.18)

in which P̂RP̂Sψn is also an eigenfunction of H. We also note that the action
of P̂R on an arbitrary vector consisting of � eigenfunctions, yields a � × �
matrix representation of P̂R that is in block diagonal form. The representation
of physical systems, or equivalently their symmetry groups, in the form of
matrices is the subject of the next chapter.

Selected Problems

1.1. (a) Show that the trace of an arbitrary square matrix X is invariant
under a similarity (or equivalence) transformation UXU−1.

(b) Given a set of matrices that represent the group G, denoted by D(R) (for
all R in G), show that the matrices obtainable by a similarity transfor-
mation UD(R)U−1 also are a representation of G.

1.2. (a) Show that the operations of P (3) in (1.1) form a group, referring to
the rules in Sect. 1.1.

(b) Multiply the two left cosets of subgroup (E,A): (B,F ) and (C,D), refer-
ring to Sect. 1.5. Is the result another coset?
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(c) Prove that in order to form a normal (self-conjugate) subgroup, it is nec-
essary to include only entire classes in this subgroup. What is the physical
consequence of this result?

(d) Demonstrate that the normal subgroup of P (3) includes entire classes.

1.3. (a) What are the symmetry operations for the molecule AB4, where the
B atoms lie at the corners of a square and the A atom is at the center
and is not coplanar with the B atoms.

(b) Find the multiplication table.
(c) List the subgroups. Which subgroups are self-conjugate?
(d) List the classes.
(e) Find the multiplication table for the factor group for the self-conjugate

subgroup(s) of (c).

1.4. The group defined by the permutations of four objects, P (4), is isomor-
phic (has a one-to-one correspondence) with the group of symmetry opera-
tions of a regular tetrahedron (Td). The symmetry operations of this group
are sufficiently complex so that the power of group theoretical methods can be
appreciated. For notational convenience, the elements of this group are listed
below.

e = (1234) g = (3124) m = (1423) s = (4213)
a = (1243) h = (3142) n = (1432) t = (4231)
b = (2134) i = (2314) o = (4123) u = (3412)
c = (2143) j = (2341) p = (4132) v = (3421)
d = (1324) k = (3214) q = (2413) w = (4312)
f = (1342) l = (3241) r = (2431) y = (4321) .

Here we have used a shorthand notation to denote the elements: for example
j = (2341) denotes

(
1 2 3 4
2 3 4 1

)
,

that is, the permutation which takes objects in the order 1234 and leaves them
in the order 2341:

(a) What is the product vw? wv?
(b) List the subgroups of this group which correspond to the symmetry oper-

ations on an equilateral triangle.
(c) List the right and left cosets of the subgroup (e, a, k, l, s, t).
(d) List all the symmetry classes for P (4), and relate them to symmetry op-

erations on a regular tetrahedron.
(e) Find the factor group and multiplication table formed from the self-

conjugate subgroup (e, c, u, y). Is this factor group isomorphic to P (3)?


